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SUMMARY

We study average consensus for directed graphs with quantized communication under fixed and switching
topologies. In the presence of quantization errors, conventional consensus algorithms fail to converge and
may suffer from an unbounded asymptotic mean square error. We develop robust consensus algorithms to
reduce the effect of quantization. Specifically, we introduce a robust weighting matrix design and use the
H1 performance index to measure the sensitivity from the quantization error to the consensus deviation.
Linear matrix inequalities are used as design tools. The mean square deviation is proven to converge and
its upper bound is explicitly given in the case of fixed topology with probabilistic quantization. Numerical
results demonstrate the effectiveness of this method. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, distributed average consensus and gossiping algorithms have received considerable
attention in multiple agent coordination and distributed sensor networks including distributed esti-
mation [1–3] and cooperative control [4–7]. In most of these studies, they assume that each sensor,
say in a wireless sensor network, can communicate with its neighbors without any distortion. This
assumption, however, may not be true in practice when considering quantization brought by digital
communication. As pointed out in [8], in the presence of errors or noise, the conventional linear
consensus algorithm diverge and may have an unbounded asymptotic mean square error. Motivated
by this challenge, average consensus with quantized communication has attracted a lot of studies
over the past few years.

On the basis of the convergence of controlled Markov processes, a protocol for undirected
topologies is introduced in [9] to deal with the distributed consensus problem in the presence of
quantization errors. This protocol adds a controlled amount of statistical dither before quantization
and can reach almost sure convergence to a finite random variable. However, there is no guarantee
that this finite random variable is equal to the average of the nodes’ initial values. Quantized consen-
sus studied in [10,11] restrict the value of each node to be an integer and reaches average consensus
in a ‘quantized consensus’ sense, which means that every node takes one of two neighboring quan-
tization values while preserving the average. However, this is not a strict consensus and nodes reach
the quantized average instead of the true average. Average consensus can be asymptotically achieved
with the proposed encoding–decoding scheme in [12], which is based on quantization of scaled
innovations. However, this method requires that all nodes are synchronized, which may not be true
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in a practical network. The authors in [13] consider the continuous-time quantized consensus prob-
lem, where a discontinuous protocol is designed to restrict the dynamic evolving towards the initial
average. However, there exists unavoidable chattering in practice, and replacing the discontinuous
function with a hysteresis, one remedies the problem but reduces accuracy. A protocol featuring an
attractive property of preserving the initial average throughout the iterations was proposed in [14].
This protocol drives the system close to the average consensus with a bounded error. To further
reduce the quantization error effects, a sequence averaging algorithm based on this sum-preserving
protocol was proposed in [15]. Meanwhile, [16–18] studied the quantization problem in gossip based
consensus algorithms. In [18], the author proposed two different protocols, that is, a globally quan-
tized strategy and a partially quantized strategy, respectively. For the globally quantized strategy,
it was shown that all states eventually reach agreement, but the value of the agreement is different
from the initial average. In contrast, the partially quantized strategy preserves the average and the
consensus error is bounded by one (states are quantized to integers) after a finite period of time.
The partially quantized strategy is also studied in [16, 17] and similar conclusions are extended to
general quantizers. It was shown that the consensus error of this algorithm is bounded by one but
whether or not the consensus error can be further reduced was not explored.

In this paper, we consider distributed consensus on directed switching communication graphs,
which are used to model many real communication systems [19]. Specifically, inspired by the idea
of robust H1 consensus control [20], we model the problem as a robust consensus design prob-
lem with mismatched quantization noises and design the weighting matrix of the average consensus
protocol introduced in [14] under the H1 performance index to mitigate the consensus deviation
caused by quantization errors. Using linear matrix inequality (LMI) as design tools, we show that
the consensus deviation is bounded by a pre-designated constant. For a probabilistic quantization
scheme on directed graphs, the covariance matrix of states is proven to converge and its steady
state value is given. Moreover, the mean square deviation from consensus is proved to be upper
bounded and the upper bound is explicitly given in terms of the quantization standard deviation and
the design parameter. Extensive simulations show the proposed algorithm over-performs existing
ones in reducing consensus deviation.

The paper has the following contributions. First, most studies on average consensus with quan-
tization are limited to undirected graphs [9, 10, 12, 13, 15–18] without allowing arbitrary switching
[9–11, 14, 15]. Our results are more general for both fixed and switching directed graph with quan-
tization, and an undirected graph is treated as a special case of directed graphs. Second, compared
with the work [21–23], where weighting matrix design is considered to optimize the convergence
rate without a quantizer, we aim at reducing consensus deviation caused by quantization errors, and
the upper bound of the mean square derivation is given for a fixed directed graph under a proba-
bilistic quantization scheme. Third, compared with the work of [20], which studies H1 consensus
control in continuous time with an additive noise satisfying matching conditions, the discrete-time
quantized consensus problem is studied in this paper with a mismatched quantization noise.

Notations and symbols: R and C denote the field of real numbers and complex numbers,
respectively, diag.ŒA1 : : : An�/ denotes the block diagonal matrix with Ai as the i th element, eig.A/
represents the eigenvalue of A, AT represents the transpose of A, trace.A/ represents the trace of A,
I represents the identity matrix, vec.A/ means the vectorization of a matrix A, sup.x/ denotes the
supremum of x, 1 represents the vector with all entries equal to 1, kAk1 is the infinity norm of a
matrix A, kAk is the 2-norm of a matrix A,˝ is the Kronecker product, A< 0 means A is negative
definite, and jaj represents the absolute value of a 2C.

2. PRELIMINARIES

In this section, we list some preliminaries on graph theory and quantization.

2.1. Graph theory

A directed graph G.V ,E, A/ is denoted by .V ,E, A/, where V is the set of nodes, E is the set
of edges with E � V � V , and A D Œaij � is the weighted adjacency matrix. The in-degree
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and out-degree of a node in the directed graph is defined as degin.vi /D
Pn
jD1 aj i and degout.vi /DPn

jD1 aij , respectively. The directed graph G is said to be balanced if the in-degree equals to the
out-degree for each node in the graph. A special case of the balanced graph is the undirected graph,
which bears the property of aj i D aij for all i , j . A directed graph G is called strongly connected
if there always exists a sequence of consecutive edges starting from a given node i to another given
node j , where node i and node j could be any node in the graph only if i ¤ j . The degree matrix
� D Œ�ij � is a diagonal matrix with �ij D 0 for all i ¤ j and �i i D degout.vi / for all i . The
Laplacian matrix L of the graph G is defined as LD��A.

In a continuous-time linear consensus protocol, �L works as the system matrix and the system
converges to the initial average under the condition that the graph G is balanced and strongly con-
nected. In the corresponding discrete-time linear consensus protocol, a stochastic matrix WD Œwij �
works as the system matrix (a matrix is called a stochastic matrix if its row sums are 1 and each
entry of the matrix is non-negative). For a balanced graph, the transpose of its Laplacian matrix
is also a Laplacian matrix. Correspondingly, for a balanced graph G, the transpose of its stochas-
tic matrix is also a stochastic matrix. In matrix form, 1TW D 1T . The matrix, if both itself and
its transpose are stochastic matrices, is called a doubly stochastic matrix. For a strongly connected
graph, the rank of its Laplacian matrix is equal to .n�1/, where n is the dimension of the Laplacian
matrix L. Correspondingly, the rank of the stochastic matrix is also equal to .n � 1/ for a strongly
connected graph.

A frequently used weighting matrix M is obtained by using maximum-degree weights [2, 14]. It
is defined as

mij D

8̂<
:̂

1
dMC1

if fi , j g 2E

1�
degout.vi /

dMC1
if i D j

0 otherwise

where dM is the maximal out-degree of the graph.

2.2. Quantization schemes

There are two types of quantization schemes utilized in existing literatures, that is, the deterministic
quantization scheme [14, 24] and the probabilistic quantization scheme [15]. Suppose the range
and bits for quantization are Œ��, �� and b, respectively. Thus, we obtain 2b � 1 uniform intervals
with a step of ı D 2�=.2b � 1/. The deterministic quantization rounds a real number x to Q.x/
according to

Q.x/D��C iı

if x 2 Œ��C .i � 0.5/ı,��C .i C 0.5/ı/

where i is an integer. The probabilistic quantization rounds a real number x 2 Œ��Ciı,��C.iC1/ı�
in a probabilistic manner as follows [15]�

P.Q.x/D��C iı/D 1� r

P.Q.x/D��C .i C 1/ı/D r

where r D .xC �� iı/=ı. As argued in [15], the quantization error introduced by the probabilistic
quantization scheme is a random variable with zero mean and a finite variance.

2.3. L2e space and finite L2 gain

For a discrete-time sequence xD .x0, x1, x2, .../, its L2 norm is defined as

kxkL2 ,
 
1X
iD0

jxi j
2

! 1
2

(1)
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The space L2Œ0,C1/ is defined as the set of all discrete-time sequences x such that kxkL2 <C1.
From a system point of view [25], if we think x 2 L2Œ0,C1/ as a ‘well-behaved’ input, the question
to ask is whether the output y will be ‘well-behaved’ in the sense that y 2 L2Œ0,C1/. To deal with
unbounded ‘ever-growing’ signals, an extended space L2eŒ0, �/ is defined as the following

L2e D fxjx� 2 L2,8� 2 Œ0,1/g (2)

where x� is a truncation of the sequence x defined by

x� .t/D
�

x.t/ 06 t 6 �
0 t > �

The extended space L2e is a linear space that contains the unextended space L2 as a subset. A map-
ping H W L2eŒ0, �/! L2eŒ0, �/ is said to have a finite L2 gain if there exists finite constants � and
ˇ such that

k.H.x//�kL2 6 �kx�kL2 C ˇ (3)

for all x 2 L2eŒ0, �/ and � 2 Œ0,C1/ [25, 26].

3. AVERAGE PRESERVING CONSENSUS WITH QUANTIZATION

In this paper, we study the following consensus protocol with quantization

xi .t C 1/D xi .t/C
X
j2Ni

wj i .Q.xj .t//�Q.xi .t/// (4)

where W D Œwij � is a doubly stochastic matrix, Ni is the neighborhood of node i and Q.�/ is the
quantization function. We can write (4) in a matrix equation form:

x.t C 1/DWx.t/�L.Q.x.t//� x.t// (5)

where LD I�W. This protocol was first proposed in [14] and independently studied in [15] because
of its attractive property in the fields, such as signal processing and data fusion, where the average
of state values is invariant with time. This property can be easily verified by multiplying 1T on both
sides of (5).

The presence of quantization functionQ.�/ in this protocol introduces nonlinearity into the linear
consensus model, which makes the new nonlinear model hard to analyze directly as compared with
the following conventional consensus protocol,

x.t C 1/DWx.t/ (6)

The difference lies in that the protocol (5) introduces an extra nonlinear item Q.x.t// � x.t/. One
way to study the new system is to treat this extra item as a disturbance to the nominal linear system
(6), as shown in the following. This allows us to utilize some tools for linear consensus protocol.
Henceforth, we write (5) as

x.t C 1/DWx.t/�Lv.t/ (7)

where v.t/DQ.x.t//� x.t/ is the disturbance.

Remark 1
Note that the doubly stochastic matrix W in (4) corresponds to an undirected or a directed balanced
graph. However, for a given general directed graph, we can construct W so that it is doubly stochas-
tic, which is carried out by imposing the constraint W1 D 1 and WT 1 D 1 to form a balanced
graph. That is, define an n�n matrix WD Œwij � with wkl D 0 if there is no edge from the kth node
to the l th one, and then solve the equality constraint W1 D 1 and WT 1 D 1 to obtained a doubly
stochastic W in terms of p � 2n independent scalar variables, where p is the number of directed
edges on the graph [21].
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Remark 2
The quantized consensus protocol (4) uses a simple quantization scheme to achieve average con-
sensus and are applicable to both the deterministic and probabilistic quantization. Other types
of consensus protocols with quantization exist in literatures, such as [9, 12]. The quantization
scheme in [9] intentionally introduced statistical dither and can reach almost sure convergence to
a finite random variable. But the convergence value may not be the average of the nodes’ initial
values, which indicates that the consensus is reached but not the average consensus. The dynamic
encoding–decoding scheme in [12] is based on quantization of scaled innovations and requires
that all nodes are strictly synchronized to reach ideal average consensus. It works for undirected
graphs only. Comparing with these existing quantizers, the quantized consensus protocol (4) uses
simple quantizers, as those described in Section 2.2, and are applicable to both undirected and
directed graphs.

4. PROBLEM FORMULATION

It is the quantization error in protocol (4) that leads to the deviation from the average consensus.
This motivates us to utilize a robust control strategy to reduce the effect of the quantization error.

Representing the deviation x.t/� 11T x.0/
n

by z.t/, we have

x.t C 1/DWx.t/�Lv.t/

z.t C 1/D x.t C 1/�
11T x.0/

n
(8)

Consider the following H1 norm objective function

kGv´k1 < � (9)

where Gv´ is the transfer function from v to z of (8), kGv´k1 is the H1 norm of Gv´ and � is a
positive constant.

TheH1 norm performance index (9) is defined in the complex frequency-domain. It corresponds
to the L2 gain in the time domain. This inequality imposes a constraint on the L2 gain from the
disturbance v.t/ to z.t/, which measures the deviation from the average consensus. That is to say,
(9) is equivalent to the following time domain inequality

sup
t>0

tX
�D0

�
zT .�/z.�/� �2vT .�/v.�/

�
< constant (10)

where the constant on the right side of the inequality is due to the effect of the initial states to the
output z and is determined by the initial states.

Problem Statement: Design the weighting matrix W of system (8) to achieve a bounded con-
sensus error of x.t/ and to satisfy the performance index (10) (equivalent to the performance
index (9)).

Remark 3
Note that the matrix W is a stochastic matrix. The traditional robust H1 control theory is invalid
because W has an eigenvalue of 1. This point is analogous to the continuous-time case with a
singular Laplacian matrix as the system matrix, to which traditional H1 control fails [6, 20].

5. MAIN RESULTS

In this section, we present our main results on the weighting matrix design. We use a linear trans-
formation to transform the original consensus problem to an equivalent stabilization problem. This
transformation simplifies the analysis. On the basis of this transformation, we use a set of LMIs to
design the weighting matrices for fixed graphs and switching graphs, respectively. In addition, we
study E.z.t/zT .t//, where E.�/ denotes the expected value, for the protocol on a fixed graph with
the probabilistic quantization scheme, which reveals the statistical property of this method.
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5.1. State transformation

We have the following proposition about the state transformation.

Proposition 1
For a strongly connected, balanced and directed graph, system (8) is equivalent to the following
decoupled system:

y0.t C 1/D T0WTT0 y0.t/�T0Lv.t/

ya.t C 1/D ya.t/

z.t C 1/D TT0 y0.t C 1/ (11)

under the similarity transformation

�
y0.t/

ya.t/

�
D y.t/D Tx.t/ (12)

where

TD

"
T0
1Tp
n

#
(13)

and satisfies TTTD TTT D I, T0 is a .n� 1/� n matrix.

Proof
Because

ID TTT D

"
T0TT0 T0 1p

n

1Tp
n

TT0 1

#
D TTTD TT0 T0C

11T

n
(14)

we have,

T01D 0, T0TT0 D I, TT0 T0 D I�
11T

n
(15)

Representing the system (7) by the new variable y.t/, we have

y.t C 1/D TWTT y.t/�TLv.t/

D

"
T0WTT0 T0W 1p

n

1Tp
n

WTT0
1Tp
n

W 1p
n

#
y.t/�

"
T0Lv.t/
1Tp
n

Lv.t/

#
(16)

For the strongly connected and balanced graph, W is a doubly stochastic matrix. Therefore, W1D 1
and 1TW D 1T . Because L D I �W, we have 1TL D 1T � 1TW D 0. Together with (15), we
obtain

y.t C 1/D

"
T0WTT0 0

0 1

#
y.t/�

�
T0Lv.t/

0

�
(17)

That is,

y0.t C 1/D T0WTT0 y0.t/�T0Lv.t/

ya.t C 1/D ya.t/ (18)
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As to the output z.t/, we can represent it in terms of y0.t/

z.t/D x.t/�
11T x.0/

n

D x.t/�
11T x.t/
n

D TT0 T0x.t/

D TT0 y0.t/ (19)

The transformation matrix T is orthogonal, so the new system with y as the state is equivalent to the
original one. This completes the proof. �

Remark 4
The output z.t/ only depends on y0.t/, which is not coupled with ya.t/. Therefore, we only need to
study the dynamics of y0.t/ in order to study the output z.t/.

Remark 5
Matrix T is not unique. One example is the matrix with all rows equal to the normalized eigenvectors
of matrix 11T with the eigenvector 1Tp

n
in the last row.

Remark 6
The dynamic of y0.t/, which completely determines z.t/, is asymptotically stable because all the
eigenvalues of the system matrix T0WTT0 locates inside the unit circle. This can be observed from
the following analysis,

TWTT D

"
T0
1Tp
n

#
W
h

TT0
1p
n

i
D

"
T0WTT0 0

0 1

#

Note that T is an orthogonal matrix, so W and

"
T0WTT0 0

0 1

#
are similar matrices and they

have the same eigenvalues. For a strongly connected graph, the associated stochastic matrix has one
eigenvalue equal to 1 and the magnitude of all the other eigenvalues is less than 1. Therefore, we
conclude the eigenvalues of T0WTT0 have magnitude less than 1. As a result, the system with v.t/
as the input and z.t/ as the output is bounded-input bounded-output. Therefore, we conclude the
output z.t/ is bounded because of the boundedness of the disturbance v.t/.

5.2. Directed graph with fixed topology

The following lemma gives a sufficient condition to satisfy the design objective (10).

Lemma 1
For a strongly connected, balanced and directed graph with a fixed topology, the system (8) meets
the objective function (10) if there exists a symmetric positive definite matrix P 2 R.n�1/�.n�1/

satisfying: "
ICT0WTTT0 PT0WTT0 � P �T0WTTT0 PT0L

�LTTT0 PT0WTT0 ��2ICLTTT0 PT0L

#
< 0 (20)

Proof
Define the Lyapunov function as follows:

V.t/D yT0 .t/Py0.t/ (21)
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where P is a symmetric positive definite matrix. Denote

J.t/D

tX
�D0

zT .�/z.�/� �2vT .�/v.�/

D

tX
�D0

yT0 .�/T0TT0 y0.�/� �2vT .�/v.�/

D

tX
�D0

yT0 .�/y0.�/� �
2vT .�/v.�/ (22)

Note that

V.t C 1/� V.0/D

tX
�D0

V.� C 1/� V.�/

D

tX
�D0

yT0 .� C 1/Py0.� C 1/� yT0 .�/Py0.�/ (23)

Substituting the expression of y0.� C 1/ into (23) and summing it up with (22), we obtain

J.t/C V.t/� V.0/D

tX
�D0

�
yT0 .�/.T0WTTT0 PT0WTT0 � PC I/y0.�/

C vT .�/.��2ICLTTT0 PT0L/v.�/

� yT0 .�/T0WTTT0 PT0Lv.�/� vT .�/LT TT0 PT0WTT0 y0.�/
�

(24)

This can be written in a quadratic form,

J.t/C V.t/� V.0/

D

tX
�D0

�
yT0 .�/, vT .�/

�
�

"
ICT0WTTT0 PT0WTT0 � P �T0WTTT0 PT0L

�LTTT0 PT0WTT0 ��2ICLTTT0 PT0L

#�
y0.�/

v.�/

�
(25)

Because "
ICT0WTTT0 PT0WTT0 � P �T0WTTT0 PT0L

�LTTT0 PT0WTT0 ��2ICLTTT0 PT0L

#
< 0

we have

J.t/ < �V.t/C V.0/) J.t/ < V.0/

) sup
t>0

tX
�D0

zT .�/z.�/� �2vT .�/v.�/ < V.0/ (26)

Choosing the constant in expression (10) not less than V.0/ leads to the conclusion. This concludes
the proof of Lemma 1. �

Lemma 1 holds for non-symmetric W, which corresponds to a directed graph. It gives a sufficient
condition to meet the performance index (10). The condition is represented by a matrix inequality
but not a linear one (recall that LD I�W). Therefore, (20) is hard to solve directly. We next relax
it to a LMI, for which powerful mathematic tools exist and can be used to find solutions [27]. This
result is stated in the following theorem.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2013; 27:519–540
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Theorem 1
For a strongly connected, balanced and directed graph with a fixed topology, system (8) has a
bounded consensus error and meets the performance index (10) if there exists a symmetric positive
definite matrix U 2R.n�1/�.n�1/ satisfying the following LMI:2

6664
�U S �T0L 0

ST �U 0 UT0
�LTTT0 0 ��2I 0

0 TT0 U 0 �I

3
7775< 0 (27)

where SD T0WTT0 U.

Proof
The proof that system (8) has a bounded consensus error follows the argument in Remark 6. Now,
we prove the rest part of Theorem 1. Because diag.ŒI, U�1, I, I�/ has full rank, we have

(28)

Using the Schur complement, we obtain the following equivalent inequality:

(29)

Using the Schur complement to this inequality, we equivalently obtain"
�U�1CT0TT0 0

0 ��2I

#
�

"
U�1ST

�LTTT0

#
.�U/�1

�
SU�1 �T0L

�
< 0 (30)

Recalling T0TT0 D I, S D T0W TT0 U, defining P D U�1 and then substituting them into the
expression, we can finally obtain the expression of (27), which concludes the proof. �

Remark 7
Solving the LMI in (27) needs the global information of the graph Laplacian matrix. This step
is carried out offline, as done in most of work using optimization methods [8, 20, 22]. Once the
weighting matrix is obtained, the consensus protocol (4) can be used online to achieve consensus in
the presence of quantization errors.
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For the probabilistic quantization scheme, further results can be drawn by exploiting the statis-
tic properties of the probabilistic quantization error. On the motivation to consider the probabilistic
quantization scheme, we have the following remark.

Remark 8
The probabilistic quantization scheme is widely used in existing work [9, 15] to help reduce the
quantization effect. As pointed out in [28], the probabilistic quantization is essentially a form
of dithered quantization method, which renders the quantization noise independent of the quan-
tized data and reduces artifacts created by deterministic quantization. This motivates us to explore
particularly the probabilistic quantization for the protocol (4).

For the probabilistic quantization scheme, we are more interested in the statistical performance of
the protocol. We next study the steady state value of E.z.t/zT .t//, which is the covariance matrix
of x.t/.

As argued in [15], the quantization error introduced by the probabilistic quantization scheme
can be modeled as a random variable with zero mean and finite variance. The quantization errors
are independent across sensors and across different iterations. Let �2 denote the quantization error
variance of each node, we can express the covariance matrix of v.t/ as �2I. The deviation from
consensus z.t/, under the probabilistic quantization scheme, is also a random variable. We have the
following theorem about E.z.t/zT .t//.

Theorem 2
For system (8) on a strongly connected, balanced and directed graph with a fixed topology under the
probabilistic quantization, the covariance matrix E.z.t/zT .t// converges to a constant matrix †´,
whose vectorized form is given by

vec.†´/D
�
TT0 ˝TT0

� �
I�

�
T0WTT0

�
˝
�
T0WTT0

��
�1 � ..T0L/˝ .T0L//vec.†v/ (31)

where †v is the covariance matrix of v.t/.

Proof
According to (11), we have

y0.t C 1/yT0 .t C 1/D T0WTT0 y0.t/yT0 .t/T0WTTT0 CT0Lv.t/vT .t/LTTT0
�T0WTT0 y0.t/vT .t/LTTT0 �T0Lv.t/yT0 .t/T0WTTT0 (32)

Calculating the expected value on both sides, we obtain

E
�
y0.t C 1/yT0 .t C 1/

�
D T0WTT0 E

�
y0.t/yT0 .t/

�
T0WTTT0 CT0LE.v.t/vT .t//LTTT0 (33)

Defining a new variable †y0.t/ D E
�
y0.t/yT0 .t/

�
and noting that E.v.t/vT .t// D †v , which is a

constant matrix, we have,

†y0.t C 1/D T0WTT0†y0.t/T0WTTT0 CT0L†vLTTT0 (34)

Use the Kronecker product to write †y0.t C 1/ in a vector form,

vec.†y0.t C 1//D
��

T0WTT0
�
˝
�
T0WTT0

��
vec.†y0.t//C ..T0L/˝ .T0L//vec.†v/ (35)

This is a linear time invariant system and therefore we can study its system matrix for the con-
vergence. The eigenvalue of

�
T0WTT0

�
˝
�
T0WTT0

�
is �i�j for i D 1, 2, : : : ,n, j D 1, 2, : : : ,n,

where �i is the i-th eigenvalue of T0W TT0 . In addition, j�i j < 1 as argued in Remark 6. There-
fore, jeig

��
T0WTT0

�
˝
�
T0WTT0

��
j < 1. Hence, †y0.t/ converges eventually. Denoting †y0 as
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its steady state value, we can calculate it easily by solving the steady state linear equation. After
calculation, we have,

vec.†y0/D
�
I�

�
T0WTT0

�
˝
�
T0WTT0

��
�1..T0L/˝ .T0L//vec.†v/ (36)

Together with †´ D TT0†y0T0, we obtain,

vec.†´/D
�
TT0 ˝TT0

�
vec.†y0/

D
�
TT0 ˝TT0

� �
I�

�
T0WTT0

�
˝
�
T0WTT0

��
�1..T0L/˝ .T0L//vec.†v/ (37)

This concludes the proof. �

Theorem 3
For system (8) on a strongly connected, balanced and directed graph with a fixed topology under
the probabilistic quantization, if the performance index (10) is satisfied, the mean square deviation
E.zT .t/z.t/=n/ converges and is eventually upper bounded by �2�2. That is,

lim
t!1

E

	
zT .t/z.t/

n



< �2�2 (38)

where E.zT .t/z.t/=n/ is the expected value of zT .t/z.t/=n, n is the number of nodes in the graph,
�2 is the quantization error variance of each node and � is defined in the performance index (10).

Proof

Because E.z.t/zT .t// converges (Theorem 2), we conclude limt!1E
�

zT .t/z.t/
n

�
exists by noting

that zT .t/z.t/D trace.z.t/zT .t//. According to the performance index (10), we have for all t > 0,

tX
�D0

zT .�/z.�/� �2vT .�/v.�/ < constant (39)

Calculating expected value on both sides and rewriting the expression, we obtain,

tX
�D0

E.zT .�/z.�// < t�2trace.E.v.�/vT .�///C constant (40)

For the probabilistic quantization, the covariance matrix of v is �2I. Thus, we have
trace.E.v.�/vT .�/// D n�2. Substituting this expression into inequality (40), dividing both side
of the inequality with t and then calculating the limit as t goes to infinity, we have,

lim
t!1

E

	
zT .t/z.t/

n



< �2�2C lim

t!1

constant

t
(41)

Because limt!1
constant
t
D 0, we obtain the inequality (38). This concludes the proof. �

Remark 9

We can consider z.t/ as the error from the average consensus. Then,

r
E
�

zT .t/z.t/
n

�
is the standard

deviation of this consensus error. This theorem reveals that the error sensitivity is less than � in
the sense of standard deviation. In practice, we may want the steady-state mean square deviation

limt!1E
�

zT .t/z.t/
n

�
upper bounded (say the desired upper bound is ˛ss). According to (38), we

can choose � D
p
˛ss
�

in the design.
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5.2.1. Special case: undirected graph. For a strongly connected undirected graph, the weight-
ing matrix is symmetric, and the steady-state standard deviation of the consensus error,
limt!1E.zT .t/z.t//, can be explicitly expressed in terms of the spectrum of the graph.

For system (8) on a strongly connected undirected graph, which is a special case of balanced and
directed graphs, we have the following results according to Theorem 2,

lim
t!1

E.zT .t/z.t//

D lim
t!1

trace.E.z.t/zT .t///

D trace.†´/

D vecT .I/vec.†´/

D vecT .I/
�
TT0 ˝TT0

� �
I�

�
T0WTT0

�
˝
�
T0WTT0

��
�1 � ..T0L/˝ .T0L//vec.†v/ (42)

With the Kronecker product property that .BT ˝ A/vec.X/ D vec.AXB/ for matrices A, B
and X of appropriate sizes, we have vecT .I/

�
TT0 ˝TT0

�
D vecT

�
T0TT0

�
D vecT .I/ and

..T0L/˝ .T0L//vec.†v/ D vec
�
T0L†vLTTT0

�
. Also noticing that †v D �2I for the identically

independent quantization with the variance �2 for each node, we have,

lim
t!1

E.zT .t/z.t//D �2vecT .I/
�
I�

�
T0WTT0

�
˝
�
T0WTT0

��
�1vec

�
T0LLTTT0

�
(43)

The matrix
�
T0WTT0

�
˝
�
T0WTT0

�
is symmetric for undirected graph with WDWT and its eigen-

values locate strictly in the unit circle as pointed out in the proof of Theorem 2. Thus, we can express�
I�

�
T0WTT0

�
˝
�
T0WTT0

���1
in the following geometric series,

�
I�

�
T0WTT0

�
˝
�
T0WTT0

���1
D

1X
jD0

��
T0WTT0

�
˝
�
T0WTT0

��
j

D

1X
jD0

�
T0WTT0

�j
˝
�
T0WTT0

�
j (44)

Therefore,

lim
t!1

E.zT .t/z.t//D �2vecT .I/

0
@ 1X
jD0

�
T0WTT0

�
j ˝

�
T0WTT0

�
j

1
A vec

�
T0LLTTT0

�

D �2
1X
jD0

�
vecT .I/

��
T0WTT0

�
j ˝

�
T0WTT0

�
j
�

vec
�
T0LLTTT0

��

D �2
1X
jD0

�
vecT .I/vec

��
T0WTT0

�
jT0LLTTT0

�
T0WTT0

�
j
��

D �2
1X
jD0

trace
�
I
�
T0WTT0

�
jT0LLTTT0 �

�
T0WTT0

�
j
�

D �2
1X
jD0

trace
��

T0WTT0
�
jT0LLTTT0 �

�
T0WTT0

�
j
�

(45)

By exploiting the property that T01D 0, T0TT0 D I and TT0 T0 D I� 11T

n
, we obtain

�
T0WTT0

�
j D

T0
�

Wj � 11T

n

�
TT0 and further

�
T0WTT0

�
jT0LLTTT0

�
T0WTT0

�
j D T0

�
Wj �WjC1

�
2TT0
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after some trivial calculations. Notice that

T
�
Wj �WjC1

�
2TT D

"
T0
�
Wj �WjC1

�
2TT0 0

0 0

#
(46)

where T is defined in (13). As TTT D I, (46) implies the .n � 1/ � .n � 1/ matrix
T0
�
Wj �WjC1

�2
TT0 has the same spectrum as the n � n matrix

�
Wj �WjC1

�2
except the

zero eigenvalue, that is, matrix T0
�
Wj �WjC1

�2
TT0 has eigenvalues at

�
�
j
i � �

jC1
i

�2
for

i D 2, 3, : : : ,n with �i denoting the i th eigenvalue of W. Therefore,

trace
��

T0WTT0
�
jT0LLTTT0 �

�
T0WTT0

�
j
�
D

nX
iD2

�
�
j
i � �

jC1
i

�
2

D

nX
iD2

�
2j
i .1� �i /

2 (47)

Thus,

lim
t!1

E.zT .t/z.t//D �2
1X
jD0

nX
iD2

�
2j
i .1� �i /

2

D �2
nX
iD2

0
@.1� �i /2

0
@ 1X
jD0

�
2j
i

1
A
1
A

D �2
nX
iD2

	
.1� �i /

2 1

1� �2i




D �2
nX
iD2

1� �i

1C �i
(48)

Consequently, we conclude that the inequality (38), for strongly connected undirected graph, is
guaranteed by the following condition,

1

n

nX
iD2

1� �i

1C �i
< �2 (49)

where �i denotes the i th eigenvalue of W.
For an undirected graph with identically weighted edges, there is only one degree of freedom for

the weighting matrix and it is of the form WD I�kL0 where L0 is the Laplacian matrix of the graph
with unit edge weights. The weighting matrix design is summarized by the following theorem.

Theorem 4
For system (8) on a strongly connected undirected graph with a fixed topology under the probabilis-
tic quantization, the mean square deviation E.zT .t/z.t/=n/ is eventually upper bounded by �2�2

under the following condition,

0 < k <
2

	n
min

�
n�2

n�2C n� 1
, 1



(50)

where W D I � kL0, L0 is the Laplacian matrix of the graph with unit edge weights and 	n is its
largest eigenvalue.
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Proof
The condition k < 2

�n
in (50) guarantees non-one eigenvalues of W locate strictly inside the unit

circle and system (8) will not diverge under this condition. Now, to conclude the result, we show

k < 2n�2

�n.n�2Cn�1/
in inequality (50) is sufficient for (49).

nX
iD2

1� �i

1C �i
< n�2(

nX
iD2

	
�1C

2

1C �i



< n�2

( .n� 1/.�1C
2

2� k	n
/ < n�2

( k <
2n�2

	n.n�2C n� 1/
(51)

Note that �i > 1� k	n for i D 2, 3, : : : ,n is used in the derivation of the second step of (51). (51)
completes the proof. �

Remark 10
According to the Perron–Frobenius Theorem [29], 	n is upper bounded by 2degmax with degmax

denoting the maximum degree of L0. As a result, (50) holds for 0 < k < 1
degmax

min
n

n�2

n�2Cn�1
, 1
o
.

Remark 11
The largest eigenvalue 	n can be analytically obtained for some special topologies [30], such as
complete graph, cycle topology, star topology and so on. In these cases, the upper bound of k in
(50) can be explicitly obtained, as summarized in Table I.

5.3. Directed graph with switching topology

In some practices, failure of previous communication links and emergence of new communication
connections may happen. Both will lead to a change of the network topology. Base on this con-
sideration, we study directed graphs with switching topologies in this section. In this situation, we
model the system as a switched system [31], where the switch is triggered by a switching signal s.t/.

Table I. The range of k for special topologies with the performance index � . The weighting matrix is chosen
to be WD I�kL0 with L0 denoting the Laplacian matrix of the corresponding graph with unit edge weights.

Topology k

Complete graph 0 < k < 2
n min

n
n�2

n�2Cn�1
, 1
o

Strongly regular graph srg.n, d , a, b/ 0 < k < 4

2n�.a�b/C
p
.a�b/2C4.d�b/

min
n

n�2

n�2Cn�1
, 1
o

Cycle 0 < k < 1
2 min

n
n�2

n�2Cn�1
, 1
o

Star 0 < k < 2
n min

n
n�2

n�2Cn�1
, 1
o

Path 0 < k < 1
2 min

n
n�2

n�2Cn�1
, 1
o

Complete bipartite graph 0 < k < 2
n min

n
n�2

n�2Cn�1
, 1
o
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In order to distinguish the difference of weighting matrix W associated with different topologies, in
this section we use Gs.t/, Ws.t/ and Ls.t/ to represent the graph, weighting matrix and Laplacian
matrix at time t . For a directed graph with a switching topology, we have similar results to Lemma 1
and Theorem 1.

Lemma 2
For a strongly connected, balanced and directed graph with a switching topology Gs.t/, system (8)
satisfies the objective function (10) if there exists a common symmetric positive definite matrix
P 2R.n�1/�.n�1/ satisfying

�
�11 �12

�21 �22

�
< 0 (52)

where

�11 D ICT0WT
s.t/T

T
0 PT0Ws.t/T

T
0 � P (53)

�12 D�T0WT
s.t/T

T
0 PT0Ls.t/ (54)

�21 D�LTs.t/T
T
0 PT0Ws.t/T

T
0 (55)

�22 D��
2ICLTs.t/T

T
0 PT0Ls.t/ (56)

and s.t/ denotes the switching signal.

Proof
The proof of this lemma is similar to Lemma 1. The difference is that both Ws.t/ and Ls.t/ share a
common Lyapunov function V.t/D yT0 .t/Py0.t/. �

Theorem 5
For a strongly connected, balanced and directed graph with a switching topology Gs.t/, system (8)
has a bounded consensus error and achieves the performance index (10) if there exists a common
symmetric positive definite matrix U 2R.n�1/�.n�1/ satisfying the following LMI:

2
6664

�U Ss.t/ �T0Ls.t/ 0

ST
s.t/

�U 0 UT0
�LT

s.t/
TT0 0 ��2I 0

0 TT0 U 0 �I

3
7775< 0 (57)

where Ss.t/ D T0Ws.t/TT0 U and s.t/ denotes the switching signal.

Proof
This theorem follows from Lemma 2 and can be similarly proved as Theorem 1. �

For graphs with fixed topologies, we studied the steady state covariance matrix E.z.t/zT .t//
of the deviation in Theorem 3. However, the steady state value may not exist for the case on a
switching graph due to the topology changes. Therefore, no conclusions on the steady state value is
made for the switching case. Nevertheless, Theorem 5 guarantees average consensus with an H1
performance for the switching topology.
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6. SIMULATIONS

In this section, we give three simulation examples, one on a directed fixed graph, one on a directed
switching graph and the third one on an undirected fixed graph. As shown in [9,15], the probabilistic
quantization, compared with the deterministic quantization, has the advantage to reduce the consen-
sus disagreement in a statistical sense. In order to demonstrate that the proposed method is able to
further reduce the consensus disagreement, we use the probabilistic quantization scheme in the sim-
ulation. Nevertheless, the performance index is also guaranteed for the deterministic quantization
according to Theorem 1 and Theorem 5. We compare our proposed method with the maximum-
degree weights [14], the least-mean-square consensus (LMSC) method [8] and the modified LMSC
method in the simulation. It is worth noting that although all theorems are presented for balanced
directed graphs, the design applies to general (unbalanced) directed graphs as shown in the fol-
lowing examples, which is carried out by imposing a constraint at the beginning of the design as
described in Remark 1.

6.1. Example 1 (directed, fixed graph)

In this example, we study the case of a directed fixed graph and show the design procedures using the
proposed method. There are 10 nodes in a directed network. The information flow of this network
is shown in Figure 1. In the simulation, we set � D 2 and b D 2 for the probabilistic quantizer.
As proved in [28], the variance �2 of the quantization error in this situation satisfies �2 6 ı2

4
with

ı D 2�

2b�1
. After calculations, we obtain � 6 0.67. The design objective is to keep the steady-state

mean square deviation from the average consensus ( i.e., limt!1E
�

zT .t/z.t/
n

�
in inequality (38) )

no larger than 0.6. We choose � D 1.1 to be the L2 gain between the consensus deviation and the
quantization error. The LMI is constructed based on Theorem 1 and numerically solved by MATLAB.
The matrix T in the LMI (27) is chosen according to Remark 5. That is, the matrix T is selected so
that its rows equal to the normalized eigenvectors of the matrix 11T with the last row equal to the
eigenvector 1Tp

n
. Initially, the matrix U in the LMI (27) is chosen as the identity matrix. However,

with � D 1.1, no solution is returned by solving the LMI (27), which indicates that the initial choice
of U as an identity matrix is not a good trial. We then relax � to a relative larger value 2 and choose
U as the identity matrix to solve the LMI (27). In this case, a solution of the weighting matrix W can
be found. Based on the obtained weighting matrix W, we treat the LMI (27) as an inequality with an
unknown variable U and solve it to reach a new U. Then we use the new U to solve the LMI to find
W. This operation is repeated several times to reduce the value of � iteratively. After five iterations,

V1

V2V3

V4

V5

V6

V7 V8

V9

V10

Figure 1. Information flow of network in the example 1. Circles labeled from V1 to V10 represent the nodes
in the network. The arrow on the line indicates the direction of communication.
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Figure 2. Mean square deviations of x.t/ in log scales versus iteration numbers.

we obtain the weighting matrix W with the given index � . Note that we use this numerical procedure
to find a possible solution of the LMI for a given � . Minimizing the parameter � in LMI is out of the
scope of the current paper, for which existing methods can be found in [27]. The obtained U (9� 9
square matrix) and W (10�10 square matrix) are shown in the box. The position of nonzero entries
in the resulting weighting matrix W is consistent with the directed topology of the graph shown in
Figure 1. We measure the performance using zT .t/z.t/=n. Results are averaged over 500 Monte
Carlo runs with independently generated initial states. Results are shown in Figure 2. From this
figure we can see that zT .t/z.t/=n reduces gradually. Finally, the value is lower than our predefined
upper bound 0.6.

6.2. Example 2 (directed, switching graph)

The second example studies the directed switching graph case. There are four nodes in a network
with four different topologies switching in order in every 20 iterations. The information flow of
the four different topologies is shown in Figure 3. Each node uses the consensus protocol (4) to
update the state value. Given � D 1.6, we design the weighting matrix for each topology. We com-
pare the result with the case using maximum-degree weights. The initial values of each node are
generated according to the Gaussian distribution with zero mean and unit variance. We measure
the performance by zT .t/z.t/=n. Results are averaged over 500 Monte Carlo runs with indepen-
dently generated initial states. In the simulation, we set �D 2 and b D 2 for the quantizer. Figure 4
shows the empirical mean square deviation of x.t/ versus the number of iterations for the case with
maximum-degree weights and that designed with our method. From Figure 4, we can see the mean
square deviation of our method that is much lower than the case using maximum-degree weights.

6.3. Example 3 (undirected, fixed graph)

As mentioned earlier, most studies on average consensus with quantized communication assumes
that the topology is undirected and fixed. To facilitate comparison, we consider here a wireless
sensor network with an undirected and fixed topology. The network is generated by using a random
geometric graph model [2, 14], in which nodes are uniformly distributed in a two-dimensional unit
area and nodes with distance less than

p
lnn=n (n is the number of sensor nodes) are thought to

be neighbors. In the simulation, we choose n D 25. The constructed graph in this simulation is
shown in Figure 5. The quantization parameters are chosen as � D 2, b D 4, respectively. In each
run, the state value of each node is initialized according to a Gaussian distribution with zero mean
and unit variance and results are averaged over 500 Monte Carlo runs with independently gener-
ated initial states. We use � D 1 to design the weighting matrix W, which is a 25 � 25 symmetric
stochastic matrix. We compare our method with the maximum-degree weights method used in [14],
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Figure 3. Four switching topologies in the example. The topology starts from graph (a) at time t D 0 and
switches to the next one in every 20 iterations in the order of (a)!(b)!(c)!(d)!(a)...
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Figure 4. Mean square deviations of x.t/ in log scales versus iteration numbers.

the so-called LMSC method proposed in [8] and the so-called modified LMSC method with dif-
ferent parameters and use the mean square deviations from the initial average as the measurement.
As to the LMSC method, the weighting matrix is obtained by gradient descending search given by
(19) in [8]. In Figure 6, we can see a clear advantage of using the weighting matrix obtained by
the proposed algorithm over the LMSC method and the maximum-degree weights method. After
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Figure 5. The random geometric graph used in the simulation. The number of nodes is n D 25.
Communication radius is

p
lnn=n.
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Figure 6. Mean square deviations of x.t/ from the initial average in log scales versus iteration numbers.

adequate iterations, the disagreement from consensus of the proposed algorithm is less than them.
Note that LMSC method optimizes the weighting matrix based on the least square deviation criterion
under topological constraints. However, because of the additive noise of the LMSC method does not
properly model the quantization error, the performance of the LMSC method is not as good as our
method in the simulation.

6.4. Comparison with other optimization methods

In [8], the LMSC method is formulated as the following consensus problem with additive noises:

x.t C 1/DWx.t/C!.t/ (58)

where !.t/ is an independent and identically-distributed additive noise with zero mean and con-
stant variance. For the convenience of comparison, the consensus problem with a probabilistic
quantization can be written as the following by substituting LD I�W into (7):

x.t C 1/DWx.t/� v.t/CWv.t/ (59)
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where v.t/ is an independent and identically-distributed random variable with zero mean and finite
variance. Because the quantization error is a white noise, the LMSC method proposed in [8] can be
extended to handle quantized communications. We compare the performances of our method with
the extended LMSC method. Because we do not see any publication about the application of LMSC
method in the quantized communication case, we show the detail of the extension in the following.

Above all, the modified LMSC method employs the following assumptions:

1. The graph is undirected. That is, the weighting matrix satisfies that WDWT .
2. The topology is fixed.

Note that the assumption of undirected graph is needed to guarantee the convexity of the problem.
The assumption of fixed topology is required to ensure the existence of the steady-state mean square
deviation.

The problem is formulated as follows:

min ıss.W/

s.t. WDWT , W1D 1, W 2 S,
���W� 11T

n

���< 1 (60)

where n is the number of nodes in the graph, and ıss is the steady-state mean square deviation.���W� 11T

n

��� < 1 is the constraint for convergence and W 2 S is the topology constraint. Note that

ıss.W/ has the following expression:

ıss D
1

n
trace .†ss/ (61)

where †ss D limt!1†´.t/ denotes the steady-state variance of z.t/ and †´.t/ denotes the vari-
ance of z.t/ in (8). That is,†´.t/DE.z.t/zT .t//. As proved in (48), the objective function in (60)
has the following form:

ıss.W/D
�2

n

nX
iD2

1� �i

1C �i
(62)

where �i denotes the i th largest eigenvalue of W and �2 is the quantization error variance of each
node. With the expression (62), we are able to prove the convexity of the problem (60), by using the
theory of convex spectral functions [32]. To solve this optimization problem, we can write it as the
following convex optimization problem after some trivial operations:

min g.W/D 2
n

trace
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ICW� 11T

n

�
�1

s.t. � I� 11T

n
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� IC 11T

n
�W< 0

WD I�
Pm
kD1 !kakaT

k
(63)

where ak denotes the kth column of the incidence matrix of the graph, !k denotes the weight of the
kth edge and m denotes the total amount of edges.

The modified LMSC method solves problem (63) numerically to find the optimal weighting
matrix. In implementation, as often carried out in semi-definite programming, we use the interior
point method to relax problem (63) into an unconstrained optimization problem with the following
objective function:

minf .W/D
2

n
trace
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11T

n
Š


�1
�	0 ln

	
det

	
I�

11T

n
CW




�	0 ln

	
det

	
IC

11T

n
�W




(64)

where 	0 is a positive constant and det.�/ denotes the determinant of a square matrix. By searching
in the negative gradient direction, we can find the optimal weighting matrix to problem (64), which
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Figure 7. Comparisons of the proposed method and the modified LMSC method. x-label represents the
number of iterations while y-label represent the mean square deviations of x.t/ in log scales.

is a proper approximation, by choosing a small enough	0, to the original problem (60). As observed
from (62), a weighting matrix with eigenvalues �2,�3, : : : ,�n very close to but smaller than 1,
always satisfies the constraints in (63) and can have the objective function arbitrarily close to zero.
In this way, the optimal solution of W will be infinitely close to the identity matrix. However, such
a W reduces the information exchange between neighbor nodes and needs infinitely long time for
convergence. In other words, the ideal solution obtained by the modified LMSC method is infeasible.

To make the modified LMSC method feasible, we set up an allowed steady-state mean square
deviation, ı0, as the design criterion and run the modified LMSC method until this criterion is satis-
fied. In the following, we use both our method and the modified LMSC method to design weighting
matrices for ı0 D 0.01, ı0 D 0.015 and ı0 D 0.02, respectively and compare the results. As shown in
Figure 7, the mean square deviation of our method is lower than that of the modified LMSC method
when the algorithm converges. It should be stressed that the modified LMSC method can only
deal with undirected fixed graphs. In contrast, by defining the performance index from the L2 gain
perspective, the case with switching topology and the case on directed graph can be included into
our framework as stated in Theorem 1 and Theorem 5 and as depicted in the simulation Example 1
and Example 2.

7. CONCLUSION

In this paper, average consensus on a directed graph with quantized communication was studied.
We examined this problem for both fixed and switching topologies. A robust weighting matrix
design was proposed to reduce the effect of the quantization error. Theoretical analysis led to a set
of LMIs which can be used to solve the weighting matrices. For fixed topology with probabilistic
quantization, the mean square deviation was proved to converge and its upper bound was derived.
Simulation results were given to verify the effectiveness of the method.
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