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Abstract—This paper is concerned with signal detection in
strong disturbance with a subspace structure. Unlike conventional
subspace detection techniques relying on the availability of ample
training data, we consider a knowledge-aided subspace detection
approach for training limited scenarios by incorporating partial
prior knowledge of the subspace. A unique advantage of the pro-
posed approach is that it allows the prior knowledge to be incom-
plete and uncertain, consisting of both correct and incorrect basis
vectors. However, the correct and incorrect bases cannot be identi-
fied a priori. Two hierarchical models are introduced for knowledge
representation. One is suitable for the case when the prior knowl-
edge is largely accurate, while the other tries to identify possible
errors in the prior knowledge by checking it against and learn-
ing from the observed data. The proposed hierarchical models are
integrated within a sparse Bayesian framework, which promotes
parsimonious subspace representation of the observed data. Vari-
ational Bayesian inference algorithms are developed based on the
proposed models to recover parameters and subspace structures
associated with the disturbance, which are then used in a gener-
alized likelihood ratio test to perform signal detection. Numerical
results are presented to illustrate the performance of the proposed
subspace detectors in comparison with several notable existing
methods.

Index Terms—Subspace signal detection, knowledge-aided
processing, Bayesian interference, radar applications.

I. INTRODUCTION

D ETECTING a weak signal in strong disturbance (noise,
interference, clutter, jamming, etc.) is a fundamental prob-

lem in communications, radar/sonar, and many other applica-
tions (e.g., [1]–[3]). A popular approach is based on using an
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estimated covariance matrix of the disturbance obtained from
training data for disturbance mitigation. This has led to a family
of covariance matrix based (a.k.a. fully adaptive) detectors (see
[4] and references therein). One limitation of these detectors
is that they require a large amount of training data to ensure
the accuracy of the covariance matrix estimate. In particular,
the number of training signals should at least double the prob-
lem dimension so that the average performance loss relative to
the known covariance matrix case in signal-to-interference-and-
noise ratio (SINR) is no more than 3 dB [5]. This requirement
is prohibitively high for some applications with a large problem
dimension, e.g., space-time adaptive processing (STAP) [2] and
massive multi-input multi-output (MIMO) systems [6].

Training requirement can be reduced by exploiting distur-
bance structure. Frequently the disturbance (approximately) has
a low-rank subspace structure [7], [8]. This is the case for
narrowband interference, which can be expanded using a few
Fourier bases, a jamming signal arriving from one or several
azimuth angles, or radar clutter whose eigen-spectrum is often
dominated by its principal eigenvalues [5]. When the subspace
is fully known, signal detection may proceed by projecting the
observation into the orthogonal complement of the subspace,
followed by cross-correlating with the target signal and energy
normalization. This leads to a beta test statistic [9], [10], which is
optimum in the sense that it is uniformly most powerful (UMP)
invariant [11]. When the subspace is unknown, it can be esti-
mated by using, e.g., the principal eigenvectors of the sample
covariance matrix constructed from training data. The result-
ing subspace detector is called the eigencanceler [12], which
belongs to a highly successful class of reduced-rank (a.k.a. par-
tially adaptive) methods, which have been widely used in radar
detection, estimation and filtering, and wireless communica-
tions [2], [13], [14]. Additional notable reduced-rank detectors
include the multi-stage Wiener filter [15] and conjugate-gradient
(CG) algorithm based methods [16]–[18].

Exploiting prior knowledge is another way to reduce train-
ing requirement. Techniques following this direction are called
knowledge-aided (KA) processing [19], where the prior knowl-
edge often refers to a prior estimate of the disturbance covariance
matrix. Most these techniques often employ a KA estimate of
the disturbance covariance matrix via colored loading, which
invovles linearly combining the prior estimate with the sample
covariance matrix. The weighting coefficients can be determined
from a deterministic approach [20] or from a stochastic approach
(e.g., [21]–[24]). The latter employs a Bayesian framework by
treating the covariance matrix as a random matrix assigned with

1053-587X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



LI et al.: ADAPTIVE SUBSPACE SIGNAL DETECTION WITH UNCERTAIN PARTIAL PRIOR KNOWLEDGE 4395

a conjugate prior, e.g., the inverse Wishart distribution. Then,
the posterior estimate takes the aforementioned linear combin-
ing form, with the combining coefficients determined by a pa-
rameter that represents the reliability of the prior knowledge:
the larger the parameter, the more reliable the prior estimate, in
which case the posterior estimate is combined using a higher
weight. Choosing the reliability parameter is a tricky problem
[25]. Other than covariance matrix based KA processing, there
are a number of recent works addressing exploitation of other
types of prior knowledge for detection, e.g., inverse covariance
matrix structures [26], spectral structures [27], [28], group sym-
metric/persymmetric structure [29], [30] and both array and
spectral structures of the disturbance [31].

Most of the above KA based techniques can be thought of
as extensions of the fully adaptive detection, since they rely on
an improved estimate of the full-dimensional covariance ma-
trix. Because of their fully adaptive nature, these KA detectors
still require considerable training unless the data dimension is
fairly small or the prior knowledge is sufficiently accurate. In
many instances, the training size of a KA detector can be re-
duced approximately by a factor of two compared with its non-
KA counterpart (e.g., [23]). While impressive, the reduction
may be insufficient for some challenging cases with very lim-
ited training. Consider, for example, radar detection with non-
homogeneous location-dependent clutter, which occurs when,
e.g., radar operates in an urban environment, has a bi-static or
multi-static/MIMO configuration, or is equipped with a confor-
mal or forward-looking antenna array [5]. Radar training data is
obtained from observations associated with range cells that are
spatially close to the test cell. In the aforementioned cases, ho-
mogeneous training data becomes scarce since the clutter is lo-
cation dependent and may vary significantly around the test cell.

In this paper, we consider subspace detection with partial and
uncertain prior knowledge of the disturbance subspace, and de-
velop new partially adaptive KA methods for detection with no
training data. This effort, to the best of our knowledge, is the first
of its kind. Our study is motivated by the fact that in practice,
we often have some prior knowledge of the disturbance sub-
space, either from prior observations or established database of
the environment being observed, e.g., spatial locations of domi-
nant clutter scatterers (major natural or man-made structures) in
the surveillance area, and the angle-Doppler trace of the clutter
spectrum (a.k.a. clutter ridge) observed by an airborne phased-
array, which can be determined by motion parameters of the
moving sensing platform [5, Section 2.6.2.]. Such information
translates to knowledge of some of the subspace basis vectors.
However, it is not unusual for such prior knowledge to be con-
taminated due to measurement/estimation errors, mismatch, or
outdated information which must be taken into account. The
challenge lies in that it is unknown a priori which part of the
prior knowledge is correct and which part is not.

To address the above challenge, we introduce two hierarchi-
cal models for knowledge representation. One is suitable for
the case when the prior knowledge is largely accurate, and the
other tries to identify possible errors in the prior knowledge by
checking it against and learning from the observed data. The
proposed hierarchical models are integrated within a Bayesian

framework for inference, leading to parsimonious subspace
representations of the observed data. Our Bayesian framework
for KA processing is based on sparse Bayesian learning [32]
and is distinctively different from the Bayesian framework
used for covariance matrix based KA processing [21]–[24]. We
develop variational Bayesian inference algorithms to recover
parameters and structures associated with the disturbance,
which are then brought into a generalized likelihood ratio test
(GLRT) to perform detection.

The rest of this paper is organized as follows. The problem
of interest is formulated in Section II. Subspace detection and a
GLRT is presented in Section III. The proposed Bayesian mod-
els for knowledge representation as well as variational inference
algorithms for subspace recovery are discussed in Section IV.
Numerical results are presented in Section V, followed by con-
clusions in Section VI.

Notation: Vectors (matrices) are denoted by boldface lower
(upper) case letters. All vectors are column vectors. Super-
scripts (·)∗, (·)T and (·)H denote complex conjugate, trans-
pose and complex conjugate transpose, respectively. I denotes
an identity matrix. card(S) denotes the cardinality of a set S.
Gamma(x; a, b) denotes the Gamma distribution of random vari-
able x with scale and rate parameters a and b, respectively:

Gamma(x; a, b) = Γ−1(a)baxa−1e−bx , (1)

where Γ(a) =
∫ ∞

0 ta−1e−tdt denotes the Gamma function. Fi-
nally, N (x;μ,Φ) denotes the circularly symmetric complex
Gaussian probability density function (PDF) of random vector
x with mean μ and covariance matrix Φ:

Nc(x;μ,Φ) = |πΦ|−1 exp
{
− (x − μ)HΦ−1(x − μ)

}
. (2)

II. PROBLEM FORMULATION

Consider the hypothesis testing problem of detecting a known
multichannel signal in disturbance:

H0 : y = d

H1 : y = κs + d (3)

where y ∈ CN ×1 denotes the observation (a.k.a. test data), s
the target signal which is assumed known but with an unknown
complex-valued amplitude κ, and d the disturbance signal. The
multichannel observation y may consist of samples taken in
space (with multiple antennas), time, or jointly in both domains
as in STAP [2]. In phased-array and MIMO systems, s is often
referred to as the steering vector parameterized by the radar
look angle and/or target Doppler frequency, while d may include
clutter, jamming and noise. The steering vector s is known since
for typical radar operation, the above hypotheses are tested for
specific values of angle and Doppler frequency [33].

In many cases of practical interest, the disturbance d may
have a low-rank subspace representation [11]:

d = Hβ + n (4)

where H ∈ CN ×L consists of L < N linearly independent ba-
sis vectors of the subspace, β ∈ CL×1 contains the subspace
coefficients, and n is complex white Gaussian noise vector with
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zero mean and covariance σ2I. For the hypothesis testing (3) to
be meaningful, it is assumed that s �∈ span(H). Clearly, Hβ is
the low-rank component in d. As noted before, jamming and
clutter in radar often have a low-rank subspace structure. For
example, the superposition of clutter echoes can be modeled in
terms of the direction containing the maximum energy in the
space of observations and often has a subspace structure [5].

While the detection problem (3) has been well studied under
the condition H is exactly known (e.g., [11]), we consider
a more interesting and also practically motivated case where
only partial and possibly contaminated prior knowledge of H is
available. To model such prior knowledge, we employ an over-
complete dictionary matrix H ∈ CN ×M , M � N , such that

Hβ = Hx (5)

where x is an M × 1 sparse vector with sparsity L. The dic-
tionary matrix can be formed on a fine grid covering the entire
parameter space that parameterizes H, e.g., 1-dimensional (1D)
direction-or-arrival (DOA) in beamforming or 2-dimensional
(2D) angle-and-Doppler plane in STAP. To focus on the main
problem (i.e., subspace detection with inaccurate prior knowl-
edge) without causing excessive ramifications, we assume M is
sufficiently large and will not consider the grid-mismatch prob-
lem due to finite discretization on the parameter space, which can
be addressed by a number of recent techniques (e.g., [34]–[38]).

The prior knowledge can be represented as a group of
columns of H which are believed to span the column space
of H; however, the knowledge is inaccurate in that the subset
may miss some columns that are necessary to represent H
or contain erroneous columns that do not belong to span(H).
More precisely, let

S � {1, 2, . . . ,M}, (6)

denote the index set that indexes the columns of H. The knowl-
edge can be denoted by a subset P ⊂ S. We can write P = C ∪
E, where C denotes the subset containing the correct knowledge
and E the erroneous subset. If T ⊂ S denotes the true index set
for H, then C ⊂ T and E ⊂ T c . Note that only P is known; the
partition of C and E is unknown. In addition, we do not assume
knowledge of card(T ), the cardinality of T and, equivalently,
the rank of H. The problem of interest is to solve the hypothesis
testing (3) using observation y, knowledge of the steering vector
s, and the partial/uncertain subspace information P .

III. GLRT

We consider a generalized likelihood ratio test (GLRT) ap-
proach to solve (3) by incorporating knowledge of the subspace.
The likelihood functions under the H0 and H1 hypotheses given
observation y are

p0(β,H, σ2 ;y) = Nc(y;Hβ, σ2I), (7)

p1(κ,β,H, σ2 ;y) = Nc(y;κs + Hβ, σ2I). (8)

The test variable of the GLRT, given by

max{κ,β,H ,σ 2 } p1(κ,β,H, σ2 ;y)
max{β,H ,σ 2 } p0(β,H, σ2 ;y)

, (9)

requires finding estimates of the unknown parameters under
both hypotheses, which are discussed next.

Under H1 , it is easy to see from (8) and (2) that the maximum
likelihood estimate (MLE) of the amplitude κ conditioned on
H and β is

κ̂ =
sH(y − Hβ)

sHs
(10)

Substituting κ̂ into (8) and maximizing the resulting likelihood
with respect to (w.r.t.) σ2 gives the MLE of the noise variance as

σ̂2
1 =

1
N

∥
∥P⊥

s y − P⊥
s Hβ

∥
∥2

, (11)

where the subscript 1 indicates the estimate is obtained under
the hypothesis H1 and P⊥

s � I − s(sHs)−1sH denotes the
projection matrix that projects to the orthogonal complement of
s. Substituting (11) and (10) back into (8), we see that the MLEs
of the subspace matrix H and coefficient β can be obtained by

{Ĥ1 , β̂1} = arg min
H ,β

∥
∥P⊥

s y − P⊥
s Hβ

∥
∥2

. (12)

The above least-square (LS) fitting implies the following inter-
pretation for the estimation. Specifically, after concentrating out
κ and σ2 from the likelihood function, the parameter estimation
problem under H1 reduces to an equivalent and simplified one
that involves estimating only H and β by using the transformed
data P⊥

s y:

P⊥
s y = P⊥

s Hβ + e (13)

where the N × 1 noise vector e consists of independent and
identically distributed (i.i.d.) zero-mean complex Gaussian
entries. Note that in the original estimation problem, the real
fitting errors P⊥

s y − P⊥
s Hβ computed at the true values of

H and β are slightly correlated. This interpretation will be
employed in Section IV.

The estimation under H0 proceeds in a similar manner by us-
ing (7). Specifically, the MLE of the noise variance conditioned
on H and β is

σ̂2
0 =

1
N

∥
∥y − Hβ

∥
∥2

, (14)

where the subscript 0 signifies the estimate is obtained under
hypothesis H0 . In turn, the MLEs of H and β are given by

{Ĥ0 , β̂0} = arg min
H ,β

∥
∥y − Hβ

∥
∥2

. (15)

Clearly, (12) and (15) are similar, but neither can be uniquely
solved without additional information of the unknowns, which
are too many relative to the data size. One approach is to exploit
a parametric model for the subspace matrix H, e.g., the DOA
φ ∈ RL×1 of the interference sources in a beamforming setup,
in which the problem becomes to jointly estimate φ and β.
Equivalently, we can use the sparse representation (5) and write
the cost function in (12) and (15) in the following unified form:

min
x

∥
∥z − Ax

∥
∥2

, (16)

where z � P⊥
s y and A � P⊥

s H under H1 , while under H0 ,
z � y and A � H. The minimization in (16) has to be per-
formed with a sparsity constraint on x. The sparsity recovery
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problem can be solved by using a wealth of techniques from
greedy methods to �1-norm based procedures (e.g., [39]). How-
ever, these techniques do not allow for a simple integration of
prior and potentially contaminated knowledge for subspace re-
covery. The problem is deferred to Section IV, where we develop
new techniques to incorporate uncertain prior knowledge of the
subspace structure to estimate H and β.

Once {Ĥ1 , β̂1} and {Ĥ0 , β̂0} have been obtained, they can
be substituted in (10), (11) and (14) to compute the estimates
of the signal amplitude κ and noise variance σ2 . Using these
parameter estimates in (8) and (7), it is easy to show that the
test variable (9) can be simplified to a ratio of the noise variance
estimates, and the GLRT is given by

TGLRT � σ̂2
0

σ̂2
1

H1

≷
H0

τ (17)

where τ denotes a test threshold.

IV. KNOWLEDGE-AIDED SUBSPACE ESTIMATION

We discuss a Bayesian approach that can incorporate uncer-
tain partial prior knowledge for subspace estimation. We first
introduce two Bayesian models for knowledge representation,
one corresponding to the case when the partial prior knowledge
is believed to contain few errors and the other accounts for pos-
sible errors in the prior knowledge. We then develop subspace
estimation algorithms for each case.

A. Bayesian Models for Knowledge Representation

Following the discussions in Section III, we have shown the
subspace estimation problems (12) and (15) under both hy-
potheses can be cast in one framework based on the following
measurement model [see (16)]:

z = Ax + e, (18)

where z ∈ CN ×1 denotes the observation, A ∈ CN ×M a known
dictionary matrix, x ∈ CM ×1 an unknown sparse vector with
unknown sparsity L, and e the measurement noise with dis-
tribution Nc(0, γ−1I), where γ denotes the inverse variance,
which is also unknown. Sparse Bayesian learning (SBL) [32] is
a popular approach that can be used to recover the sparse vector
x from (18). However, SBL does not impose any prior knowl-
edge on the sparsity pattern of x. We need some extensions to
incorporate prior knowledge to recover x.

To facilitate discussions, a brief review of SBL (see [32] for
more details) is useful. The approach uses a Gaussian inverse
Gamma hierarchical model. Specifically, the sparse vector x is
modeled as conditional Gaussian with PDF given by

p(x|α) =
M∏

m=1

Nc(xm ; 0, α−1
m ), (19)

where xm denotes the m-th element of x and αm its inverse
variance. Meanwhile, a Gamma prior is employed for the inverse

variance vector α � [α1 , . . . , αM ]T :

p(α) =
M∏

m=1

Gamma(αm ; a, b), (20)

where suggested choices for hyperparameters a and b are very
small values, e.g., 10−6 , such that the prior is uniform (over a
logarithmic scale) [32]. Such a broad prior over the hyperpa-
rameters allows the posterior probability mass to concentrate
at very large values of some of αm , which effectively drives
the corresponding xm (deemed irrelevant to data) to zero, thus
leading to a sparse solution.

With prior knowledge on the support of x, it is no longer
meaningful to set the prior p(αm ) to be identically non-
informative across different m. For subspace coefficients xm

belonging to the knowledge set, i.e., m ∈ P , where P is de-
fined in Section II, we should avoid using broad and sparsifying
prior p(αm ), which causes the posterior mean to become un-
bounded. The spread of the Gamma distribution can be reduced
by choosing a larger value for the rate parameter b. Based on
this observation, we propose to replace (20) with a fixed b by
the following prior model to incorporate prior knowledge:

p(α) =
M∏

m=1

Gamma(αm ; a, bm ), (21)

where bm is allowed to vary with m.
We consider two cases for bm . The first is a subspace knowl-

edge (SK) model which assumes the prior knowledge P is ac-
curate, while the second is a subspace knowledge with learning
(SKL) model which takes into account possible errors in P . For
the SK model, we choose a relatively large value for bm , e.g.,
bm ∈ [0.1, 1], if m ∈ P , so that the prior is non-sparsifying over
P , while the other bm remain small:

SK: bm =
{

b̄, m ∈ P ,

10−6 , m ∈ P c ,
(22)

where b̄ ∈ [0.1, 1] and P c denotes the complement of P . For the
SKL model, {bm ,m ∈ P} are treated as latent variables that
are to be learned from the data. Since it is unknown a priori
which part of P is accurate and which is not, we employ a
hyperprior for {bm ,m ∈ P}. Assuming errors are not dominant
in P , we can use Gamma distributions with moderate shape and
rate parameters:

SKL: p(b1 , . . . , bM ) =
M∏

m=1

p(bm ),

p(bm ) =
{

Gamma(bm ;u, v), m ∈ P ,

δ(bm − 10−6), m ∈ P c ,

(23)

where u and v are some fixed values in, e.g., [0.1, 1], and δ(·)
denotes the Dirac delta function, which effectively sets bm =
10−6 for m ∈ P c . It has been found that the results are not very
sensitive to the values of u, v and b̄ in (22). For the simulation
results of Section V, they are set identically to 0.3.

Finally, the inverse variance γ of the noise in (18) can be
jointly estimated in the Bayesian approach by employing a prior
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for γ. We use a non-informative Gamma prior for γ as in [32]:

p(γ) = Gamma(γ; c, d), (24)

where c = d = 10−6 .

B. Bayesian Inference

Let θ denote a vector containing all parameters to be
estimated. With the probabilistic modeling discussed in
Section IV-A, these parameters are treated as latent variables.
We have two cases for which the composition of θ is slightly
different:

θSK � {x,α, γ}, (25)

θSKL � {x,α, γ,b}. b � {bm},∀m ∈ P . (26)

For notational simplicity, we will suppress the subscript “SK”
and “SKL” wherever there is no ambiguity. A standard Bayesian
inference procedure would proceed to compute the posterior

p(θ|z) =
p(z|θ)p(θ)

p(z)
, (27)

which is however infeasible for the considered problem since the
marginal distribution p(z) =

∫
p(z|θ)p(θ)dθ cannot be com-

puted analytically.
To circumvent the difficulty, we employ variational Bayesian

inference that utilizes an approximation of the posterior p(θ|z).
Variational Bayesian methods have been used with great success
in various applications (see [40]–[42] and references therein).
Specifically, we write θ in a partitioned form:

θ �
{
θ1 ,θ2 , . . . ,θK

}
, (28)

where K = 3 for the SK model and K = 4 for the SKL model
along with the mapping between parameters: θ1 � x, θ2 � α,
θ3 � γ, and θ4 � b. A popular approximation of the posterior
p(θ|z) is based on the mean field approximation (e.g., [42]):

p(θ|z) ≈
K∏

k=1

qk (θk ), (29)

where the component PDF is given by

qk (θk ) =
exp

(〈
ln p(z,θ)

〉
l �=k

)

∫
exp

(〈
ln p(z,θ)

〉
l �=k

)
dθk

, (30)

where p(z,θ) = p(z|θ)p(θ) denotes the joint distribution of z
and θ, while 〈·〉l �=k denotes the statistical expectation w.r.t. dis-
tributions ql(θl), ∀l �= k, that is,

〈
ln p(z,θ)

〉
l �=k

=
∫

ln p(z,θ)
∏

l �=k

ql(θl)dθl . (31)

Note that (30) is not an explicit solution since the factor posterior
qk (θk ) depends on the other factors ql(θl), l �= k. However, it
points naturally to an iterative procedure for finding the factors.
Specifically, we can start by initializing q

(t)
k (θk ) = p(θk ), for

t = 0, where t is the iteration index; that is, the factor poste-
riors are initialized by their corresponding prior distributions.

Then, for the t-th iteration, we can update q
(t)
k (θk ) by using

q
(t−1)
l (θl), l �= k, in the right-hand side of (30). Each iteration

cycles through all factors from k = 1 to k = K, and the iterative
process stops till a practical convergence criterion has been met.
Next, we consider variational Bayesian inference based sub-
space estimation based on two knowledge models introduced in
Section IV-A.

1) With the SK Model: For the SK problem, we have

p(z,x,α, γ) = p(z|x, γ)p(x|α)p(α)p(γ) (32)

where p(z|x, γ) = Nc(z;Ax, γ−1I), p(x|α) is given by (19),
p(α) by (21), and p(γ) by (24), respectively. In Appendix A,
we show that the factor posteriors qx(x), qα (α), and qγ (γ) are
respectively Gaussian, product Gamma, and Gamma distribu-
tions:

qx(x) = Nc(x;μ,Φ), (33)

qα (α) =
M∏

m=1

Gamma(αm ; a + 1, b̃m ), (34)

qγ (γ) = Gamma
(
γ; c + N, d̃

)
, (35)

where μ, Φ, b̃m and d̃ are respectively specified in (52), (53),
(56), and (60) of Appendix A. As such, the update of the factor
posteriors boil down to the update of these parameters. We
summarize the resulting estimator in Algorithm 1 (see Appendix
A for details).

Algorithm 1: SK-based Subspace Estimator.

Initialize Let
〈
α

(0)
m

〉
= a/bm , m = 1, . . . ,M ,

〈
γ(0)

〉
=

c/d, D(0) � diag
{〈

α
(0)
1

〉
, . . . ,

〈
α

(0)
M

〉}
, and t = 0.

repeat
1) Set t = t + 1.
2) Update the covariance and mean of q

(t)
x (x):

Φ(t) =
(〈

γ(t−1)〉AHA +
〈
D(t−1)〉

)−1
, (36)

μ(t) =
〈
γ(t−1)〉Φ(t)AHz. (37)

3) Update the rate and mean of q
(t)
α (α):

b̃(t)
m = bm +

∣
∣μ(t)

m

∣
∣2 + Φ(t)

m,m , (38)
〈
α(t)

m

〉
= (a + 1)/b̃(t)

m , m = 1, . . . , M, (39)

where μ
(t)
m denotes the m-th element of μ(t) and Φ(t)

m,m

the m-th diagonal element of Φ(t) .
4) Update the rate and mean of q

(t)
γ (γ):

d̃(t) = d +
∥
∥z − Aμ(t)

∥
∥2 + tr

{
AΦ(t)AH}

, (40)
〈
γ(t)〉 = (c + N)/d̃(t) . (41)

until convergence
output Ĥ = columns of A corresponding to the support of
μ(t) .
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We will discuss the stopping rule for the iteration shortly
after presenting a similar iterative procedure for subspace
recovery based on the SKL model.

2) With the SKL Model: For the SKL problem, we have

p(z,x,α, γ,b) = p(z|x, γ)p(x|α)p(α|b)p(b)p(γ), (42)

where the factor distributions p(z|x, γ), p(x|α), and p(γ) are
identical to those in (32) for the SK case, while p(α|b) is given
by (21) with b = {bm ,m ∈ P} modeled as a latent variable
with distribution p(b) given by (23). Note that since the latent
variables x and γ are not directly related to b, their update
remains unchanged as in Algorithm 1. Hence, we only need to
consider the update of qα (α) and qb(b). In Appendix B, we
show that the two posteriors are given by

qα (α) =
M∏

m=1

Gamma(αm ; a + 1, b̃m ) (43)

qb(b) =
∏

m∈P

Gamma(bm ;u + a, ṽm ) (44)

where b̃m and ṽ are respectively given by (63) and (65) in
Appendix B. We summarize the steps that can be used to
recover the subspace matrix H based on the SKL model in
Algorithm 2.

Algorithm 2: SKL-based Subspace Estimator.

Initialize Let
〈
α

(0)
m

〉
= a/bm , m = 1, . . . ,M ,

〈
γ(0)

〉
=

c/d, D(0) � diag
{〈

α
(0)
1

〉
, . . . ,

〈
α

(0)
M

〉}
, and t = 0.

repeat
1) Set t = t + 1.
2) Update the covariance and mean of q

(t)
x (x) by (36)

and (37).
3) Update the rate and mean of q

(t)
α (α):

b̃(t)
m =

{〈
b
(t−1)
m

〉
+

∣
∣μ(t−1)

m

∣
∣2 + Φ(t−1)

m,m , m ∈ P ,

bm +
∣
∣μ(t−1)

m

∣
∣2 + Φ(t−1)

m,m , m ∈ P c ,

(45)
〈
α(t)

m

〉
= (a + 1)/b̃(t)

m . (46)

4) Update the rate and mean of q
(t)
γ (γ) by (40) and (41).

5) Update the rate and mean of q
(t)
b (b):

ṽ(t)
m = v +

〈
α(t)

m

〉
, (47)

〈
b(t)
m

〉
= (u + a)/ṽ(t)

m . (48)

until convergence
output Ĥ = columns of A corresponding to the support of
μ(t) .

Convergence is reached when the difference of some pa-
rameter estimates over two consecutive iterations is sufficiently
small, e.g.,

∥
∥μ(t) − μ(t−1)

∥
∥/

∥
∥μ(t)

∥
∥ ≤ 10−3 . We use μ(t) , the

posterior mean of qx(x) and also an estimate of the sparse vec-
tor x. In addition, we can employ a pruning process to speed up

the convergence, which is standard in sparse Bayesian learning
methods [32], [43]. Specifically, after each iteration, we can set
those α

(t)
m that are sufficiently large to infinity (or a very large

number), which effectively sets the corresponding sparse coef-
ficient xm to zero. An estimate of the subspace matrix (i.e., H
under H0 or P⊥

s H under H1) can be obtained as the columns
of A corresponding to the support of μ(t) .

The computational complexity of both algorithms is dom-
inated by the update of the covariance matrix Φ(t) via (36),
which involves inverting an M × M matrix with a complexity
of O(M 3) per iteration. If M is larger than N , the complex-
ity can be reduced to O(NM 2) by using the matrix inversion
lemma and rewriting (36) as

Φ(t) = 〈D(t−1)〉−1 − 〈D(t−1)〉−1AH

× (〈γ(t−1)〉−1I + A〈D(t−1)〉−1AH)−1A〈D(t−1)〉−1

The complexity can further be reduced (by an order of
magnitude) by using a message passing approach to com-
pute (36) and (37), following similar procedures reported in
[44], [45].

V. NUMERICAL RESULTS

In this section, we present simulation results to illustrate the
performance of the proposed detectors. The disturbance d has a
subspace structure as in (4), whereH is formed by L Fourier vec-
tors with frequencies centered around the zero frequency, i.e.,
it corresponds to a lowpass narrowband interference. Specif-
ically, let H′ denotes an N × M ′ discrete Fourier transform
(DFT) matrix, and the subspace matrix H consists of the follow-
ing columns of H′:

{
1, 2, . . . , �L+1

2 �,M ′ − �L−1
2 � + 1,M ′ −

�L−1
2 � + 2, . . . ,M ′}, where �·� and �·� denote the floor and,

respectively, ceiling operators. We set N = 32, M ′ = 64, and
L = 7 in simulation. The target signal s is a Fourier vector
with a normalized frequency 0.3 Hz. The set-up may corre-
spond to detecting the presence/absence of a moving target with
Doppler frequency 0.3 Hz in narrowband interference (i.e., clut-
ter) and noise [33]. A standard assumption is that the interfer-
ence bandwidth does not overlap with the mainlobe of the target
response (otherwise, the interference will be detected as target).
Therefore, 4 columns of H′, which cover the mainlobe of the
target response, are removed to form the N × M dictionary
matrix H [cf. Section II], where M = 60. The signal-to-noise
ratio (SNR) and interference-to-noise ratio (INR) are defined
as: SNR = N |κ|2/σ2 and INR = N‖β‖2/σ2 .

For brevity, the proposed detector based on model (22) is
referred to as the SK detector, whereas the one based on model
(23) is referred to as the SKL detector. We compare with 5
other known detectors as benchmarks, namely the clairvoyant
subspace detector of [10], which assumes perfect knowledge
of the subspace matrix H, the conventional KA detector, which
takes the same form as the clairvoyant detector except that H
is replaced by the prior knowledge of H, the adaptive subspace
detector (ASD), the orthogonal matching pursuit algorithm
based detector (OMP) [46], and a non-informative SBL detector,
which employs a similar Bayesian inference framework as the
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proposed ones but is not provided with any prior knowledge of
the subspace.

Specifically, the test variable of the clairvoyant detector is
given by [10]

Tclairvoyant =
|sHP⊥

Hy|2
sHP⊥

Hs
(49)

where P⊥
H � I − H(HHH)−1HH denotes the projection ma-

trix projecting to the orthogonal complement of the true inter-
ference subspace span(H). The test variable of the conventional
KA detector has the same form as in (49), except that the in-
terference subspace matrix H is replaced by a prior knowledge,
which may be incomplete or contain errors (detailed later). The
ASD also uses the above test variable except that the project
matrix P⊥

H is replaced by an estimate obtained from training
data. In particular, let R̂ ∈ CN ×N denote the sample covariance
matrix obtained from T training signals y1 ,y2 , . . . ,yT , and
U ∈ CN ×(N −L) consist of the eigenvectors associated with the
smallest N − L eigenvalues of R̂. The projection matrix used
by the ASD is given by UUH [12]. Meanwhile, the test variable
of the SBL and OMP takes the same form as that of the proposed
GLRT (17), except that the subspace matrix H is replaced by the
corresponding SBL and, respectively, OMP algorithm. Clearly,
the clairvoyant detector indicates the best achievable perfor-
mance of all, while the SBL provides a reference to illustrate
the benefit of knowledge exploitation.

Using the set definitions of Section II, we can write the
true subspace index set T =

{
1, 2, . . . , �L+1

2 �,M − �L−1
2 � +

1,M − �L−1
2 � + 2, . . . ,M

}
, which is a subset of S in (6). For

the KA detectors, including the conventional KA, SK, and SKL,
we consider 4 different cases for the prior knowledge P to ex-
amine the effects of correct vs. erroneous information for KA
detection.

� Case 1: P = T . The prior knowledge is perfect and con-
tains no errors.

� Case 2: P ⊃ T and E �= ∅. The prior knowledge has not
only all basis vectors in S but also card(E) = 3 additional
erroneous ones.

� Case 3: P ⊂ T and E = ∅. The prior knowledge for each
simulation trial contains card(P ) = 4 randomly selected
indices of T but no erroneous ones.

� Case 4: P ⊂ T and E �= ∅. The prior knowledge for each
trial contains card(P ) = 4 randomly selected indices of T
and card(E) = 3 erroneous ones.

A. Case 1: Perfect Knowledge

Case 1 represents an ideal case with perfect prior knowl-
edge P = T . The case is of interest to show the proposed SK
and SKL, behaves in the presence of perfect prior knowledge.
Note that due to the different prior models, Bayesian learn-
ing functions differently for the above 2 detectors and SBL.
Specifically, SBL employs a non-informative prior, it screens
non-discriminatorily all columns of the dictionary matrix H in
search of basis vectors that can describe the data. For SK and
SKL, the columns of H are split into 2 non-overlapping subsets
P and P c . Within P c , SK and SKL also employ non-informative
Bayesian learning to search for missing basis vectors (aside from

the prior knowledge P ). Within P , SK is likely to accept it as
is, whereas SKL screens for possible mistakes and may reject
some bases in P .

Fig. 1(a) depicts the probability of detection Pd versus the
SNR for the various detectors, where INR = 30 dB and the
probability of false alarm Pf = 10−3 . The conventional KA in
the current case reduces to the clairvoyant detector. The perfor-
mance of the proposed SK and SKL is also nearly identical to
the clairvoyant, manifesting the benefit of the prior knowledge.
Their near optimality also indicates that they rarely reject correct
basis vectors in P or add erroneous basses in P c . Meanwhile,
without using the prior knowledge P , OMP and SBL are similar
to each other and inferior to the other detectors. The ASD is
the only detector that requires training. With T = 8 target-free
i.i.d. training signals, its performance is still notably worse
than the KA detectors. Fig. 1(b) shows Pd versus Pf , i.e., the
receiver operating characteristic (ROC) curve, where SNR =
15 dB and INR = 30 dB. The relations among the various
detectors are similar to what were observed before. Fig. 1(c)
shows the recovery rate versus the column index, converted into
the normalized frequency, for the 3 Bayesian learning based
detectors. The recovery rate at any column index is defined as
the percentage that column is identified as a basis vector of the
subspace matrix H by the Bayesian inference algorithm. The
recovery behaviors of the SK and SKL over P and P c match
our prediction, while the SBL misses some of the correct basis
vectors with low recovery rate, which causes its performance
degradation.

B. Case 2: Full Knowledge Plus Errors

In this case, P ⊃ T and card(E) = 3, which implies the prior
knowledge P include all basis vectors of the subspace matrix
and, in addition, 3 erroneous basis vectors. The erroneous basis
vectors are assumed to near the target frequency 0.3, which has
more detrimental effects due to partial signal cancellation. The
results are depicted in Fig. 2. Figs. 2(a) and (b) show that the pro-
posed SKL is the one that is closest to the clairvoyant detector. In
fact, its performance appears to be unaffected by the presence of
erroneous knowledge and nearly identical to that in Case 1. This
is corroborated by the recovery rate result in Fig. 2(c). However,
the errors in P have an impact on the conventional KA and SK
detectors, causing a considerable performance degradation for
both. SBL and ASD are independent of the prior knowledge P
and their performance remains unchanged.

C. Case 3: Partial Knowledge

We now consider a partial knowledge case with P ⊂ T ,
card(P ) = 4, and E = ∅, that is, the prior knowledge P con-
tains 4 randomly selected bases from T in each trial but no
erroneous ones. The results are shown in Fig. 3. It is seen that
the SK detector is the closest to the clairvoyant in this case, also
slightly better than the SKL. This is expected, since both SK
and SKL use the same approach to find missing bases in P c ,
but in P , the two detectors behave differently. Specifically, there
is a small probability with which SKL may reject some of the
correct bases in P , while SK is more likely to accept them and
thus benefits more from the prior knowledge.
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Fig. 1. Case 1 results. (a) Pd vs. SNR with INR = 30 dB and Pf = 10−3 . (b)
ROC curve with SNR = 15 dB and INR = 30 dB. (c) Recovery rate vs. nor-
malized frequency, with red ‘x’ markers indicating the locations of the true
subspace bases and blue ‘o’ markers for other bases.

D. Case 4: Partial Knowledge With Errors

Finally, we consider the most challenging case involving both
partial and erroneous knowledge with P ⊂ T , card(P ) = 4, and
card(E) = 3, that is, the prior knowledge P contains 4 correct
bases randomly selected from T and 3 erroneous ones. The

Fig. 2. Case 2 (full knowledge plus errors) results. (a) Pd vs. SNR with
INR = 30 dB and Pf = 10−3 . (b) ROC curve with SNR = 15 dB and INR = 30
dB. (c) Recovery rate vs. normalized frequency.

results are shown in Fig. 4. Like Case 2, the proposed SKL is
able to identify the erroneous bases and, as a result, outperforms
all but the clairvoyant detector. Unlike Case 2, however, SKL has
less correct knowledge and needs to recover missing bases from
P c ; the overall recovery rate is lower in Case 4 [cf. Figs. 4(c)
and 2(c)], which contributes to some performance loss. Among
the 3 KA detectors, the conventional KA is the worse, suffering
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Fig. 3. Case 3 (partial knowledge) results. (a) Pd vs. SNR with INR =
30 dB and Pf = 10−3 . (b) ROC curve with SNR = 15 dB and INR =
30 dB. (c) Recovery rate vs. normalized frequency.

from both missing bases and wrong bases in the knowledge set
P . The SK detector is able to recover most of the missing bases,
as indicated by Fig. 4(c), and is therefore considerably better
than the conventional KA. It is mainly affected by the erroneous
bases. The results here and in Case 2 confirm the need to identify
errors in prior knowledge with uncertainty.

Fig. 4. Case 4 (partial knowledge with errors): (a) Pd vs. SNR with INR =
30 dB and Pf = 10−3 . (b) ROC curve with SNR = 15 dB and INR = 30 dB.
(c) Recovery rate vs. normalized frequency.

VI. CONCLUSION

We presented a new knowledge-aided (KA) approach for sig-
nal detection in strong disturbance by exploiting prior knowl-
edge of the subspace structure of the disturbance. A unique
contribution is that the proposed approach accounts for the fact
that the prior knowledge available in practice is often incom-
plete and subject to possible errors. To address such uncer-
tainties, we introduced two Bayesian hierarchical models for
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knowledge representation. One is suitable for the case when the
prior knowledge is incomplete but primarily accurate, while the
other tries to identify errors in the prior knowledge by learn-
ing from the observed data. These models were integrated in
a Bayesian learning framework, and variational inference algo-
rithms based on simple iteration steps were developed to solve
the associated inference problem. Extensive simulation results,
which cover a range of prior knowledge scenarios, demonstrate
that the proposed KA detectors can benefit from uncertain prior
knowledge and significantly outperform conventional detectors
in such cases.

APPENDIX

A. Derivation of SK-Based Estimator

The factor posteriors qx(x), qα (α), and qγ (γ) can be com-
puted by using the mean field approximation (30) along with
the joint distribution (32). For qx(x), we have (keeping only the
terms dependent on x)

ln qx(x) ∝ 〈
ln p(z|x, γ) + ln p(x|α)

〉
qα (α)qγ (γ )

∝ −〈γ〉(z − Ax)H(z − Ax) − xH〈D〉x,
(50)

where 〈γ〉 denotes the mean of γ computed w.r.t. qγ (γ) and

〈D〉 � diag
{〈α1〉, . . . , 〈αM 〉} (51)

with 〈αm 〉 denoting the mean of αm w.r.t. qα (α). Both 〈γ〉
and 〈αm 〉 are determined shortly in (61) and (57), respectively.
It can be readily verified from (50) that qx(x) is a complex
Gaussian distribution, as expressed in (33), where the mean and
covariance are

μ = 〈γ〉ΦAHz, (52)

Φ =
(
〈γ〉AHA + 〈D〉

)−1
. (53)

Likewise, the logarithmic qα (α) can be written as

ln qα (α) ∝ 〈
ln p(x|α) + ln p(α)

〉
qx (x)

∝
M∑

m=1

[
a ln αm − (〈|xm |2〉 + bm

)
αm

]
,

(54)

where
〈|xm |2〉 denotes the expectation of xm w.r.t. qx(x):

〈|xm |2〉 = |μm |2 + Φm,m , (55)

with μm and Φm,m denoting the m-th element of μ and the
m-th diagonal element of Φ, respectively. It follows from (54)
that qα (α) is a product Gamma distribution as expressed in (34)
with shape and rate parameters given by a + 1 and, respectively,

b̃m = bm + |μm |2 + Φm,m , m = 1, . . . ,M. (56)

The mean of αm , which is required to compute (53), is

〈αm 〉 =
a + 1
b̃m

. (57)

Finally, for qγ (γ), we have

ln qγ (γ) ∝ 〈
ln p(z|x, γ) + ln p(γ)

〉
qx (x)

∝ (c + N − 1) ln γ −
(
d +

〈‖z − Ax‖2〉
qx (x)

)
γ.

(58)

By using (52) and (53), it is easy to show
〈‖z − Ax‖2〉

qx (x) = ‖z − Aμ‖2 + tr
{
AΦAH}

. (59)

It follows from (58) that qγ (γ) is a Gamma distribution as
represented in (35) with shape c + N , rate

d̃ = d + ‖z − Aμ‖2 + tr
{
AΦAH}

, (60)

and, in turn, mean

〈γ〉 =
c + N

d̃
. (61)

Noted that some parameters of the factor posteriors are related
to one another and cannot be determined in closed form. For
example, the mean (52) and covariance (53) of qx(x) depend
on 〈γ〉 and {〈αm 〉}, while the latter also depend on the former,
as shown in (57) and (61). A cyclic approach can be used to
update these parameters iteratively, by updating one parameter
at a time and fixing the others. This leads to the cyclic updating
steps (36)–(41) of Algorithm 1, which are based on (52), (53),
(56), (57), (60) and (61), respectively.

B. Derivation of SKL-Based Estimator

As noted in Section IV-B2, the factor posteriors qx(x) and
qγ (γ) based on the SKL model remain identical to their SK
counterparts (33) and (35), respectively. We only need to deter-
mine qα (α) and qb(b) as follows. Specifically, by using (42) in
the mean field approximation (30), qα (α) can be written as

ln qα (α) ∝ 〈
ln p(x|α) + ln p(α)

〉
qx (x)qb (b)

∝
M∑

m=1

〈
a ln αm − (|xm |2 + bm

)
αm

〉

qx (x)qb (b)

=
∑

m∈P

[
a ln αm − (〈|xm |2〉 +

〈
bm

〉)
αm

]

+
∑

m∈P c

[
a ln αm − (〈|xm |2〉 + bm

)
αm

]

(62)

where
〈|xm |2〉 is given by (55) and 〈bm 〉 denotes the mean of

bm w.r.t. qb(bm ) that is determined shortly. Clearly, qα (α) is a
product Gamma distribution as expressed in (43), with shape
a + 1 and rate

b̃m =

{〈|xm |2〉 +
〈
bm

〉
, m ∈ P ,

〈|xm |2〉 + bm , m ∈ P c .
(63)

The mean of αm has the same form as (57).
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For qb(b), we have

ln qb(b) ∝ 〈
ln p(α|b) + ln p(b)

〉
qα (α)

∝
∑

m∈P

[
(u + a − 1) ln bm − (〈

αm

〉
+ v

)
bm

]
,

(64)

which implies that qb(b) is a product Gamma distribution as
shown in (44), with shape u + a, rate

ṽm = v +
〈
αm

〉
, (65)

and mean

〈bm 〉 =
u + a

ṽm
. (66)

Equations (63), (65), and (66), along with the expressions for
the parameters associated with qx(x) and qγ (γ) in Appendix A,
can be cycled through to provide updates of all factor posteriors.
Details of the iterative steps are listed in Algorithm 2.
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