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ABSTRACT Weconsider the problem of spectrum sharing in a cognitive radio system consisting of a primary
user and a secondary user. The primary user and the secondary user work in a non-cooperative manner.
Specifically, the primary user is assumed to update its transmitted power based on a pre-defined power control
policy. The secondary user does not have any knowledge about the primary user’s transmit power, or its
power control strategy. The objective of this paper is to develop a learning-based power control method for
the secondary user in order to share the common spectrumwith the primary user. To assist the secondary user,
a set of sensor nodes are spatially deployed to collect the received signal strength information at different
locations in the wireless environment. We develop a deep reinforcement learning-based method, which the
secondary user can use to intelligently adjust its transmit power such that after a few rounds of interaction
with the primary user, both users can transmit their own data successfully with required qualities of service.
Our experimental results show that the secondary user can interact with the primary user efficiently to reach
a goal state (defined as a state in which both users can successfully transmit their data) from any initial states
within a few number of steps.

INDEX TERMS Spectrum sharing, power control, cognitive radio, deep reinforcement learning.

I. INTRODUCTION
The dramatically increasing demand for spectrum resources
requires new intelligent methods to enhance the spectrum
efficiency. Per the Federal Communications Commission
(FCC) [1], the spectrum in general is severely underutilized
with the utilization rate of some bands as low as 15%.
In order to improve the spectrum efficiency, the notion of
spectrum sharing with secondary users through cognitive
radios is highly motivated [2]. Specifically, users from a
secondary network are allowed to access the spectrum owned
by licensed users (also called primary users) without causing
harmful interference.

According to the roles of the primary user, the operation
of spectrum sharing or dynamic spectrum access can be
classified into a passive primary user model and an active
primary user model [3]. In many spectrum sharing studies,
e.g. [4]–[7], it is assumed that the operations of secondary

users are transparent to the primary user so that the primary
user does not need to adapt its transmission parameters. The
transparency of secondary to primary can be accomplished
by letting the secondary user to perform spectrum sensing
to explore idle spectrum [4] or to strictly control its transmit
power such that the interference to the primary networks is
under a desired threshold [5]–[7]. However, some works in
literature, e.g. [3], [8]–[10], also considered an active model
in which some (cooperative or non-cooperative) interaction
between the primary user and the secondary user are allowed
to obtain improved transmission performance or economic
compensations. For example, in [3], the spectrum sharing
task is formulated as a Nash bargaining game which requires
interaction between the primary user and the secondary user
to reach a desired equilibrium. Also, in [10], to achieve
spectrum sharing, the primary user and the secondary user are
allowed to interact with each other to update their respective
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transmit powers. For the active model, a dynamic power
control strategy is necessary for all users in the network
such that a minimum quality of service (QoS) for successful
data transmission is satisfied for both the primary and the
secondary users.

Most existing works address this dynamic power con-
trol problem from an optimization perspective. In [11],
a distributed constrained power control (DCPC) algo-
rithm was proposed. Given the signal-to-interference-plus-
noise ratio (SINR) and the required SINR threshold,
the DCPC algorithm iteratively adjusts the transmit power
of each transmitter such that all receivers are provided
with their desired QoS requirements. Based on [11], modi-
fied approaches with different constraints or scenarios were
developed [10], [12]–[16]. Other optimization-based meth-
ods were also proposed [17]–[19] in recent years. Besides
optimization-based methods, power allocation from the game
theory’s point of view was also studied [20]–[23]. In [21],
the power allocation problem was formulated as a noncoop-
erative game with selfish users, where a sufficient condition
for the existence of a Nash equilibrium was provided, and a
stochastic power adaption with conjecture-based multiagent
Q-learning approach was developed. However, the proposed
approach requires that each user has the knowledge of the
channel state information of every transmitter-receiver pair
in the network, which may be infeasible in practice.

Reinforcement learning [24], also known as Q-learning,
has been explored for cognitive radio applications such as
dynamic spectrum access [25]–[31]. Using the experience
and reward from the environment, users iteratively optimize
their strategy to achieve their goals. Recently, deep rein-
forcement learning was introduced and proves its competence
for challenging tasks, say Go and Atari games [32]–[34].
Unlike conventional reinforcement learning which is limited
to domains with handcrafted features or low-dimensional
observations, agents trainedwith deep reinforcement learning
are able to learn their action-value policies directly from
high-dimensional raw data such as images or videos [34].
Also, as to be shown by our experimental results, deep rein-
forcement learning can help learn an effective action-value
policy even when the state observations are corrupted by
random noise or measurement errors, while the conventional
Q-learning approach is impractical for such problems due
to the infinite number of states in the presence of random
noise. This characteristic makes deep reinforcement learning
suitable for wireless communication applications whose state
measurements are generally random in nature.

In this paper, we consider a simple cognitive radio sce-
nario consisting of a primary user and a secondary user.
The primary user and the secondary user work in a non-
cooperative manner, where the primary user adjusts its trans-
mit power based on its own pre-defined power control policy.
The objective is to let the secondary user learn an intelligent
power control policy through its interaction with the primary
user. We assume that the secondary user does not have any
knowledge about the primary user’s transmit power, as well as

TABLE 1. Table of symbols.

its power control strategy. To assist the secondary user, a num-
ber of sensors are spatially deployed to collect the received
signal strength (RSS) information at different locations in
the wireless environment. We develop an intelligent power
control policy for the secondary user by resorting to the deep
reinforcement learning approach. Specifically, the use of deep
reinforcement learning, instead of the conventional reinforce-
ment learning, is to overcome the difficulty caused by random
variations in the RSSmeasurements. Our experimental results
show that, with the aid of the learned power control policy,
the secondary user can intelligently adjust its transmit power
such that a goal state can be reached from any initial state
within a few number of transition steps.

The rest of the paper is organized as follows. Table 1
specifies the frequently-used symbols in this paper. The sys-
tem model and the problem formulation are discussed in
Section II. In Section III, we develop a deep reinforcement
learning algorithm for power control for the secondary user.
Experimental results are provided in Section IV, followed by
concluding remarks in Section V.

II. SYSTEM MODEL
Consider a cognitive radio network consisting of a primary
user and a secondary user, where the secondary user aims
to share a common spectrum resource with the primary user,
without causing harmful interference to the primary user. The
primary user consists of a primary transmitter (Tx1) and a
primary receiver (Rx1), and the secondary user consists of a
secondary transmitter (Tx2) and a secondary receiver (Rx2),
see Fig. 1. In our setup, we assume that the primary user and
the secondary user are working in a non-cooperative way,
in which the primary user is unaware of the existence of the
secondary user, and adjusts its transmit power based on its
own power control policy. Nevertheless, it should be noted
that since the power control policy for the primary user is
dependent on the environment (cf. (2) and (4)), the action
taken by the secondary user at the current time will affect
the primary user’s next move in an implicit way. There is
also no communication between the primary network and the
secondary network. Thus the secondary user has no knowl-
edge about the primary user’s transmit power and its power
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FIGURE 1. A schematic for spectrum sharing in cognitive radio networks.

control policy. For simplicity, we, at this point, assume
that the primary user and the secondary user synchronously
update their respective transmit power and the transmit power
is adjusted on a time framed basis.Wewill show later our pro-
posed scheme also works when the synchronous assumption
does not hold.

The objective here is to help the secondary user learn an
efficient power control policy such that, after a few rounds of
power adjustment, both the primary user and the secondary
user are able to transmit their data successfully with required
QoSs. Clearly, this task cannot be accomplished if the sec-
ondary user only knows its own transmit power. To assist the
secondary user, a set of sensor nodes are employed tomeasure
the received signal strength (RSS) at different locations in
the wireless environment. The RSS measurements are related
to both users’ transmit power, thus revealing the state infor-
mation of the system. We assume that the RSS information
is accessible to the secondary user. Note that collecting the
RSS information from spatially distributed sensor nodes is a
basic requirement for many applications, e.g. source localiza-
tion [35]. For our problem, each node only needs to report the
RSS information once per time frame, which involves a low
data rate. Therefore some conventional technologies such as
the Zigbee [36] can be employed to provide timely feedback
of the RSS information from sensor nodes to a centralized
node whose data can be easily accessed by the secondary user
via a wired connection. Since the Zigbee and the cognitive
radio network usually operate at different frequencies, the
transmissions among sensor nodes cause no interference to
users in the cognitive radio network.

For both the primary user and the secondary user, the
QoS is measured in terms of the SINR. Let p1 and p2 denote
the transmit power of the primary user and the secondary user,
respectively. The SINR for the ith receiver is given as

SINRi =
|hii|2pi∑

j 6=i |hji|
2pj + Ni

i = 1, 2 (1)

where hij denotes the channel gain from the transmitter Txi to
the receiver Rxj, and Ni is the noise power at the receiver Rxi.

We assume that the primary receiver and the secondary
receiver have to satisfy a minimum SINR requirement for
successful reception, i.e. SINRi ≥ ηi, i = 1, 2.
Tomeet the QoS requirement, the primary user is supposed

to adaptively adjust its transmit power based on its own power
control policy. In this paper, two different power control
strategies are considered for the primary user. Note that our
proposed method also works if the primary user adopts other
power control policies. For the first strategy, the transmit
power of the primary user is updated according to the classical
power control algorithm [11]

p1(k + 1) = D
(
η1p1(k)
SINR1(k)

)
(2)

where SINR1(k) denotes the SINR measured at the primary
receiver at the kth time frame, p1(k) denotes the transmit
power at the kth time frame, here we assume that the transmit
power is adjusted on a time framed basis. D(·) is a discretiza-
tion operation which maps continuous-valued levels into a set
of discrete values

P1 , {p
p
1, . . . , p

p
L1
} (3)

where pp1 ≤ . . . ≤ ppL1 . More precisely, we let D(x) equal the
nearest discrete level that is no less than x and let D(x) = ppL1
if x > ppL1 . For the second power control strategy, suppose
the transmit power at the kth time frame is p1(k) = ppj , where
ppj ∈ P1. The transmit power of the primary user is updated
according to

p1(k + 1) =


ppj+1 if ppj ≤ τ ≤ p

p
j+1 and j+ 1 ≤ L1

ppj−1 if τ ≤ ppj−1 and j− 1 ≥ 1

ppj otherwise

(4)

where τ , η1 p1(k)/SINR1(k). We see that compared
to (2), the power control policy (4) has a more conservative
behavior: it updates its transmit power in a stepwise man-
ner. Specifically, it increases its power (by one step) when
SINR1(k) ≤ η1 and η̂ ≥ η1, and decreases its power (by one
step) when SINR1(k) ≥ η1 and η̂ ≥ η1; otherwise it will
stay on the current power level. Here η̂ , SINR1(k)p1(k +
1)/p1(k) is the ‘predicted’ SINR at the (k + 1)th time
frame.

Suppose N sensors are deployed to spatially sample the
RSS information. Let Sn denote node n, and Prn(k) denote
the receive power at sensor n at the kth frame. In our paper,
the following model is used to simulate the state (i.e. RSS)
observations

Prn(k) = p1(k)g1n + p2(k)g2n + wn(k) (5)

where p1(k) and p2(k) represent the transmit power of the
primary user and the secondary user, respectively, g1n denotes
the path loss between the primary transmitter and sensor n,
g2n denotes the path loss between the secondary transmitter
and sensor n, and wn(k), a zero mean Gaussian random
variable with variance σ 2

n , is used to account for the random

VOLUME 6, 2018 25465



X. Li et al.: Intelligent Power Control for Spectrum Sharing in Cognitive Radios

variation caused by shadowing effect and estimation errors.
For free-space propagation, according to the Friis law [37],
g1n and g2n are respectively given by

g1n =
(

λ

4πd1n

)2

g2n =
(

λ

4πd2n

)2

(6)

where λ is the signal wavelength, d1n (d2n) denotes the dis-
tance between the primary (secondary) transmitter and node
n.
We also assume that the transmit power of the secondary

user is chosen from a finite set

P2 , {ps1, . . . , p
s
L2} (7)

where ps1 ≤ . . . ≤ psL2 . The objective of the secondary
user is to learn how to adjust its transmit power based on
the collected RSS information {Prn(k)}n at each time frame
such that after a few rounds of power adjustment, both the
primary user and the secondary user can meet their respective
QoS requirements for successful data transmissions. Note
that we suppose there exists at least a pair of transmit power
{ppl1 , p

s
l2
} such that the primary receiver and the secondary

receiver satisfy their respective QoS (SINR) requirements,
i.e. SINRi ≥ ηi, i = 1, 2.

III. A DEEP REINFORCEMENT LEARNING APPROACH FOR
POWER CONTROL
We see that the secondary user, at each time frame, has to take
an action (i.e. choose a transmit power from a pre-specified
power set P2) based on its current state

s(k) ,
[
Pr1(k) . . . PrN (k)

]T (8)

This power control process is essentially a Markov decision
process (MDP) because after the decision maker (i.e. the
secondary user) chooses any action a(k) = p2(k + 1) in
state s(k), the process will move into a new state s(k + 1)
which depends on the current state s(k) and the decision
maker’s action a(k), and given s(k) and a(k), the next state is
conditionally independent of all previous states and actions.
Also, after moving into a new state, the decision maker will
receive a corresponding reward r(k) , r(s(k), a(k)) which
can be defined as

r(k) ,

{
c if SINR1(k + 1) ≥ η1 and SINR2(k + 1) ≥ η2
0 otherwise

where the parameter c is chosen to be c = 10 in our
experiments. Our simulation results suggest that c can be
any other values as long as it is not too small to harm the
learning. The interaction between the secondary user and the
environment is shown in Fig. 2. Note that here the decision
maker (secondary user) is assumed to know whether the
transmission between the primary transmitter and the primary
receiver is successful or not. In practice, such knowledge may
be obtained by monitoring an acknowledgment signal sent
by the primary receiver to indicate successful receipt of a
transmission from the primary transmitter.

FIGURE 2. Interaction between the secondary user and the environment
(i.e. the primary user).

The core problem of MDPs is to learn a ‘‘policy’’ for the
decision maker: a function π that specifies the action π (s)
that the decision maker will choose when in state s. More
precisely, the goal of the secondary user is to learn a policy π
for selecting its action a(k) based on the current state s(k) in
a way that maximizes a discounted cumulative reward which
is defined as [24]

V π (s(k)) ,
T ′∑
i=k

γ i−kr(i) (9)

where γ is the discount factor and T ′ denotes the time frame
at which the goal state is reached. For our problem, the goal
state is defined as a state in which SINRi(k) ≥ ηi, i = 1, 2.
Thus, the task becomes learning an optimal policy π∗ that
maximizes V π , i.e.

π∗ = argmax
π

V π (s) ∀s (10)

Directly learning π∗ is difficult. In reinforcement learning,
Q-learning provides an alternative approach to
solve (10) [38]. Instead of learning π∗, an action-value (also
known as Q) function is introduced to evaluate the expected
discounted cumulative reward after taking some action a in a
given state s. When such an action-value function is learned,
the optimal policy can be constructed by simply selecting the
action with the highest value in each state. The basic idea
behind the Q-learning and many other reinforcement learning
algorithms is to iteratively update the action-value function
according to a simple value iteration update rule

Q(s, a) = r(s, a)+ γ max
a′

Q(s′, a′) (11)

The above update rule is also known as the Bellman equa-
tion [39], in which s′ is the state resulting from applying
action a to the current state s. It has been proved that the
value iteration algorithm (11) converges to the optimal action-
value function, which is defined as the maximum expected
discounted cumulative reward by following any policy, after
taking some action a in a given state s. For the Q-learning,
the number of states is finite and the action-value func-
tion is estimated separately for each state, thus leading to a
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Q-table or a Q-matrix, with its rows representing the states
and its columns representing the possible actions. After the
Q-table converges, one can select an action a which has the
largest value of Q(s, a) as the optimal action in state s.
Unfortunately, due to the random variation in the RSS

measurement, the value of s is continuous. As a result, the
Q-learning approach is impractical for our problem since
we could have an infinite number of states. To overcome
this issue, we resort to the deep Q-network (DQN) proposed
in [33]. Unlike the conventional Q-learning method that gen-
erates a finite action-value table, for the DQN, the table is
replaced by a deep neural network Q(s, a; θ ) to approxi-
mate the action-value function, where θ denotes the weights
of the Q-network. Specifically, given an input s, the deep
neural network yields an L2-dimensional vector, with its ith
entry representing the estimated value for choosing the action
a = psi from P2.

The training data used to train the Q-network are generated
as follows. Given s(k), at iteration k , we either explore a
randomly selected action with probability εk , or select an
action a(k) which has the largest output Q(s(k), a(k); θ0),
where θ0 denotes the parameters for the current iteration.
After taking the action a(k), the secondary user receives a
reward r(k) and observes a new state s(k + 1). This tran-
sition d(k) , {s(k), a(k), r(k), s(k + 1)} is stored in the
replay memory D. The training of the Q-network begins
when D has collected a sufficient number of transitions,
say O = 300 transitions. Specifically, we randomly select
a minibatch of transitions {d(i)|i ∈ �k} from D, and the
Q-network can be trained by adjusting the parameters θ such
that the following loss function is minimized

L(θ ) ,
1
|�k |

∑
i∈�k

(
Q′(i)− Q(s(i), a(i); θ )

)2 (12)

in which �k is the index set of the random minibatch used at
the kth iteration, and Q′(i) is a value estimated via the Bell-
man equation by using parameters from the current iteration,
i.e.

Q′(i) = r(i)+ γ max
a′

Q(s(i+ 1), a′; θ0) ∀i ∈ �k (13)

Note that unlike traditional supervised learning, the targets
for DQN learning is updated as the weights θ are refined. For
clarity, we summarize our proposed DQN training algorithm
in Algorithm 1.

After training, the secondary user can choose the action
which yields the largest estimated value Q(s, a, θ∗). For clar-
ity, the proposed DQN-based power control scheme for the
secondary user is summarized in Algorithm 2. We would
like to point out that during the DQN training process,
the secondary user requires the knowledge of whether the
QoS requirements for the primary user and the secondary
user are satisfied. Nevertheless, after the DQN is trained,
the secondary user only needs the feedback from sensors to
decide its next transmit power.

We discuss the convergence issue of the proposed power
control policy. Suppose s is a goal state. If the transmit power

Algorithm 1 DQN Training for Power Control
Initialize replay memory D with buffer capacity O
Initialize network Q(s, a, θ ) with random weights θ = θ0
Initialize p1(1) and p2(1), then obtain s(1)
for k = 1,K do
Update p1(k + 1) via the primary user’s power control
strategy (2) or (4)
With probability εk select a random action a(k), other-
wise select a(k) = maxa Q(s(k), a; θ0)
Obtain s(k + 1) via the random observation model (5)
and observe reward r(k)
Store transition d(k) , {s(k), a(k), r(k), s(k + 1)} in D
if k ≥ O then
Sample a random minibatch of transitions {d(i)|i ∈
�k} from D, where the indexes in �k are uniformly
chosen at random
Update θ by minimizing the loss function (12), where
targets Q′(i) are given by (13)
Set θ0 = argminθ L(θ )

end if
if s(k) is a goal state then

Initialize p1(k+1) and p2(k+1), then obtain s(k+1)
end if

end for

of the secondary user remains unchanged, then it is easy to
show that the next state s′ is also a goal state, whichever
of (2) and (4) is chosen for the primary user to update its
transmit power. On the other hand, the secondary user will
eventually learn to choose a transmit power such that the next
state s′ remains a goal state. Therefore we can conclude that
once s reaches a goal state, it will stay at the goal state until the
data transmission is over. Suppose the goal state is lost due to
the discontinuity of data transmission, and the secondary user
wants to restart a new transmission. In this case, learning is
no longer required. The secondary user can select its transmit
power according to the learned power control policy.

In our previous discussion, we assume that the primary user
and the secondary user synchronously update their respective
transmit power. Nevertheless, we would like to point out
that the synchronous assumption is not necessarily required
by our proposed scheme. Suppose the time frames between
the primary user and the secondary user are not strictly
synchronized (see Fig. 3). Both the primary user and the
secondary user update their transmit power at the beginning
of their respective time frames, that is, the primary user
adjusts its transmit power at time tp, tp + T , tp + 2T , . . .,
and the secondary user updates its transmit power at time
ts, ts + T , ts + 2T , . . ., where T denotes the duration of
each frame. Without loss of generality, we assume T >

tp − ts > 0. Clearly, our intelligent power control scheme
would function the same as in the synchronous case if both
the primary user and the secondary user perform their respec-
tive tasks, i.e. gather necessary information (i.e. SINR1(k)
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FIGURE 3. Asynchronous update of the transmit power for the primary user and the secondary user.

Algorithm 2 DQN-Based Power Control Strategy
Initialize p2(1), then obtain s(1)
for k = 1,K do
Select a(k) = maxa Q(s(k), a; θ∗)
Obtain s(k + 1)

end for

for the primary user, SINR1(k), SINR2(k), and s(k) for the
secondary user) and make decisions during the time window
[tp + (k − 1)T , ts + kT ].

IV. EXPERIMENTAL RESULTS
We now carry out experiments to illustrate the performance
of our proposed DQN-based power control algorithm.1 In
our experiments, the transmit power (in Watt) of both the
primary user and the secondary user is chosen from a pre-
defined set P1 = P2 = {0.05, 0.1, . . . , 0.4}, and the noise
power at Rx1 and Rx2 is set to N1 = N2 = 0.01W. For
simplicity, the channel gains from the primary/secondary
transmitter to the primary/secondary receivers are assumed
to be hij = 1,∀i, j. The minimum SINR requirements for
successful reception for the primary user and the secondary
user are set to η1 = 1.2, η2 = 0.7, respectively. It can
be easily checked that there exists a pair of transmit power
{p1, p2} which ensures that the QoSs of the primary user
and the secondary user are satisfied. Also, a total number
of N sensors are employed to collect the RSS information
to assist the secondary user to learn a power control policy.
The distance dij between the transmitter Txi and the sensor
node Sj is uniformly distributed in the interval [100, 300]
(in meters).

In our experiments, the deep neural network (DNN) used
to approximate the action-value function consists of three
fully-connected feedforward hidden layers, and the number
of neurons in the three hidden layers are 256, 256, and 512,
respectively. Rectified linear units (ReLUs) are employed as
the activation function for the first and the second hidden
layers. A ReLU has output 0 if the input is less than 0, and raw
output otherwise. For the last hidden layer, the tanh function

1Codes are available at http://www.junfang-uestc.net/codes/DQN-power-
control.rar

is used as the activation function. The Adam algorithm [40]
is adopted for updating the weights θ , where the size of a
minibatch is set to 256. We assume that the replay memory
D contains ND = 400 most recent transitions, and in each
iteration, the training of θ begins only when D stores more
than O = 300 transitions. The total number of iterations is
set to K = 105. The probability of exploring new actions
linearly decreases with the number of iterations from 0.8 to
0. Specifically, at iteration k , we let

εk = 0.8(1− k/K ) (14)

We use Algorithm 1 to train the network, and use Algorithm 2
to check its performance.

The performance is evaluated via two metrics, namely,
the success rate and the average number of transition steps.
The success rate is computed as the ratio of the num-
ber of successful trials to the total number of indepen-
dent runs. A trial is considered successful if s moves to
a goal state within 20 time frames. The average number
of transition steps is defined as the average number of
time frames required to reach a goal state if a trial is
successful.

We now study the performance of the deep reinforcement
learning approach. Specifically, we examine the loss func-
tion, the success rate, and the average number of transi-
tion steps as a function of the number of iterations k used
for training. During training, the loss function is calculated
according to (12). After k iterations of training, the secondary
user can use the trained network to interact with the primary
user. The success rate and the average number of transition
steps are used to evaluate how well the network is trained.
Results are averaged over 103 independent runs, in which a
random initial state is selected for each run. Fig. 4 plots the
loss function, the success rate, and the average number of
transition steps vs. the number of iterations k , where we set
N = 10, the standard deviation of the random variable used to
account for the shadowing effect and measurement errors is
set to σn = (pp1g1n+p

s
1g2n)/10, and the primary user employs

(2) to update its transmit power. We see that the secondary
user, after only 103 iterations of training, can learn an efficient
power control policy which ensures that a goal state can be
reached quickly (with 1.5 average number of transition steps)
from any initial states with probability one. Fig. 5 and Fig. 6
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FIGURE 4. Loss function, success rate, and average number of transition steps vs. the number of iterations k used for training, where N = 10,
σn = (pp

1g1n + ps
1g2n)/10. (a) Loss function vs. the number of iterations. (b) Success rate vs. the number of iterations. (c) Average number

of transition steps vs. the number of iterations.

FIGURE 5. Loss function, success rate, and average number of transition steps vs. the number of iterations k used for training, where N = 10,
σn = (pp

1g1n + ps
1g2n)/3. (a) Loss function vs. the number of iterations. (b) Success rate vs. the number of iterations. (c) Average number

of transition steps vs. the number of iterations.

FIGURE 6. Loss function, success rate, and average number of transition steps vs. the number of iterations k used for training, where N = 3,
σn = (pp

1g1n + ps
1g2n)/10. (a) Loss function vs. the number of iterations. (b) Success rate vs. the number of iterations. (c) Average number of

transition steps vs. the number of iterations.

depict the loss function, the success rate, and the average
number of transition steps vs. k for different choices of N
and σn, where we set N = 10, σn = (pp1g1n + ps1g2n)/3 for
Fig. 5 and N = 3, σn = (pp1g1n + ps1g2n)/10 for Fig. 6.
We see that the value of the loss function becomes larger
when we increase the variance σn or decrease the number
of sensors. Nevertheless, the learned policy is still very effi-
cient and effective, attaining a success rate and an average
number of transition steps similar to those in Fig. 4. This

result demonstrates the robustness of the deep reinforcement
learning approach.

Next, we examine the performance of the DQN-based
power control method when the primary user employs
the second power control policy (4) to update its transmit
power. Since the policy (4) is more conservative, the task of
learning an optimal power control strategy is more challeng-
ing. Fig. 7 depicts the loss function, the success rate, and the
average number of transition step as a function of k , where
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FIGURE 7. Loss function, success rate, and average number of transition steps vs. the number of iterations k used for training, where N = 10,
σn = (pp

1g1n + ps
1g2n)/10. (a) Loss function vs. the number of iterations. (b) Success rate vs. the number of iterations. (c) Average number of transition

steps vs. the number of iterations.

FIGURE 8. Loss function, success rate, and average number of transition steps vs. the number of iterations k used for training, where N = 10,
σn = (pp

1g1n + ps
1g2n)/3. (a) Loss function vs. the number of iterations. (b) Success rates vs. the number of iterations. (c) Average number of

transition steps vs. the number of iterations.

FIGURE 9. Loss function, success rate, and average number of transition steps vs. the number of iterations k used for training, where N = 3,
σn = (pp

1g1n + ps
1g2n)/10. (a) Loss function vs. the number of iterations. (b) Success rate vs. the number of iterations. (c) Average number of

transition steps vs. the number of iterations.

we set N = 10 and σn = (pp1g1n + ps1g2n)/10. We observe
that for this example, more iterations (about 1.5 × 104) are
required for training to reach a success rate of one. Moreover,
the learned policy requires an average number of transition
steps of 2.5 to reach a goal state. The increased number of
transition steps is because the second policy used by the pri-
mary user only allow its transmit power to increase/decrease
by a single level at each step. Thus more steps are needed
to reach the goal state. Fig. 8 and Fig. 9 plot the loss func-
tion, the success rate, and the average number of transition

steps vs. k for different choices of N and σn, where we
set N = 10, σn = (pp1g1n + ps1g2n)/3 for Fig. 8 and
N = 3, σn = (pp1g1n + ps1g2n)/10 for Fig. 9. For this
example, we see that a large variance in the state observations
and an insufficient number of sensors lead to performance
degradation. In particular, the proposed method incurs a con-
siderable performance loss when fewer sensors are deployed.
This is because the random variation in the state observations
makes different states less distinguishable from each other
and prevents the agent from learning an effective policy, but
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FIGURE 10. SINRs of the primary and secondary users vs. the number of
transition steps.

using more sensors helps neutralize the effect of random
variations.

Lastly, we compare the DQN-based power control method
with the DCPC algorithm [11] which was developed for
power control in an optimization framework. For the DCPC
algorithm, the primary user and secondary user use the fol-
lowing power control policy to update their respective trans-
mit power:

p1(k + 1) = min
{
ppL1 ,

η1p1(k)
SINR1(k)

}
(15)

p2(k + 1) = min
{
psL2 ,

η2p2(k)
SINR2(k)

}
(16)

For the DQN-based method, the primary user uses the
policy (2) to update its transmit power, the number of sensor
nodes and the state observation noise variance are set to
N = 10 and σn = (pp1g1n+p

s
1g2n)/10, respectively. In Fig. 10,

we examine the QoSs (i.e. SINRs) of the primary and sec-
ondary users as the iterative process evolves. We see that
although both schemes can converge from an initial point,
our proposed DQN-based method requires only a few tran-
sition steps to reach a goal state, while the DCPC algorithm
takes tens of steps to converge. We also observe that the
DQN-based scheme converges to a solution that is close
to the optimal solution obtained by the DCPC algorithm,
which further corroborates the effectiveness of the proposed
DQN-based scheme. Note that optimization-based tech-
niques such as the DCPC algorithm require global coordi-
nation among all users in the cognitive networks so that the
primary user and the secondary user can interact in a coop-
erative way. In contrast, for our proposed scheme, the pri-
mary user follows its own rule to react to the environment.
In other words, the interaction between the primary user and
the secondary user is not planned out in advance and needs
to be learned in real time. Although the training of the DQN
involves a high computational complexity, after the training
is completed, the operation of the power control has a very

low computational complexity: given an input state s, the sec-
ondary user can make a decision using simple calculations.

V. CONCLUSIONS
We studied the problem of spectrum sharing in a cognitive
radio system consisting of a primary user and a secondary
user. We assume that the primary user and the secondary user
work in a non-cooperative way. The primary user adjusts its
transmit power based on its own pre-defined power control
policy. We developed a deep reinforcement learning-based
method for the secondary user to learn how to adjust its
transmit power such that eventually both the primary user and
the secondary user are able to transmit their respective data
successfully with required qualities of service. Experimental
results show that the proposed learning method is robust
against the random variation in the state observations, and a
goal state can be reached from any initial states within only a
few number of steps.
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