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Robust One-Bit Bayesian Compressed
Sensing with Sign-Flip Errors
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Abstract—We consider the problem of sparse signal recovery
from one-bit measurements. Due to the noise present in the ac-
quisition and transmission process, some quantized bits may be
flipped to their opposite states. These bit-flip errors, also referred
to as the sign-flip errors, may result in severe performance degra-
dation. To address this issue, we introduce a robust Bayesian com-
pressed sensing framework to account for sign flip errors. Specif-
ically, sign-flip errors are considered as a result of a sparse noise-
corrupted model in which original (unquantized) observations are
corrupted by sparse (impulse) noise. A Gaussian-inverse Gamma
hierarchical prior is assigned to the noise vector to promote spar-
sity. Based on the modified hierarchical model, we develop a vari-
ational expectation-maximization (EM) algorithm to identify the
sign-flip errors and recover the sparse signal simultaneously. Nu-
merical results are provided to illustrate the effectiveness and su-
periority of the proposed method.

Index Terms—One-bit Bayesian compressed sensing, sign-flip er-
rors, variational expectation-maximization.

I. INTRODUCTION

C OMPRESSED sensing with one-bit quantized measure-
ments has attracted considerable attention recently due to

its substantial potential benefits in data acquisition. In particular,
one-bit quantization can significantly reduce the hardware com-
plexity and cost, which makes large-scale data acquisition more
tractable [1]. One-bit compressed sensing was firstly introduced
by Boufounos and Baraniuk [2], with the objective to recover a
sparse or compressible signal from one-bit measurements

(1)

where “ ” denotes an operator that performs the sign func-
tion element-wise on the vector, the sign function returns 1 for
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positive numbers and 0 otherwise. Following [2], a variety of
one-bit compressed sensing algorithms such as matching sign
pursuit (MSP) [3], binary iterative hard thresholding (BIHT)
[4], and many others [1], [5]–[7] were proposed. All these
studies assume that one-bit measurements are error-free. In
practice, however, due to the noise in signal acquisition and
transmission, some of the signs may be flipped to their opposite
states, in which case the above algorithms may suffer from con-
siderable performance loss. To address this issue, an adaptive
outlier pursuit method [8] and a noise-adaptive renormalized
fixed point iteration method [9] were developed to automati-
cally find the outlier (sign-flip) errors. These methods, however,
require the knowledge of the number of sign-flip errors (which
is usually unknown in advance) in their formulations, and their
performance deteriorates if the number is set different from the
true value.
In this paper, we introduce a robust Bayesian compressed

sensing framework to address sign flip errors. Specifically,
the sign-flip errors are modeled as a result of corrupting un-
quantized observations by a sparse (impulse) noise vector. A
Gaussian-inverse Gamma hierarchical prior is assigned to the
noise vector to encourage sparsity. Based on this model, we
develop a variational expectation-maximization (EM) algo-
rithm which simultaneously identifies the bit-flip errors and
recovers the sparse signal. The proposed algorithm does not
require the a priori knowledge of the number of bit flips and
the sparsity level of the sparse signal. Besides, no additional
tuning parameters are needed for the proposed algorithm.

II. HIERARCHICAL MODEL

We aim to recover a sparse signal from one-bit quantized
measurements, where some measurements’ signs may be
flipped to their opposite states due to observation or trans-
mission noise. The sign-flip errors can naturally be modeled
as a result of corrupting the original observations by a sparse
(impulse) noise vector. Specifically, we have

(2)

where are the binary observations,
denote the unquantized original measurements,

and is a sparse (impulse) noise vector
with only a few nonzero coefficients. Note that although the true
observation noise vector does not have a sparse structure, only
those elements which cause bit-flip errors should be retained,
other elements which have no impact on the signs can be ig-
nored. Our objective is to jointly estimate the sparse signal
and detect the sign-flip errors based on one-bit observations .
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To develop a Bayesian framework for one-bit compressed
sensing, we first need to introduce a probabilistic model to quan-
tify the probability of given the input . Following [10], the
likelihood of given can be expressed as

(3)

where is the logistic function. Note
that the logistic function, with an ‘S’ shape, is differentiable, and
thus is a good substitute for the sign function. Meanwhile, to en-
courage sparsity, hierarchical Gaussian-inverse-Gamma priors
[10], [11] are assigned to both and , i.e.

and

where represents a Gaussian distribution with mean
and variance . The parameters , , , and that are used

to characterize the Gamma distributions are chosen to be very
small values, e.g. , in order to provide non-informative
(over a logarithmic scale) hyperpriors over and

. As discussed in [10], a broad hyperprior allows
the posterior means of and to become arbitrarily large.
As a consequence, the associated coefficients and will be
driven to zero, thus yielding a sparse solution.

III. VARIATIONAL INFERENCE

A. Review of The Variational Bayesian Methodology

Before proceeding, we firstly provide a brief review of the
variational Bayesian methodology. In a probabilistic model, let
and denote the observed data and the hidden variables, re-
spectively. It is straightforward to show that the marginal prob-
ability of the observed data can be decomposed into two terms

(4)

where

(5)

and

(6)

where is any probability density function, is the
Kullback-Leibler divergence between and . Since

, it follows that is a rigorous lower bound
on . Moreover, notice that the left hand side of (4) is in-
dependent of . Therefore maximizing is equivalent to

Fig. 1. Hierarchical model for joint sign-flip detection and sparse signal
recovery.

minimizing , and thus the posterior distribution
can be approximated by through maximizing .
The significance of the above transformation is that it circum-

vents the difficulty of computing the posterior probability
(which is usually computationally intractable). For a suitable
choice for the distribution , the quantity may be more
amiable to compute. Specifically, we could assume some spe-
cific parameterized functional form for and then maximize

with respect to the parameters of the distribution. A partic-
ular form of that has been widely used with great success
is the factorized form over the component variables in
[12], i.e. .We therefore can compute the poste-
rior distribution approximation by finding of the factorized
form that maximizes the lower bound . The maximization
can be conducted in an alternating fashion for each latent vari-
able, which leads to [12]

(7)

where denotes an expectation with respect to the distri-
butions for all .

B. Proposed Bayesian Inference Algorithm

Let denote all hidden variables appeared in
our hierarchical model. We find an approximation of the poste-
rior distribution through maximizing

(8)

where is given by

(9)

However, the integral in (8) is difficult to compute due to the
sigmoid function , which makes maximizing a
tricky problem. To circumvent this difficulty, we search for a
tractable lower bound on . Recalling the Jaakkola-Jordon
inequality [13]

(10)

where , ,
is the hyperbolic

tangent function, and the inequality becomes equality when
. By utilizing (10), we have

(11)
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where , denotes the transpose of
the ith row of the sampling matrix , and . Combining
(8) and (11), a tractable lower bound on can eventually be
obtained as

(12)

where

Let denote the factorized form
of . Our objective is to maximize with respect to
the functions , , , and as well as with
respect to the parameters . This naturally leads to a varia-
tional expectation-maximization (EM) algorithm. In the E-step,
the posterior distribution approximations are computed in an
alternating fashion for each hidden variable, with other vari-
ables fixed. In the M-step, is maximized with respect
to , given the posterior distribution fixed. Details of this
Bayesian inference scheme are provided below.
E-Step:
1. Update of : Recalling (7), the approximate posterior
distribution can be computed by

(13)

where and
. It can be readily observed

that follows a Gaussian distribution with its mean
and covariance matrix given respectively as

(14)

in which , denotes the
expectation of with respect to the distribution of ,
and denotes the mean of the posterior distribution

.
2. Update of : The posterior approximation can
be obtained as

(15)

where , denotes the ex-
pectation of with respect to the distribution of .

Again, we can easily verify that follows a Gaussian
distribution with its mean and covariance matrix given by

(16)

3. Update of : The posterior can be obtained by
computing

(17)

where denotes the expectation of with respect to
. Hence has a form of a product of Gamma distri-

butions

(18)

in which the parameters and are respectively given as

(19)

4. Update of : Similarly, variational optimization of
yields

(20)

Thus has a form of a product of Gamma distributions as
well

(21)

with the parameters and given as

(22)

In summary, the E-step involves update of the posterior
approximations for hidden variables , , , and . Some
of the expectations and moments used during the update
are summarized as

(23)

where and denote the ith element of and ,
respectively; and represent the ith diagonal el-
ement of and , respectively.

M-Step: By substituting into , the estimate
of can be found via the following optimization

(24)
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Fig. 2. (a) NMSEs of respective algorithms vs. ; (b) Hamming errors of re-
spective algorithms vs. .

Taking the derivative of with respect to each variable
yields

(25)

Setting the derivative to zero gives the solution

(26)

where .
For clarity, we summarize the variational Bayesian algorithm

as follows.
1) Given the current estimate of , update the posterior ap-
proximations , , , and according
to (14), (16), (19), and (22).

2) Update the parameter according to (26).
3) Continue the above iteration until ,
where is a prescribed tolerance value.

IV. SIMULATION RESULTS

We now carry out experiments to illustrate the performance
of our proposed robust one-bit Bayesian compressed sensing
algorithm (referred to as R1-BCS)1. In our simulations, the
-sparse signal is randomly generated with its support set

randomly chosen according to a uniform distribution. The
measurement matrix is randomly generated with
each entry independently drawn from Gaussian distribution
with zero mean and unit variance, and then each column of is
normalized to unit norm. The sign-flip errors are also randomly
generated according to a uniform distribution. We compare
our proposed method with the BIHT method [4], the one-bit
Bayesian compressed sensing algorithm (1-BCS) which is a
simplified version of the proposed R1-BCS method developed
without considering the sign-flip errors (i.e. the sparse noise is
removed from our proposed hierarchical model), the adaptive
outlier pursuit method (AOP) [8], and the noise-adaptive renor-
malized fixed point iteration (NARFPI) method [9]. Note that
the AOP and the BIHT require the knowledge of the sparsity

1Codes are available at http://www.junfang-uestc.net/codes/R1-BCS.rar

Fig. 3. (a) NMSEs of respective algorithms vs. ; (b) Hamming errors of re-
spective algorithms vs. .

level of the signal, which is assumed perfectly known to these
methods.
Two metrics are used to evaluate the recovery performance,

namely, the normalized mean squared error (NMSE) and the
Hamming error. Since the information about the magnitude of
the signal is lost due to one-bit quantization, the norm of the
original signal and the estimated signal are normalized to unity
in computing the NMSEs. The Hamming error is defined as
( . Clearly, the Hamming error
will become zero if the estimated sign measurements are con-
sistent with the original sign measurements, which means that
all bit-flip errors are detected and corrected.We first examine the
robustness of respective algorithms against the sign-flip errors.
Note that the AOP and NARFPI methods require to pre-specify
the total number of sign-flip errors, , in their formulations.
We assume that is perfectly known by them. Fig. 2 depicts
the NMSEs and the Hamming errors as a function of , where
we set , , and . Results are aver-
aged over independent runs. From Fig. 2, we see that the
methods which take the flip errors into account generally outper-
form those methods (BIHT and 1-BCS) ignoring the flip errors.
Particularly, the recovery performance of the 1-BCSmethod de-
teriorates significantly as the number of flip errors increases,
while the proposed R1-BCS method is robust against the flip
errors and incurs only mild performance loss with a growing .
It can also be observed that the proposed algorithm achieves the
best performance in terms of both the NMSE and the Hamming
error. Fig. 3 plots the NMSEs and the Hamming errors vs. the
number of measurements , where we set , ,
and . This result again demonstrates the superiority of
the proposed algorithm over other existing methods.

V. CONCLUSIONS

We developed a robust one-bit Bayesian compressed sensing
algorithm for joint sign-flip error detection and sparse signal
recovery. A noteworthy merit of the proposed algorithm is that
it does not need any tuning parameters (such as the sparsity level
and the number of sign-flip errors). Simulation results show that
the proposed algorithm is robust against the sign-flip errors and
provides superior recovery performance as compared with other
methods.
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