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Distributed Adaptive Quantization and Estimation
for Wireless Sensor Networks

Hongbin Li, Member, IEEE, and Jun Fang

Abstract—In this letter, the problem of distributed parameter es-
timation in a wireless sensor network is considered, where due to
bandwidth constraint, each sensor node sends only one bit of infor-
mation to a fusion center. We propose a new distributed adaptive
quantization scheme by which each individual sensor node dynam-
ically adjusts the threshold of its quantizer based on earlier trans-
missions from other sensor nodes. The maximum likelihood esti-
mator (MLE) and the Cramér—Rao bound (CRB) associated with
our distributed adaptive quantization scheme are derived. Numer-
ical results depicting the performance and advantages of our ap-
proach over a fixed quantization scheme are presented.

Index Terms—Adaptive quantization, distributed estimation,
wireless sensor networks.

I. INTRODUCTION

ONSIDER a wireless sensor network composed of N dis-
C tributed sensor nodes. Each sensor node makes a noisy ob-
servation of an unknown parameter 6 that is described by

Tpn=0+w,, n=12....N )
where N denotes the number of sensors and w,, is zero mean in-
dependent and identically distributed (i.i.d.) noise with respect
to (w.r.t.) n. Suppose that, due to the bandwidth/power con-
straint, all sensor nodes have to quantize their observations {z, }
into one-bit binary data {b,, }. The problem of interest is to es-
timate # from the quantized data {b,} received at the fusion
center.

A number of studies have considered such a distributed es-
timation approach, including stochastic methods that model 6
as a random parameter and require knowledge of the joint dis-
tribution of # and the observed signals (see, e.g., [1] and [2]),
as well as deterministic methods that model 6 as a determinis-
tically unknown parameter. The latter can be further classified
into methods that require knowledge of the conditional distribu-
tion of z,, conditioned on # (e.g., [3] and [4]) and methods that
do not (e.g., [5] and [6]).

The achievable estimation performance at the FC can be
shown to critically depend on the choice of the 1-bit quantizer
that is used to quantize the data at each sensor node [4]. One
strategy is to choose a fixed quantizer for all sensor nodes with
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a fixed quantization threshold 7 [3]. The optimum choice of 7,
however, depends on ¢, which is unknown. It is found that if 7
is set away from 6, the best achievable estimation performance
at the FC has an exponentially increasing estimation error in
|7 — 6] [4]. An alternative strategy is to use a set of thresholds
{7k}, and each 7y, is used in a fraction py, of the N sensor nodes
[4], in the hope that some of the thresholds are close to the
unknown 6. The problem is that finding the best set of {7%, p. }
is involved.

To deal with the above difficulty, we present a new distributed
adaptive quantization scheme by which each individual sensor
node dynamically adjusts the threshold of its quantizer based on
earlier transmissions from other sensor nodes. Our scheme is in
essence a distributed Delta modulation technique, whereby each
sensor node accumulates earlier transmissions from other sensor
nodes and uses the accumulated value s,,_1 as the threshold for
its 1-bit quantizer. The accumulated value s,,_; can be shown
to converge (w.r.t. n) around the unknown 6. Based on our pro-
posed adaptive quantization scheme, we develop the maximum
likelihood estimator (MLE) that can be used at the FC to find
the ML estimate of # and the Cramér—Rao bound (CRB) that
tells about the best achievable estimation performance (among
all unbiased estimators) for the proposed adaptive quantizer.

II. FIXED QUANTIZATION APPROACH

The fixed quantization approach is to apply a common
threshold 7 for all sensors and generate quantized data b,
which are sent to the FC as follows [3]:

b, =sgn(x, —7), n=1,2,...,N. 2)

The probability mass function (PMF) of b,, is given by
P(by;8) = [Fo(m — 0)]3H)2[1 — B, (1 — 9)] 17072 (3)

where F,,(z) denotes the complementary cumulative density
function (CCDF) of w,,. Since {b, } are i.i.d., the log-PMF or
log-likelihood function is shown in (4) at the bottom of the next
page, where the subscript FQ is used to denote the fixed quan-
tization scheme. The MLE is given by [4]

fpq = arg max Lrq(0)

N
- 1 1+0b,
n=1

The CRB based on the above fixed quantization is [3], [4]

F,(t—0)[1 — Fy(r — 6)]

CRBrq(f) = Np2,(r — )

(6)

where p,,(x) denotes the probability density function (PDF) of
wy,. We see that CRBpq(6) depends on the threshold 7. Fur-
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thermore, it has been found that the CRB increases exponen-
tially with |7 — 6|/o for the Gaussian noise, where o denotes
the standard deviation of the noise [4].

III. DISTRIBUTED ADAPTIVE QUANTIZATION APPROACH

In this section, we first introduce our distributed adaptive
quantization scheme, followed by the development of the MLE
and CRB.

A. Adaptive Quantization

We assume that the sensors share the communication channel
on a time-sharing basis (e.g., each sensor is polled by the FC), so
that sensor 1 transmits first, followed by sensor 2, and so on and
so forth. The 1-bit quantizer at sensor 1 uses a zero-threshold to
generate b as follows:

by =sgn{x}. (7)

Then, by is sent (i.e., broadcast) to the FC as well as the other
N —1 sensors. After receiving b1, sensor 2 computes s; = Aby,
where A is a step size parameter whose choice is discussed later,
and generates by as follows:

by = sgn{xy — s1}. 8)

In general, for sensor n, it first forms a cumulative sum

n—1

Sno1 = Sp_g+ Dby =AY by ©)
k=1

and then, it uses s,,_1 as a threshold for quantization

bn = sgn{x, — sp_1}- (10)
One can immediately recognize that the above process is rem-
iniscent of the Delta modulation but is implemented in a dis-
tributed fashion.

B. MLE

Different from the fixed quantization approach, the binary
data bits by, b, ...,byx generated by our distributed adaptive
quantization are no longer independent and identically dis-
tributed. The conditional PMF of b,, is given by

fxbnw1»~~7bn—1;9)==[Fhisn_l——ﬁ)ﬁl+“ﬂ/2

X[1 = Fy(sp_1 —0)])7)/2 (1)
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Using conditional probabilities, we can write the joint PMF of
bl,bg,...,bN as

12)

Then the log-likelihood function following from (11) and (12) is
shown in (13) at the bottom of the page, where the subscript AQ
is used to denote our adaptive quantization scheme. As such, the
MLE is given by

HAAQ = argmngAQ(H). (14)

Unlike éFQ, an analytical form of § Aq cannot be obtained. Nev-
ertheless, we can employ the gradient-based iterative algorithm
to find #¢. When the noise is Gaussian distributed, it can be
shown that the MLE function in (14) is concave and guaranteed
to converge to the global maximum (see, e.g., [4, Proposition

2]).

C. CRB

Noting that F’ (z) £ OF,(x)/0x = —pu(z), we can
quickly verify that the second-order derivative of Laq(6)
is shown in (15) at the bottom of the next page, where
Pl (z) £ 9p,,(x)/dx. The Fisher information for the estima-
tion problem is given by (e.g., [7])

0% Lag(f
Iaelt)= - B na O
N
== Z Esnfl {Ebnlsn—l [A(bn Sn—1, 6)]}
n=1
N 2
(a) pw(sn_l — 9) :|
= E,,_
nz::l Sn 1|:Fw(sn_1—0)(1_Fw(5n_1_0))
(16)

where FE, _, denotes the expectation w.r.t. the distribu-
tion P(s,_1;0), E,s,_, denotes the expectation w.r.t.
the conditional distribution P(b,,|s,—1;0), and (a) fol-
lows from the fact that b, is a binary random vari-
able with P(b, = 1|sn-1,0) = Fu(sn—1 — ) and
P, = —1|sp-1,0) = 1 — Fy(sn—1 — 6). Note that
Sp—1 18 a discrete random variable with possible values

Lrq(8) £ n[P(by,...,bN;0)]

n=1

> {( e

o)) + <1 ‘21’"> Il — Fy(r — 9)]} @

LAQ(H)Zi{CJ;b"

n=1

) tEutons 00+ (

1-05,

)il - Fusas = 0] (13)
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Fig. . CRB and MLE versus the number of sensors V. (a) # = 1. (b) # = 2. (c) § = 3.

{r_n,...,7.1,0,71,..., 75} forany n < N, where 73, = kA.
Hence, we can further express (16) as

Jaq(0)
ShS p2 (i — 6)
DIPILTNEN [F( e 9))}

N
P(Sn,1 = Tk> |:
=—Nn=1

e, (i — 0) }
Fy(te —0)(1 — Fy(me — 0))

= N prpy (i — 6)
e e R ) an

where pr = (1/N) Zgzl P(sp_1 = 7x), which denotes the
normalized frequency with which the sensors use 75 as the

threshold. Therefore, the CRB is given by

CRBAo(6)= T; O

-1

prp2 (T — 0) (18)

_NL:NFH)(% —0)(1—F, (1 —0))

Interestingly, (18) has the same analytical form as that in [4]
for the nonidentical thresholds case (see [4, (17)]). Neverthe-
less, the difference between our scheme and that of [4] is ob-
vious. First, the frequencies {p;} associated with the thresh-
olds {71} are computed in advance in [4] while these param-
eters are induced in an adaptive way in our work. Second, in
[4], a fixed threshold is assigned to a single sensor; however, for
our scheme, each sensor has a random threshold with a certain
distribution.

For w,, with a symmetric PDF, if A is chosen small enough,
the random walk process {s,_1} converges around the un-
known parameter 6 as n becomes large. This is because

Es sy [sn] = (sn—1+ A)Fy(s,-1 —0)
+ (sn—l - A)(l - Fw(sn—l - 9))
> S,_1, ifs,_1<86
= {:sn—h ifsn_1:9
< Sp-1, ifsp_1 >80
which indicates that E[s,] tends toward 6 with increasing n.
For Gaussian noise, it is clear that (18) is minimized if only one
threshold 7 = 6 is employed, i.e., 7, = 6 for any k. While
this is impossible (since # is unknown), our approach provides
a more practical solution: it automatically selects the thresholds
{7} and the corresponding frequencies {px} such that for suf-
ficiently large IV and proper step size A, the thresholds {7} } are
around the unknown 6 with a high probability. This is notably
different from [4], where {p;} is computed using a weighting
function that is in general difficult to choose.

To compute the CRB in (18), we need the distribution of
Sn—1. Note that s,,_; is a random walk process with varying
probabilities of the increment of A and —A. Although finding
a closed-form expression for the PMF of s,,_; seems cumber-
some, it can be computed rather straightforwardly by recursive
calculation. For simplicity, let P; ; £ P(s; = jA). Then the
distribution of s,,_; can be calculated recursively as

Pi,j :Pi—l,j—lp(bi - 1) + Pi_17j+1p(bi = —1)
=P 1j-1Fu((j — 1A - 0)
+ Py [l = Fu((F+1)A -0)]. (20)

It is clear that CRBAq depends on the step size parameter
A because the choice of A affects {7} and {p} [see (18)].

(19)

0?Laq(8)
562

p;‘,(8n71 - 9)

—

N
é 44(117153717159)
=1

n

i{(l—l—bn,)(_ p’w(sn1—9)_p%;(sn1—9)> _ <1_bn><_ n P (sn-1—8) )}
n= 2 F":(Sn_1 - 9) FL%(Sn_1 - 9) 2 |:1 - Fw(snfl - 9)] |:1 — Fw(snfl - 9)]2

15)
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Fig. 2. CRB versus A with § = 2,5 and N = 50, 100, respectively.

Defining h(z) 2 p2 () /(Fu(z)(1 — Fy(z))), we express Jaq
(the inverse of CRBaq) as

N

JAQ =N Z pkh(.rk)
k=—N

2y

where 1z}, 2 T, — 6. The choice of A is discussed next. Our
discussion applies to any distribution that leads to a unimodal
h(z) £ p?(x)/Fy(x)(1 — Fy(x)) achieving its maximum at
z = 0. Examples of such distributions include the Gaussian,
Laplacian, and Cauchy PDF, etc. In order to maximize Jaq
(minimize CRBAq), A should be chosen to make the coeffi-
cients { p } as large as possible for those k& whose corresponding
values {73} are close to 6. If A is chosen too small such that
A < |6]/N, the coefficients {py} have its major values scat-
tered while k varies from —N to N and cannot form a peak
around ko, where x, = 0. On the other hand, if A is chosen too
large, although the coefficients {p;} have peak values around
ko, {h(z1)} will become small as a large A causes a large devi-
ation of x;, from 0. Thus, the choice of A should be made with
a tradeoff between these two opposite effects.

IV. NUMERICAL RESULTS AND DISCUSSIONS

To illustrate the performance of the proposed distributed
adaptive quantization and estimation scheme, we consider the
case where the sensor noise {w,} are independent and iden-
tically distributed Gaussian random variables with zero mean
and variance o2 = 1. We compare our adaptive scheme with
the fixed quantization approach described in Section II and the
clairvoyant approach that uses unquantized data. The CRB for
the clairvoyant approach provides a benchmark (lower bound)
for comparison and is given by [4]

o2

CRBnq(f) = i

where the subscript NQ denotes that no quantization is used.
Fig. 1(a)—(c) shows the CRB of the above three approaches
when # = 1, 2, and 3, respectively. For the fixed quantization
approach, we set the threshold 7 = 0, and for our adaptive quan-
tization approach, we choose A = 0.1. As we can see, the fixed
quantization approach is sensitive to the value of # or, equiva-

(22)
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lently, the value of 7; as the two become more apart from each
other (even not too far apart), the performance of the fixed quan-
tization approach degrades significantly. On the other hand, our
adaptive quantization scheme does not have the above problem.
In addition, in all three cases considered, it outperforms the
fixed quantization scheme and is closer to the clairvoyant ap-
proach. The mean-square error (MSE) of the adaptive quanti-
zation-based maximum likelihood estimator (MLE) is also in-
cluded in Fig. 1(a)-(c). We observe that the MSE approaches
the corresponding CRB for large V.

Fig. 2 shows the CRB of the adaptive quantization scheme
under different choices of A. It is easy to see that the optimal
choice of the parameter A is related to the unknown parameter
6 and the number of sensors V. This can be intuitively justified
because a larger 6 (given a fixed V) requires a larger step size
to come close to the unknown parameter; likewise, a smaller
N (given a fixed ) requires a larger A to achieve the same ef-
fect. Another observation made on the figure is that, centered
on the optimal point of A, the performance has a sharp degra-
dation with a decreasing A while it varies very slowly with an
increasing A. This suggests us to use an overestimated instead
of an underestimated A.

V. CONCLUSION

We have proposed an AQ-based distributed estimation
scheme that is robust to the unknown parameter and outper-
forms the fixed quantization approach. Our scheme, as well as
those in [3]-[6], transmit only 1 data bit per sensor. A natural
question is why to send a single bit given that tens or more
overhead bits are usually required to set up a communication
link. Nevertheless, our results show that for sufficiently large
N, the gap between our scheme and the clairvoyant NQ is fairly
small; unless higher accuracy is desirable, there is no need to
transmit more bits. It should be noted that our method can be
readily extended to incorporate multi-bit quantization as well:
each sensor just uses prior transmissions from other sensors
to adjust the center threshold of its multi-bit quantizer. Future
research work may include adaptive adjustment of the step size
A, which is expected to yield additional performance gain, and
having each sensor to broadcast to its neighbors only, in order
to reduce communication overhead and energy cost.
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