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Millimeter Wave Channel Estimation via Exploiting
Joint Sparse and Low-Rank Structures

Xingjian Li, Jun Fang , Member, IEEE, Hongbin Li, Senior Member, IEEE, and Pu Wang

Abstract— We consider the problem of channel estimation for
millimeter wave (mmWave) systems, where, to minimize the
hardware complexity and power consumption, an analog transmit
beamforming and receive combining structure with only one
radio frequency chain at the base station and mobile station is
employed. Most existing works for mmWave channel estimation
exploit sparse scattering characteristics of the channel. In addi-
tion to sparsity, mmWave channels may exhibit angular spreads
over the angle of arrival, angle of departure, and elevation
domains. In this paper, we show that angular spreads give rise to
a useful low-rank structure that, along with the sparsity, can be
simultaneously utilized to reduce the sample complexity, i.e., the
number of samples needed to successfully recover the mmWave
channel. Specifically, to effectively leverage the joint sparse and
low-rank structure, we develop a two-stage compressed sensing
method for mmWave channel estimation, where the sparse and
low-rank properties are respectively utilized in two consecutive
stages, namely, a matrix completion stage and a sparse recov-
ery stage. Our theoretical analysis reveals that the proposed
two-stage scheme can achieve a lower sample complexity than
a conventional compressed sensing method that exploits only the
sparse structure of the mmWave channel. Simulation results are
provided to corroborate our theoretical results and to show the
superiority of the proposed two-stage method.

Index Terms— mmWave channel estimation, angular spread,
jointly sparse and low-rank, compressed sensing.

I. INTRODUCTION

M ILLIMETER WAVE (mmWave) communication is
a promising technology for future 5G cellular net-

works [1]–[3]. It has the potential to offer gigabits-per-second
communication data rates by exploiting the large bandwidth
available at mmWave frequencies. However, a key challenge
for mmWave communication is that signals incur a much more
significant path loss over the mmWave frequency bands as
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compared with the path attenuation over the lower frequency
bands [4]. To compensate for the significant path loss, large
antenna arrays should be used at both the base station (BS)
and the mobile station (MS) to provide sufficient beamforming
gain for mmWave communications [5].

Although directional beamforming helps overcome the path
loss issue, it also complicates the mmWave communication
system design. Due to the narrow beam of the antenna array,
communication between the transmitter and the receiver is
possible only when the transmitter’s and receiver’s beams are
well-aligned, i.e. the beam directions are pointing towards
each other. Therefore beamforming training is required to
search for the best beamformer-combiner pair that gives the
highest channel gain. One method is to exhaustively search for
all possible beam pairs to identify the best beam alignment.
Nevertheless, this exhaustive search may lead to a prohibitively
long training process, particularly when the number of anten-
nas at the BS and MS is large. To address this issue, an
adaptive beam alignment algorithm was proposed in [6], where
a hierarchical multi-resolution beamforming codebook was
employed to avoid the costly exhaustive sampling of all pairs
of transmit and receiver beams. Nevertheless, this adaptive
beam alignment requires feedback from the receiver to the
transmitter. In practice, this feedback involves only a few
bits’ transmission and thus may work at very low signal-to-
noise ratios. It can also be operated in a different frequency
band such that the information transmission is possible before
channel estimation. Recently, a novel beam steering scheme
called as “Agile-Link” [7] was proposed to find the correct
beam alignment without scanning the space. The main idea
of the Agile-Link is to harsh the beam directions using a few
carefully chosen hash functions, and steer the antenna array
to beam along multiple directions simultaneously.

Unlike beam scanning techniques whose objective is to find
the best beam pair, another approach is to directly estimate
the mmWave channel or its associated parameters, e.g. angles
of arrival/departure, e.g. [8]–[17]. In particular, by exploiting
the sparse scattering nature of mmWave channels, mmWave
channel estimation can be formulated as a sparse signal recov-
ery problem [10]–[16], and it has been shown that substantial
reduction in training overhead can be achieved. In [7], the
estimation of directions of the paths (i.e. the angles of arrival)
was also expressed as a sparse signal recovery problem.
Nevertheless, unlike [10]–[16], the Agile-Link algorithm [7]
uses only magnitudes of the measurements, and developed
a simple voting-based scheme to recover the directions of
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the paths. Besides the compressed sensing techniques, low-
rank tensor factorization methods [17], [18] were recently
proposed to exploit the low-rank structure of mmWave chan-
nels, and have been shown to outperform the compressed
sensing-based methods in terms of both estimation accuracy
and computational complexity.

In addition to the sparse scattering characteristic, several
real-world measurements in dense-urban propagation environ-
ments (e.g. [19]–[22]) reveal that mmWave channels spread
in the form of clusters of paths over the angular domains
including the angle of arrival (AoA), angle of departure (AoD),
and elevation. In [21] and [22], real-world channel measure-
ments at 28 and 73 GHz in New York city were reported, in
which the angular spread has been explicitly studied in terms
of the root mean-squared (rms) beamspread in the different
angular (AoA, AoD, and elevation) dimensions. Specifically,
the measured AoA spreads (in terms of rms) are 15.5◦ and
15.4◦, respectively, for the two carrier frequencies, while the
measured AoD spreads (in terms of rms) are 10.2◦ and 10.5◦,
respectively. As demonstrated in [23], the angular spreads give
rise to a structured sparsity pattern that can be exploited to
improve the mmWave channel estimation performance.

In this paper, we further show that, in the presence of angu-
lar spreads, the mmWave channel exhibits a joint sparse and
low-rank structure in which the rank is far less than the sparsity
level of the channel. To better utilize the joint structure, we
propose a two-stage compressed sensing scheme, where a low-
rank matrix completion stage is first performed and then fol-
lowed by a compressed sensing stage to recover the mmWave
channel. Our analysis reveals that the number of measurements
required for exact channel recovery is about O(pL2) for the
proposed two-stage method, where L represents the number
of scattering clusters and p is a quantity that measures the
maximum angular spread among all scattering clusters. While
a conventional convex relaxation-based compressed sensing
method that exploits only the sparsity of mmWave channels
requires a number of measurements of O(p2 L). Thus the
proposed two-stage compressed sensing method achieves a
lower sample complexity than the conventional compressed
sensing method when L < p, which is very likely to hold in
dense-urban propagation environments.

The rest of the paper is organized as follows. The system
model and the problem formulation are discussed in Section II.
In Section III, we introduce a geometric mmWave channel
model with angular spreads and show that the mmWave
channel exhibits a joint sparse and low-rank structure. A two-
stage compressed sensing method is developed in Section IV,
along with a theoretical analysis for the two-stage method.
Simulation results are provided in Section V, followed by
concluding remarks in Section VI.

II. SYSTEM MODEL AND PRIOR WORK

Consider a point-to-point uplink mmWave MIMO system
consisting of NBS antennas at the BS and NMS antennas at
the MS. Since the radio frequency (RF) chains are costly and
power-consuming at mmWave frequency bands, to minimize
the hardware complexity and power consumption, we focus
on an analog transmit beamforming and receive combining

Fig. 1. A block diagram of the analog transmit beamforming and receive
combining structure.

structure (see Fig. 1) where only one RF chain is employed
at the BS and MS. In this structure, transmit beamforming
and receive combining are implemented in the analog domain
using digitally controlled phase shifters. On the other hand,
although our proposed method may be extended to the hybrid
beamforming structure with multiple RF chains, considering
the case of one RF chain can simply our exposition and
facilitate our algorithmic development.

At time instant t , the transmitter employs a beamforming
vector f (t) ∈ CNMS to transmit a symbol s(t), and at the
receiver, the received signals on all antennas are combined
with a receive combining vector z(t) ∈ CNBS . The com-
bined signal at the receiver can therefore be expressed as
(see, e.g. [6])

y(t) = zH (t)H f (t)s(t) +w(t) ∀ t = 1, . . . , T (1)

where H ∈ CNBS×NMS is the channel matrix, and w(t) denotes
the additive Gaussian noise with zero mean and variance σ 2.
Without loss of generality, we set s(t) = 1 during the training
phase. Since the precoder and combiner are implemented by
analog phase shifters, entries of z(t) and f (t) have constant
modulus.

We see that in mmWave systems, the receiver cannot
directly observe H , rather it observes a noisy version
of zH H f . This is also referred to as the channel subspace
sampling limitation [6], [13], which makes channel estimation
a challenging problem. By exploiting the sparse scattering
nature of mmWave channels, the channel estimation prob-
lem can be formulated as a sparse signal recovery problem
(e.g. [6], [13]). Specifically, the mmWave channel is usually
characterized by a geometric channel model [11]

H =
L̃∑

l=1

αl aBS(θl)aH
MS(φl) (2)

where L̃ is the number of paths, αl is the complex gain
associated with the lth path, θl ∈ [0, 2π] and φl ∈ [0, 2π] are
the associated azimuth AoA and azimuth AoD respectively,
and aBS ∈ CNBS (aMS ∈ CNMS ) is the array response
vector associated with the BS (MS). Suppose a uniform linear
array (ULA) antenna array is used. Then the steering vectors
at the BS and the MS can be written as

aBS(θl) = 1√
NBS

[
1, e j 2π

λ d sin(θl ), . . . , e j (NBS−1) 2π
λ d sin(θl )

]T

aMS(φl) = 1√
NMS

[
1, e j 2π

λ d sin(φl ), . . . , e j (NMS−1) 2π
λ d sin(φl )

]T
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where λ is the signal wavelength, and d is the distance
between neighboring antenna elements. To formulate the chan-
nel estimation as a sparse signal recovery problem, we first
express the channel as a beam space MIMO representation as
follows [13]

H = ABS Hv AH
MS (3)

where ABS � [aBS(ψ1), . . . , aBS(ψN1 )] is an overcomplete
matrix (N1 ≥ NBS) with each column a steering vector
parameterized by a pre-discretized AoA, AMS � [aMS(ω1),
. . . , aMS(ωN2 )] is an overcomplete matrix (i.e. N2 ≥ NMS)
with each column a steering vector parameterized by a pre-
discretized AoD, and Hv ∈ CN1×N2 is a sparse matrix
with L̃ non-zero entries corresponding to the channel path
gains {αl}. Here we assume that the true AoA and AoD
parameters lie on the discretized grids. In practice, the true
parameters do not necessarily lie on the discretized grid, which
is referred to as grid or basis mismatch. In the presence of
grid mismatch, the number of nonzero entries in the beam
space channel Hv will not exactly equal L̃, instead, the
number of nonzero entries will become larger due to the power
leakage caused by grid mismatch. Note that although a variety
of super-resolution or off-grid compressed sensing methods,
e.g. [24]–[26], were proposed to overcome the grid mismatch
issue, these methods incur a higher computational complexity
as they usually involve an iterative procedure which alterna-
tively refines the dictionary parameters and the sparse signal.

Substituting (3) into (1), we have

y(t) = zH (t)ABS Hv AH
MS f (t)+w(t)

=
[
(AH

MS f (t))T ⊗ (z(t)H ABS)
]

h +w(t)

= ( f (t)T ⊗ z(t)H )(A∗
MS ⊗ ABS)h +w(t) (4)

where ⊗ denotes the Kronecker product, ()∗ represents the
complex conjugate, and h � vec(Hv ). Collecting all mea-
surements {y(t)} and stacking them into a vector y �
[y1 . . . yT ]T , we arrive at

y =
⎡
⎢⎣
( f (1)T ⊗ z(1)H )

...

( f (T )T ⊗ z(T )H )

⎤
⎥⎦ (A∗

MS ⊗ ABS)h + w

� �h + w (5)

Since h is sparse, channel estimation now becomes a sparse
signal recovery problem. To estimate h, we can resort to the
fast iterative shrinkage-thresholding algorithm (FISTA) [27]
which involves solving

min ‖h‖1

s.t. ‖y − �h‖2 ≤ ε (6)

where ε is an error tolerance parameter related to noise statis-
tics. Compressed sensing theory tells that, for the noiseless
case, we can perfectly recover a high-dimensional sparse
signal h from a much lower dimensional linear measurement
vector y. Thus the compressed sensing-based method has the
potential to achieve a substantial training overhead reduction.

Fig. 2. Rx power angular profile measured at a typical TX-RX location pair
at 28 GHz [22].

III. CHANNEL MODEL WITH ANGULAR SPREADS

In addition to sparsity, mmWave channels also take a
form of angular spreads over the AoA, AoD, and elevation
domains [21], [22]. The angular spreads are a result of
scattering clusters, where each cluster may contribute with
multiple rays/paths. It was shown a structured sparsity pattern
arises in the presence of angular spreads [23]. In this paper,
we further show that, due to the spatial correlation and the
unsymmetric angular spreads over different domains, mmWave
channels may exhibit a meaningful low-rank structure that can
be utilized to improve the sample complexity.

Such a low-rank structure can be observed from recent
real-world mmWave channel measurements, e.g. [22]. Specif-
ically, Fig. 2 plots the RX power angular profile measured
for a typical TX-RX location pair at 28GHz considered
in [22, Fig. 3]. We see that the RX power angular profile
consists of several correlated horizontal and vertical strips, and
the angular spread over the AoA (or AoD) domain is caused
by rays from a common AoD (AoA) or several closely-spaced
AoDs (AoAs). This highly structured pattern gives rise to a
low-rank (or approximately low-rank) structure in which the
rank of the channel matrix is far less than the sparsity level
of the channel matrix, i.e. the number of dominant entries in
the beam space (angular) domain. To illustrate this, consider
a simple case where the angular spread over the AoA domain
is a result of rays from a common AoD, in which case the
channel can be expressed as

H =
( I∑

i=1

αi aBS(θ − ϑi )

)
aH

MS(φ) (7)

Clearly, the channel matrix H has rank one, while its beam
space (i.e. angular) representation has more than one dominant
coefficients. If the angular spread over the AoA domain is
caused by two closely-spaced AoDs, the channel can be
expressed as

H =
( I∑

i=1

αi aBS(θ − ϑi )

)
aH

MS(φ − ϕ1)

+
( I∑

i=1

α′
i aBS(θ − ϑi )

)
aH

MS(φ − ϕ2) (8)
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which can be further simplified as

H =
( I∑

i=1

αi aBS(θ − ϑi )

)( 2∑

j=1

aH
MS(φ − ϕ j )

)
(9)

by considering the fact that the terms
∑I

i=1 αi aBS(θ − ϑi )

and
∑I

i=1 α
′
i aBS(θ − ϑi ) are highly correlated. Such a spatial

correlation can be observed from Fig. 2, in which the two
parallel vertical strips associated with closely-spaced AoDs
have similar power angular patterns.

As a generalization, we adopt the following geometric
channel model to characterize the mmWave channel

H =
L∑

l=1

( I∑

i=1

αl,i aBS(θl − ϑl,i )

)( J∑

j=1

βl, j aH
MS(φl − ϕl, j )

)

(10)

where L denotes the number of clusters, θl and φl represent the
mean AoA/AoD associated with each cluster, and ϑl,i and ϕl, j

denote the relative AoA and AoD shift from the mean angle.
Note that a different clustered channel model was introduced
in [28], in which the channel is expressed as

H =
L∑

l=1

Rl∑

rl=1

αrl aBS(θl − ϑrl )a
H
MS(φl − ϕrl ) (11)

This clustered channel model [28] exploits the fact that each
cluster consists of multiple paths. Nevertheless, it neglects
the low-rank structure arising from path clusters. It can be
easily checked that the channel matrix given in (11) has a rank
identical to its sparsity level (if we ignore the grid mismatch
issue). In this case, the channel matrix may still possess a low-
rank structure. But, compared with the sparsity, the low-rank
structure does not provide extra structural information, and
hence cannot be utilized to improve the sample complexity.

Similar to (3), we express the channel (10) as a beam space
MIMO representation

H =
L∑

l=1

ABSαlβ
T
l AH

MS = ABS

( L∑

l=1

αlβ
T
l

)
AH

MS

� ABS Hv AH
MS (12)

where αl ∈ CN1 and βl ∈ CN2 represent the virtual repre-
sentation over the AoA and AoD domain, respectively. Since
the angular spread occupies only a small portion of the whole
angular domain, both αl and βl are sparse vectors with only
a few nonzero entries concentrated around the mean AoA and
AoD associated with the lth cluster. Hence the virtual beam
space channel Hv is a sum of L sparse matrices. Suppose any
sparse vector in {αl,β l}l contains at most p nonzero entries.
As a result, Hv is a sparse matrix with at most p2 L nonzero
entries. Also, Hv has at most pL nonzero columns and at most
pL nonzero rows. Due to the limited scattering nature and
small angular spreads, we usually have pL � min{N1, N2}.
Meanwhile, Hv has a low rank structure with rank(Hv ) = L.
Thus the virtual beam space channel has a simultaneously
sparse and low-rank structure.

Our objective is to estimate/recover the joint sparse and low-
rank virtual channel Hv using as few measurements as possi-
ble. Estimation of low-rank matrices or sparse matrices from
compressed linear measurements has been studied extensively
in various settings, e.g. [29]–[33]. However, there is much
less research for cases where the matrix of interest is charac-
terized by two structures simultaneously. In particular, how to
simultaneously exploit both structures to improve the sample
complexity is of most concern. In [34], an efficient two-stage
scheme was developed for recovering a sparse, rank-one and
positive semi-definite matrix in the context of compressive
phase retrieval, and it was shown that the proposed two-stage
scheme can achieve a near-optimal sample complexity and
enjoys nice robustness guarantees. In the following section,
the two-stage scheme is extended to a more general scenario
where the mmWave channel to be estimated is not necessarily
a rank-one positive semi-definite matrix. We show that an
reduced sample complexity can be obtained as compared with
simply exploiting the sparsity of the mmWave channel.

IV. TWO-STAGE COMPRESSED SENSING SCHEME

Before proceeding, we revisit the measurement collection
model (1) and reformulate this measurement process as a low-
rank matrix sampling process. Assume z(t) and f (t) are ran-
domly chosen from pre-determined beamforming/combining
codebooks Z and F , respectively, where the cardinality of
the two sets are |Z| = NZ and |F | = NF and no beam
pair {z(t), f (t)} is reused during the sampling process. Let
Z ∈ C

NBS×NZ and F ∈ C
NMS×NF be matrices constructed

by all vectors in Z and F , respectively. Then the observation
model (1) can be expressed as sampling from a low-rank
matrix:

Y i j = (ZH H F)i j (i, j) ∈ � (13)

where Y � ZH H F is a low rank matrix with rank(Y) = L,
Y i j denotes the (i, j)th entry of Y , and � denotes a set
indicating which entries of Y are observed. We have |�| = T .
Also, here the observation noise is temporarily ignored to
simplify our subsequent analysis.

Suppose Z and F are full-rank square matrices, i.e.
NZ = NBS and NF = NMS. Then the problem of estimating
H is equivalent to a low-rank matrix completion problem.
Specifically, we first recover the low-rank matrix Y via a
nuclear-norm minimization [31]:

min
Ŷ

‖Ŷ‖∗

s.t. Ŷ i j = Y i j ∀ (i, j) ∈ � (14)

After recovering Y , the channel H can be estimated as

Ĥ = (ZH )−1Ŷ F−1 (15)

Nevertheless, according to the matrix completion theory [31],
the number of measurements has to satisfy

T ≥ Cñ5/4L log(ñ) (16)

in order to stably reconstruct Y of rank at most L with
probability at least 1 − cñ−3, where ñ � max{NBS, NMS},



LI et al.: mmWAVE CHANNEL ESTIMATION VIA EXPLOITING JOINT SPARSE AND LOW-RANK STRUCTURES 1127

and the constants C, c > 0 are universal. Hence for the
low-rank matrix completion approach, the required number
of measurements is of order O(L max{NBS, NMS}5/4), which
increases approximately linearly with the number of antennas
employed at the BS or MS, whichever is greater. We see that
the low-rank matrix completion scheme ignores the sparse
structure inherent in mmWave channels, and thus can only
achieve a sub-optimal sample complexity. To obtain a lower
sample complexity, we introduce the following two-stage
compressed sensing scheme.

A. Proposed Scheme

The idea of the proposed scheme is to exploit the low-
rank and sparse structures in two separate stages. In the first
stage, we utilize the low-rank structure to recover Y from
observations {Y i, j , (i, j) ∈ �}. Note that Z and F do not
need to be full-rank; instead, in order to achieve a lower
sample complexity, they should have reduced dimensions, i.e.
NZ < NBS and NF < NMS. In other words, the size of Y is
much smaller than the size of H . In the second stage, based
on the reconstructed Y , we estimate the virtual beam space
channel Hv by exploiting the sparse structure of Hv . Through
this two-stage scheme, the low-rank and sparse structures of
the channel matrix Hv can be effectively decoupled and thus
better utilized. For clarity, we summarize the two-stage scheme
in Algorithm 1.

Algorithm 1 Two-Stage Compressed Sensing Algorithm

Given the measurements Y�, and the matrices A � ZH ABS,
B � FH AMS.

1 Recover Ŷ by solving

min
Ŷ

‖Ŷ‖∗

s.t. Ŷ i j = Y i j ∀ (i, j) ∈ � (17)

2 Estimate Ĥv via

min
Hv

‖Hv‖1

s.t. Ŷ = AHv BH (18)

The second stage of our proposed method has a formulation
slightly different from the conventional compressed sensing
method discussed in Section II. The conventional compressed
sensing method estimates the channel based only on those
directly observed data, i.e. {Y i, j |(i, j) ∈ �}. While our pro-
posed method, in the second stage, not only uses those directly
observed data, but also relies on those data recovered from the
first stage. In other words, a whole matrix Ŷ , including those
directly observed and those recovered from the first stage, is
used to estimate the channel in the second stage.

B. Theoretical Results

We now provide theoretical guarantees for our proposed
two-stage compressed sensing scheme. Before proceeding, we
first introduce the following lemma.

Lemma 1: Let X ∈ C
M1×M2 denote a sparse matrix with

at most k nonzero columns and rows. � ∈ CN�×M1 and � ∈
CN�×M2 satisfy the 2k-restricted isometry property with δ2k ,
namely,

(1 − δ2k) ‖x‖2
2 ≤ ‖�x‖2

2 ≤ (1 + δ2k) ‖x‖2
2

(1 − δ2k) ‖x‖2
2 ≤ ‖�x‖2

2 ≤ (1 + δ2k) ‖x‖2
2

for all 2k-sparse vectors x, where δ2k � max{δ2k(�), δ2k(�)},
with δ2k(�) and δ2k(�) denoting the restricted isometry
constants (RIC) of � and � respectively. Let

G = �X�H (19)

and suppose the following condition holds

δ2k < 1 + √
2

(
k −

√
k(k + √

2)

)
(20)

Then X can be exactly recovered via

min
X̂

‖X̂‖1

s.t. G = �X̂�H (21)

It can be easily verified that the term on the right-hand side
of (20) is within the interval (0, 1).

Proof: See Appendix A.
Based on Lemma 1, our main results are summarized as

follows.
Theorem 1: Consider the channel estimation problem

described in (13), where the indexes in � are uniformly chosen
at random with |�| = T . The channel matrix H can be
represented in a form of (12). Let L denote the rank of H ,
and p denote the maximum number of nonzero entries in
{αl ,β l}l . Suppose A ∈ CNZ ×N1 and B ∈ CNF ×N2 are random
matrices with i.i.d. Gaussian random entries ai, j ∼ N (0, 1

NZ
)

and bi, j ∼ N (0, 1
NF
).1 Define n � max{NF , NZ }. There exist

positive absolute constants c1, c2, c3, c4, c5 and c6 such that if

NZ ≥ c1 pL log(N1/pL) (22)

NF ≥ c2 pL log(N2/pL) (23)

T ≥ c3n5/4L log(n) (24)

then the channel H can be perfectly recovered from
Algorithm 1 with probability exceeding (1 − c4n−3)
(1 − 2e−c5 NZ )(1 − 2e−c6 NF ).

Proof: Please see Appendix B.

C. Discussions

From Theorem 1, we see that the number of measurements
T required for exact channel recovery is of order

O(p5/4L9/4 log(n)) (25)

which scales approximately linearly with p and quadratically
with the rank L. Since p and L are usually much smaller
than max{NBS, NMS}, our proposed two-stage scheme can
achieve substantial overhead reduction as compared with the
low rank matrix completion scheme whose required number
of measurements scales linearly with max{NBS, NMS}.

1See discussions in Section IV.C regarding this assumption.
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It is also interesting to compare our proposed two-stage
scheme with a convex relaxation-based compressed sensing
method which solves (13) by directly formulating (13) into
a sparse recovery problem (6). Note that h = vec(Hv ) has
at most p2 L nonzero entries. According to the compressed
sensing theory [29], we know that the probability of successful
recovery of h via (6) exceeds 1 − δ if

T ≥ Cp2 L log(N1 N2/δ) (26)

in which C is a positive constant. Thus the number of
measurements required for exact channel recovery is of order

O(p2 L) (27)

for the conventional convex relaxation-based compressed sens-
ing method. Comparing (25) with (27), we can see that our
proposed two-stage scheme achieves a lower sample com-
plexity than the conventional compressed sensing method if
L5/4 < p3/4, or approximately L < p. Note that L represents
the number of scattering clusters, and p, the largest number
of nonzero entries in {αl ,β l}, is a quantity that measures
the maximum angular spread among all scattering clusters.
Recent dense-urban mmWave channel measurements indeed
show that the condition L < p may be satisfied in practice.
In [22, Table I], it was shown that the average number of
clusters is 1.8 for 28 GHz and 1.9 for 73 GHz. While the
average base station root mean-squared (rms) angular spread
is 10.2◦ for 28 GHz and 10.5◦ for 73 GHz, in which case
we have p ≈ 17 if we discretize the AoA domain into
64 grid points. Measurements for indoor environments,
e.g. [35], also revealed that the average angular spread could
be much larger than the number of average clusters. Hence
the condition L < p may still hold for indoor environments.

In Theorem 1, we assume that A � ZH ABS and B �
FH AMS are random matrices with i.i.d. Gaussian random
entries. Nevertheless, noticing that ABS and AMS are struc-
tured matrices consisting of array response vectors, it may
not be possible to devise beamforming and combining matri-
ces {Z, F} such that the resulting A and B satisfy the
i.i.d. Gaussian assumption. We, however, still make such
an assumption in order to facilitate our theoretical analysis.
On the other hand, recent theoretical and empirical studies [36]
show that structured matrices also enjoy nice restricted isom-
etry properties. Note that the same problem exists for the
conventional compressed sensing method, where the sensing
matrix is highly structured but a random sensing matrix
assumption is evoked in order to obtain its sample complexity.

D. Extension to the Noisy Case

In the previous subsections, we ignore the observation noise
in order to simplify our theoretical analysis. Nevertheless, the
two-stage compressed sensing scheme can be easily adapted
to the noisy case. For clarity, the two-stage algorithm for the
noisy case is summarized as follows.

In Algorithm 2, ε and ε are error tolerance parameters. Also,
the constrained optimizations (28) and (29) can be converted
to unconstrained optimization problems by introducing an

Algorithm 2 Robust Two-Stage Compressed Sensing
Algorithm

Given the measurements Y�, the matrices A � ZH ABS,
B � FH AMS.

1 Recover Ŷ by solving

min ‖Ŷ‖∗
s.t. ‖Ŷ� − Y�‖F < ε (28)

2 Estimate Ĥv via

min ‖Hv‖1

s.t. ‖Ŷ − AHv BH ‖F < ε (29)

appropriate choice of the regularization parameter λ. For
example, (28) can be replaced by

min
Ŷ

‖Ŷ� − Y�‖2
F + λ‖Ŷ‖∗ (30)

which can be efficiently solved by the fixed point continuation
algorithm [37].

V. SIMULATION RESULTS

We now carry out simulation results to illustrate the
performance of our proposed two-stage compressed sens-
ing (referred to as two-stage CS) method. We compare our
method with the conventional compressed sensing approach
which formulates mmWave channel estimation into a sparse
signal recovery problem (5). Note that different compressed
sensing algorithms can be employed to solve (5). Here
we consider a fast iterative shrinkage-thresholding algo-
rithm (FISTA) [27] which is a convex relaxation-based
compressed sensing method involving solving (6), and an
approximate message passing (AMP)-based Bayesian method
developed in [13] and [38]. These two conventional com-
pressed sensing methods are respectively referred to as
CS-FISTA and CS-AMP. For our proposed method, we use
the singular value thresholding (SVT) algorithm [39] and the
fixed point continuation (FPC) algorithm [37] to solve the
matrix completion problem for the noiseless and noisy case,
respectively. The FISTA is employed to perform the sparse
recovery stage.

We consider a scenario where both the BS and the MS
employ a uniform linear array with NBS = NMS = 64
antennas. The distance between neighboring antenna elements
is assumed to be half the wavelength of the signal. The
mmWave channel is assumed to follow the geometric channel
model (10) with L = 2 clusters. The mean AoAs/AoDs for
these two clusters are set to θ1 = φ1 = π/6, θ2 = φ2 = −π/6,
respectively. Unless otherwise specified, the AoA and AoD
angular spreads for each cluster are set to δθ = 15◦ and
δφ = 10◦. The relative AoA/AoD shifts are uniformly gener-
ated within the angular spreads, i.e. ϑl,i ∈ (θl−δθ/2, θl+δθ/2),
ϕl,i ∈ (φl −δφ/2, φl +δφ/2). In our experiments, we discretize
the AoA/AoD domains into 64 grid points, i.e. N1 = NBS,
and N2 = NMS, in which case δθ and δφ span across about
7 and 5 grid points, respectively. The complex gains {αl,iβl, j }
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Fig. 3. Success rates and NMSEs of respective algorithms vs. T .

Fig. 4. Success rates and NMSEs of respective algorithms vs. the angular spread.

are assumed to be random variables following a circularly
symmetric complex Gaussian distribution CN (0, 1/ρ), where
ρ is given by ρ = (4πD fc/c)2. Here c represents the speed of
light, D denotes the distance between the BS and the MS, fc is
the carrier frequency, and we set D = 30m and fc = 28GHz.

The performance is evaluated via two metrics, namely, the
normalized mean squared error (NMSE) and the success rate.
The NMSE is calculated as

NMSE = E

⎡
⎢⎣

∥∥∥Ĥ − H
∥∥∥

2

F

‖H‖2
F

⎤
⎥⎦ (31)

where Ĥ denotes the estimate of the true channel H . The
success rate is computed as the ratio of the number of
successful trials to the total number of independent runs.
A trial is considered successful if the normalized reconstruc-
tion error is no greater than 10−2.

In our experiments, the beamforming/combining codebooks,
i.e. F and Z, are generated according to two different ways.
The first is to have the entries of F and Z uniformly chosen

from a unit circle, in which case the antenna array has
a quasi-omnidirectional beam pattern. This scheme is referred
to as a random coding (RC) scheme. Another scheme of devis-
ing F and Z is to steer the antenna array to beam along mul-
tiple directions simultaneously, which is achieved by dividing
the antenna array into a number of sub-arrays and making each
sub-array beam toward an individual direction [7]. The steering
directions are randomized for each measurement. This scheme
is named as multiple-beam coding (MBC) scheme. In order
to provide a fair comparison, the columns of F and Z are
normalized to unit norm for both beam pattern design schemes.
We assume that, at each time instant, the beamforming vector
f (t) and the combining vector z(t) are randomly chosen from
the beamforming/combining codebooks, respectively. Hence
the measurement process can be deemed as randomly collect-
ing samples from a low-rank matrix Y = ZH H F (cf. (13)),
where Y is an NZ × NF matrix. For simplicity, we assume
NZ = NF . Also, in our experiments, the value of NZ (NF )
is adaptively adjusted such that the ratio of the number of
observed entries T to the total number of entries in Y is
fixed to be 1/2, i.e. T = (1/2)NZ NF . Such a setup can
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provide a reliable matrix completion result, which in turn helps
achieve an accurate channel estimate for our proposed two-
stage method. The adaptive adjustment of the dimensions of
the codebooks can be easily implemented in practice. We can
first generate augmented beamforming/combining codebooks
and then choose Z and F as subsets (with variable dimensions)
of the augmented codebooks.

We now examine the estimation performance of our pro-
posed two-stage CS method and the conventional CS methods.
Fig. 3 plots the success rates for the noiseless case and
NMSEs for the noisy case as a function of the number of
measurements T , where for the noisy case, the SNR, defined
as 10 log(‖H‖2

F/(NBS NMSσ
2)), is set equal to 20dB. From

Fig. 3, we see that better performance can be obtained by
using the beamforming/combining codebooks that are gener-
ated according to the RC scheme. Also, our proposed two-
stage CS method presents a clear performance advantage over
the CS-FISTA algorithm, whichever beamforming/combining
codebooks are used. This result corroborates our claim that the
proposed two-stage CS method can achieve a lower sample
complexity than the CS-FISTA method. We also observe
that the CS-AMP method offers performance better than our
proposed two-stage CS method. The CS-AMP is a non-convex
method developed in a Bayesian framework to solve the sparse
signal recovery problem (5). Since the sparsity-promoting
prior in [38] behaves more like the �0-norm than the �1-norm,
the CS-AMP method is able to achieve superior performance.
This result, however, does not contradict the claim of superior-
ity of the two-stage scheme over the conventional compressed
sensing method because our conclusion is reached based on a
sample complexity analysis of the convex relaxation-based (i.e.
the CS-FISTA) method. It should be noted that, the CS-AMP,
as a nonconvex method, may converge to an undesirable local
minimum. In addition, since an exact reconstruction theoretical
guarantee is unavailable for the CS-AMP, the CS-AMP method
is not guaranteed to yield the true solution even if a global
minimum is reached.

Next, in Fig. 4, we examine the performance of respective
algorithms as a function of the angular spread, where the AoA
and AoD angular spreads are assumed to be the same and
vary from 6◦ to 22◦, i.e. δθ = δφ ∈ [6◦, 22◦]. Also, we set
NZ = NF = 24, T = 0.5NZ NF , and the SNR is set to 20dB
for the noisy case. From Fig. 4, we see that the CS-FISTA
method outperforms our proposed two-stage scheme when the
angular spread is small, say, δθ = δφ = 6◦, whereas our
proposed method achieves a performance improvement over
the CS-FISTA (even over the CS-AMP in some cases) as the
angular spread becomes large. This result, again, substantiates
our theoretical analysis. In Fig. 5, we depict the NMSEs of
respective algorithms vs. the SNR, where we set NZ = NF =
24, T = 0.5NZ NF , δθ = 15◦ and δφ = 10◦. We see that
the proposed two-stage CS method outperforms the CS-FISTA
method in moderate and high SNR regimes.

Lastly, we examine the effect of channel estimation accuracy
on the bit error rate (BER) performance. For each method,
after the channel is estimated, the beamforming/combining
vectors are calculated via the technique developed in [40].
Fig. 6 plots the BERs of respective algorithms vs. the number

Fig. 5. NMSEs of respective algorithms vs. SNR.

Fig. 6. BERs of respective algorithms vs. T .

of observed samples T , where we set SNR = 30dB, δθ = 15◦
and δφ = 10◦. We see that our proposed method achieves
consistently lower BERs than the CS-FISTA method.

VI. CONCLUSIONS

We studied the problem of channel estimation for mmWave
systems with only one RF chain used at the BS and MS.
Besides the sparse scattering characteristics, we also consid-
ered the effect of angular spreads in channel modeling and
algorithm development. We showed that, in the presence of
angular spreads, mmWave channels exhibit a jointly sparse and
low-rank structure. A two-stage compressed sensing method
was developed, in which a matrix completion stage is first
performed, and then followed by a sparse recovery stage
to estimate the mmWave channel. Theoretical analysis was
also conducted. It reveals that the proposed two-stage method
requires fewer measurements than a convex relaxation-based
compressed sensing method which only exploits the sparsity
of mmWave channels. Simulation results were provided to
corroborate our theoretical analysis and demonstrate the supe-
riority of the proposed two-stage compressed sensing method.

APPENDIX A
PROOF OF LEMMA 1

Before proving X̂ = X , we first show that for any sparse
matrix S ∈ CM1×M2 with at most 2k nonzero columns
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and rows, we have

(1 − δ2k)
2 ‖S‖2

F ≤
∥∥∥�S�H

∥∥∥
2

F
≤ (1 + δ2k)

2 ‖S‖2
F (32)

Since � satisfies the 2k-RIP and each column of S is a 2k-
sparse vector, adding all the inequalities together leads to

(1 − δ2k) ‖S‖2
F ≤ ‖�S‖2

F ≤ (1 + δ2k) ‖S‖2
F (33)

Meanwhile, note that SH�H has at most 2k non-zero rows,
i.e. each column of SH�H is also a 2k-sparse vector. Using
the RIP associated with �, we have

∥∥∥�SH�H
∥∥∥

2

F
≤ (1 + δ2k)

∥∥∥SH�H
∥∥∥

2

F
≤ (1 + δ2k)

2 ‖S‖2
F

(34)∥∥∥�SH�H
∥∥∥

2

F
≥ (1 − δ2k)

∥∥∥SH�H
∥∥∥

2

F
≥ (1 − δ2k)

2 ‖S‖2
F

(35)

Combining (34)–(35), we arrive at (32).
Using (32), we now prove that E � X̂ − X equals zero,

i.e. ‖E‖F = 0. Let � denotes the support set (i.e. the set of
indices of non-zeros entries) of X . E can be decomposed as

E =
N∑

i=0

Ei (36)

where E0 is a matrix whose entries in the set � are equivalent
to those of E, while the rest of entries are equal to zero, Ei

(i �= 0) are matrices with at most k nonzero columns and rows,
and they have disjoint support sets such that (1/k)‖Ei‖1 ≥
‖Ei+1‖∞ for i = 1, . . . , N − 1. Note that this inequality can
be automatically satisfied if we arrange the entries of E − E0
in descending order in terms of magnitude and choose entries
from the ((i − 1)k + 1)th to the (ik)th (may be smaller if
i = N) as the entries of Ei , while the rest of entries of Ei

are equal to zero.
Since X̂ is an optimal solution to (21), we have

‖X‖1 ≥ ‖X̂‖1 = ‖E + X − E0 + E0‖1

≥ ‖E + X − E0‖1 − ‖E0‖1

= ‖X‖1 + ‖E − E0‖1 − ‖E0‖1 (37)

Thus we obtain

‖E − E0‖1 ≤ ‖E0‖1
(a)≤ k‖E0‖F (38)

where (a) comes from the Cauchy-Schwarz inequality. Also,
we have

‖E − (E0 + E1)‖F ≤
N∑

i=2

‖Ei‖F
(a)≤

N−1∑

i=1

‖Ei‖1
(b)≤ ‖E0‖1

(c)≤ k‖E0‖F ≤ k‖E0 + E1‖F (39)

where (a) comes from the fact that

‖Ei‖1 ≥ k‖Ei+1‖∞ ≥ ‖Ei+1‖F (40)

and the inequalities (b) and (c) follow from (38). The result
(39) implies that

‖E‖F ≤ (k + 1)‖E0 + E1‖F (41)

We now prove ‖E0 + E1‖F = 0. Note that E0 + E1 is
a sparse matrix with at most 2k nonzero columns and rows.
Using (32), we have

(1 − δ2k)
2 ‖E0 + E1‖2

F ≤
∥∥∥�(E0 + E1)�

H
∥∥∥

2

F

= tr[(�(E0 + E1)�
H )H �(E −

N∑

i=2

Ei )�
H ]

= �{tr[(�(E0 + E1)�
H )H�E�H ]}

− �{tr[(�(E0 + E1)�
H )H �

N∑

i=2

Ei�
H ]}

≤ �{tr[(�(E0 + E1)�
H )H�E�H ]}

+
∣∣∣∣∣�{tr[(�(E0 + E1)�

H )H �

N∑

i=2

Ei�
H ]}

∣∣∣∣∣

(a)≤
1∑

i=0

N∑

j=2

∣∣∣�{tr((�Ei�
H )H�E j�

H )}
∣∣∣

=
1∑

i=0

N∑

j=2

∣∣∣∣�{tr((� Ei

‖Ei‖F
�H )H�

E j

‖E j‖F
�H )}

∣∣∣∣·‖Ei‖F‖Ej‖F

(b)=
1∑

i=0

N∑

j=2

1

4

∣∣∣∣‖�(
Ei

‖Ei‖F
+ E j

‖E j ‖F
)�H‖2

F

− ‖�( Ei

‖Ei‖F
− E j

‖E j‖F
)�H ‖2

F

∣∣∣∣ · ‖Ei‖F‖E j ‖F

≤
1∑

i=0

N∑

j=2

1

4

(
(1 + δ2k)

2‖ Ei

‖Ei‖F
+ E j

‖E j‖F
‖2

F

− (1 − δ2k)
2‖ Ei

‖Ei‖F
− E j

‖E j‖F
‖2

F

)
· ‖Ei‖F‖E j‖F

(c)=
1∑

i=0

N∑

j=2

1

4
((1 + δ2k)

2
(

‖ Ei

‖Ei‖F
‖2

F + ‖ E j

‖E j‖F
‖2

F

)

− (1−δ2k)
2
(

‖ Ei

‖E i‖F
‖2

F +‖ E j

‖E j‖F
‖2

F )

)
· ‖Ei‖F‖E j‖F

=
1∑

i=0

N∑

j=2

1

2
((1 + δ2k)

2 − (1 − δ2k)
2) · ‖Ei‖F‖E j‖F

= 2δ2k

1∑

i=0

N∑

j=2

‖Ei‖F

∥∥E j
∥∥

F

= 2δ2k(‖E0‖F + ‖E1‖F )

N∑

j=2

∥∥E j
∥∥

F

(d)≤ 2kδ2k(‖E0‖F + ‖E1‖F )‖E0 + E1‖F
(e)≤ 2

√
2kδ2k ‖E0 + E1‖2

F (42)

where (a) comes from the fact that

�E� H = �X�H − �X̂�H = 0 (43)

(b) follows from the equality

4�{tr(P QH )} = ‖P + Q‖2
F − ‖P − Q‖2

F (44)
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for any complex matrices P and Q, (c) is due to the reason
that Ei and E j have disjoint supports, (d) follows from (39),
and (e) can be easily verified by noting that

‖E0 + E1‖F = (‖E0‖2
F + ‖E1‖2

F )
1/2 (45)

If 2
√

2kδ2k − (1 − δ2k)
2 < 0, i.e.

δ2k < 1 + √
2

(
k −

√
k(k + √

2)

)
(46)

then we have ‖E0 + E1‖F = 0 from (42), which implies that
‖E‖F = 0, i.e. X = X̂ . The proof is completed here.

APPENDIX B
PROOF OF THEOREM 1

Our proof proceeds in two steps. We first investigate the
condition under which Y can be perfectly recovered from (17),
and then examine the exact recovery condition for (18).
By combining the results of the two stages, we arrive at results
in Theorem 1.

Since Y has a low rank structure, the first stage is essentially
a matrix completion stage. Invoking the matrix completion
theory [31], we know that for some positive constants c3
and c4, if (24) holds, then Y can be perfectly recovered with
probability exceeding 1 − c4n−3.

The second stage is a sparse matrix recovery stage. Note that
Hv is a sparse matrix with at most pL nonzero columns and
rows. Meanwhile, it is well-known that for a random matrix
� ∈ Rm1×m2 whose i.i.d. entries follow a Gaussian distri-
bution with zero mean and variance 1/m1, if the following
condition

m1 ≥ ηk log(m2/k) (47)

holds for a sufficiently large constant η > 0, then � satisfies
the 2k-restricted isometry property for a sufficiently small
restricted isometry constant δ2k(�) with probability exceeding
1 − 2e−cm1 for some constant c > 0 that depends only
on δ2k(�) [41]. Recalling Lemma 1, we therefore can nat-
urally arrive at the following: for some positive constants
c1, c2, c5 and c6, if (22) and (23) hold valid, then Hv can
be perfectly recovered via (18) with probability exceeding
(1 − 2e−c5 NZ )(1 − 2e−c6 NF ).

By combining the results from both stages, we now reach
that there exist positive absolute constants c1, c2, c3, c4, c5
and c6 such that if (22)–(24) are satisfied, then the channel H
can be perfectly recovered from Algorithm 1 with probability
exceeding (1 − c4n−3)(1 − 2e−c5 NZ )(1 − 2e−c6 NF ). The proof
is completed here.
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