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Decoupled Multiuser Code-Timing Estimation
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Abstract—We present herein a decoupled multiuser acquisition
(DEMA) algorithm for code-timing estimation in asynchronous
code-division multiple-access (CDMA) communication systems.
The DEMA estimator is an asymptotic (for large data samples)
maximum-likelihood method that models the channel parameters
as deterministic unknowns. By evoking the mild assumption
that the transmitted data bits for all users are independently
and identically distributed, we show that the multiuser timing
estimation problem that usually requires a search over a multi-
dimensional parameter space decouples into a set of noniterative
one-dimensional problems. Hence, the proposed algorithm is
computationally efficient. DEMA has the desired property that,
in the absence of noise, it obtains theexact parameter estimates
even with finite number of data samples which can be heavily
correlated. Another important feature of DEMA is that it exploits
the structure of the receiver vectors and, therefore, is near–far
resistant. Numerical examples are included to demonstrate and
compare the performances of DEMA and a few other standard
code-timing estimators.

Index Terms—Code-division multiaccess, delay estimation, max-
imum-likelihood estimation, multiuser channel estimation.

I. INTRODUCTION

D IRECT-SEQUENCE code-division multiple access
(DS-CDMA) has been considered among the most

promising multiplexing technologies for cellular telecommu-
nication services. A drawback intrinsic to DS-CDMA systems
is the so-called near–far problem, i.e., the signal from a distant
desired user is likely to be overwhelmed by the strong signals
from nearby interferers. Many near–far resistant receivers
have been proposed (see, e.g., [1]–[4] and references therein),
most of which assume the exact knowledge of one or several
parameters such as the code timing, received power, and carrier
phase for each user. These parameters are typically unknown
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and need to be estimated in a practical system. In this paper, we
address the problem of code-timing estimation. Given accurate
code-timing estimates, there is a wealth of good methods for
estimating the other parameters (see, e.g., [5]–[8]).

A standard technique for code acquisition is the correlator
[9]. It is well known that the correlator coincides with the op-
timal maximum-likelihood (ML) method for a single user in
the presence of white Gaussian noise but its performance de-
grades drastically in a near–far multiuser environment. A mod-
ified correlator-like technique was developed based on the min-
imum mean-squared-error (MMSE) receiver [10]. The MMSE
timing estimator attains better near–far resistance at the cost
of some increased complexity. An alternative near–far resistant
code-timing estimator is the MUSIC algorithm [11], [12], orig-
inally proposed by Schmidt [13] for direction-of-arrival estima-
tion in array processing. Unlike the other techniques discussed
herein, the MUSIC algorithm isblind in the sense that it needs
no training for the purpose of code acquisition. However, the
MUSIC timing estimator is computationally involved and its
subscriber capacity is fairly restrictive. While most code-timing
estimators are formulated in the time domain, Zhanget al.pro-
posed a frequency domain based technique for code-timing esti-
mation [14]. The key idea therein is to design training sequences
that are orthogonal in the frequency domain so that different
user signals, after being Fourier transformed, can be separated
from one another. In [15] and [16], Chang and Chen investigated
the issue of joint code-timing and carrier phase estimation for
DS-CDMA systems.

Motivated by the work in [17], another interesting
code-timing estimator, which is referred to as the large
sample maximum-likelihood (LSML) algorithm, was recently
introduced in [18]. LSML is found to be able to accommodate
more users than most existing methods while maintaining a
good acquisition performance and timing estimation accuracy.
The derivation of the LSML algorithm relies on a receiver
vector model whereby the code sequence and the transmitted
data bits for only the desired user are assumed known whereas
the signals from the interfering users and noise are modeled
as unknown colored Gaussian noise. An advantage of treating
the interfering signals in such an unstructured manner is that it
facilitates the suppression of not only multiple-access interfer-
ence (MAI), but cochannel narrow-band interferences as well.

In this paper, we present a decoupled multiuser acquisition
(DEMA) algorithm for code-timing estimation. As a multiuser
code-timing estimator, the DEMA algorithm requires the
knowledge of the code sequences and the transmitted data bits
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for all users. Note that assuming the knowledge of the code
sequences does not introduce any restriction in the reverse
(mobile to base) link since the base station assigns the codes to
the mobile users when they enter the cell. The knowledge of the
transmitted data bits for all users may appear restrictive at a first
sight. Yet, this can be achieved by using a training sequence
for each new user whose timing is to be determined, similar
to the MMSE or LSML timing estimator. For the remaining
users which are in the stage of normal transmission and whose
timing should be known to the base station, we may assume
that their data bits can be reliably detected (through the use of
error-correction coding) at the base station and the estimated
data bits can be used by the DEMA algorithm as if they were
the true transmitted data bits. (The case of imperfect knowledge
of the data bits is also investigated in Section IV.) As a result
of using such (perhaps readily available) information, DEMA
is extremely near–far resistant and allows a system to be fully
loaded with little performance degradation.

The DEMA algorithm is derived by taking all users into ac-
count so that the structure of the received signal can be fully
exploited. With the assumption that the transmitted bits for all
users are independently and identically distributed (i.i.d.), we
show that DEMA is a decoupled algorithm which obtains the
timing estimates for all users simultaneously and efficiently. We
also show that the DEMA algorithm is asymptotically (for large
data samples) equivalent to the optimal ML method. In the ab-
sence of noise, DEMA yields theexactparameter estimates with
finite number of data bits which may or may not be correlated
with one another.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the data model and formulate the problem
under investigation. In Section III, we derive the DEMA algo-
rithm. Section IV contains the numerical examples. Finally, the
study is summarized in Section V.

II. DATA MODEL AND PROBLEM FORMULATION

The system under investigation is an asynchronous-user
DS-CDMA system using binary phase-shift keying (BPSK)
modulation. The transmitted signal for theth user has the form

(1)

where
th user’s transmitted power;

carrier frequency;
random carrier phase uniformly distributed over the
interval .

in (1) is the baseband signal of theth user having the
form

(2)

where
number of bits considered for code acquisition;
data bit interval;

th transmitted data bit;

spreading waveform.

(3)

in which , , and denotes a unit
rectangular pulse over the chip period .

For the case of flat-fading, the received signal can be written
as

(4)

where and denote the fading coefficient and, respectively,
the propagation delay for theth user denotes the channel
noise, assumed to be zero-mean white Gaussian. Similar to other
existing timing estimators that utilize training sequences [10],
[18], [19], it is assumed that the receiver and the transmitter have
aligned their clocks roughly to within a bit interval, i.e.,

, . This may be achieved, for example, by
using a side signaling channel for call setup [20]. It should be
noted that in a picocellular or a quasi-synchronous (QS) CDMA
system where it is guaranteed that the propagation delay will be
within one bit interval (see, e.g., [21] and references therein),
using a side channel for initial synchronization is unnecessary.

The receiver front-end consists of an in-phase quadrature (IQ)
mixer followed by an integrate-and-dump filter (IDF) (see, e.g.,
[11]) with integration time , where the integer

is called the oversampling factor. The received complex se-
quence, , can be expressed as (with double frequency
terms ignored)

(5)

where , denotes the zero-mean complex
white Gaussian noise with variance , and is the fading
coefficient, which is modeled as zero-mean complex Gaussian
assuming the stationary Rayleigh fading channel model [20].

For any algorithm that involves using the IDF, the choice of
the oversampling factor should be made by a tradeoff between
algorithmic performance and computational complexity. When

, i.e., the IDF output is sampled at the chip rate, an integra-
tion interval of in general contains components from
two adjacent chips for each user since the the received signal
is chip-asynchronous. Averaging over adjacent chips attenuates
the high frequency components of the spreading waveforms,
leading to a signal-to-noise ratio (SNR) loss. A simple calcula-
tion shows that the worst-case loss in SNR for a particular user
is 3 dB when the timing misalignment for that user is ,
and that an average loss in SNR is dB,
assuming that the delay is uniformly distributed between 0 and

(also see [12, p. 1010]). The loss in SNR can be remedied
by using (see Section IV for a numerical example com-
paring the performance of choosing different). However, the
size of the received data grows proportionally asincreases,
and so does the computational complexity of the algorithm (see,
e.g., Section III-C).
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Let the received vector during theth bit interval be
defined as

(6)

where denotes the transpose, and the noise vector,
, be similarly formed from . Let

(7)
where . Then, the received vec-
tors can be written as [11], [12], [18]

(8)

where

(9)

(10)

and

(11)

Note that is not defined since is unknown. We can
arbitrarily choose or discard the observation vector

, which will have little effect on the the estimator to be
derived in the sequel if is not too small. Let ,
where and . Then,

and in (10) are given by

(12)
and

(13)
where and denote the shifting matrices

(14)

Hereafter, denotes the identity matrix. To facilitate our
derivation, we rewrite (8) more compactly as

(15)

where

(16)

and

(17)
The derivation of the DEMA algorithm in Section III makes

use of a few additional assumptions. Specifically, we assume

that the code sequences and the data bits for all users are known.
Let

(18)

We assume the limiting matrix , defined by

(19)

exists. We further assume that the data bits for all user are i.i.d.
so that

(20)

Finally, it is assumed that and are uncorrelated, i.e.,

with probability 1 (w.p. 1.) (21)

where denotes the Hermitian transpose.
The problem of interest is to estimate , or equiva-

lently, , from the measurements .

III. CODE-TIMING ESTIMATION ALGORITHMS

We relate our derivation of the DEMA algorithm to that of
the LSML method to shed more light on the properties of the
two timing estimators. To that end, we briefly discuss the LSML
estimator before introducing the DEMA algorithm. A computa-
tional complexity analysis of the two algorithms is also included
in this section.

A. LSML

Even though LSML was not derived specifically for multiuser
code-timing estimation, it can be used to solve this problem by
estimating one user at a time. Without loss of generality, we as-
sume that the first user is the desired user. Then, we can rewrite
(8) as

(22)

In the above, the observation noise and MAI are lumped to-
gether into anunstructuredterm . The LSML algorithm
is derived by modeling as the circularly symmetric com-
plex Gaussian noise with zero-mean and unknown covariance
matrix that satisfies

(23)

where denotes the expectation operator and denotes
the Kronecker delta. The covariance matrixis estimated in
an unstructured manner in [18] so that a whitening process is
evoked to suppress MAI. Obviously, this unstructured approach
also facilitates the suppression of cochannel narrow-band inter-
ferences, which can be included in and be suppressed. As
such, the LSML algorithm allows some additional flexibility in
its applications over other existing techniques. Note that (23)
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implies that and are uncorrelated for . How-
ever, due to the asynchronous nature, and are
usually correlated with each other. LSML ignores this correla-
tion for the sake of yielding a simple estimator. The penalty is
that the estimation accuracy in general degrades. (See [18] for
more details of the LSML method.)

B. DEMA

DEMA is a better approach to the problem of interest, as
described next. By treating as determin-
istic unknowns and observing that is circularly symmetric
complex Gaussian with zero-mean and

, it is readily shown that the ML solution is equiva-
lent to

(24)

where denotes the trace operator. Let

(25)

and be similarly defined from as
is from . Minimizing (24) with respect to

gives

(26)

where we have assumed that exists. Next, we rear-
range the cost function in (24) as follows:

(27)

Since the first term of (27) is independent of, minimizing (27)
reduces to

(28)

The exact ML estimates of the unknown parameters are obtained
by minimizing the cost function of (28), which in general re-
quires a search over a -dimensional parameter space (note
that is complex-valued) and is computationally prohibitive.
In the following we derive the DEMA algorithm which coin-
cides asymptotically (for large ) with the exact ML method,
but at a significantly reduced computational complexity.

The key idea of the DEMA algorithm involves exploiting
the structure of . Observe that is a

-consistent estimate of [22]. Likewise, by using
the assumption that the data bits and the noise samples are
independent of each other, it is readily shown thatis also a

-consistent estimate of . It follows that

(29)

The above equality indicates that to within a second-order
approximation, in (28) can be replaced by
without affecting the asymptotic performance of the parameter
estimates. Hence, the solution given in (28) is asymptotically
(for large ) equivalent to

(30)
where we have made use of the identity
for any matrices and of compatible dimensions. Let

(31)

The fact that decouples (30) into a series of
minimization problems

(32)
where denotes the Frobenius norm [23]. Let

(33)

and

(34)

where denotes the operation of stacking the columns of a
matrix on top of one another. Then, minimizing the cost function
in (32) with respect to and yields

(35)

and

(36)

As a by-product, the amplitude and the carrier phase can be
estimated as and , respectively, once and are
obtained [see (9)].

The maximization of (35) is simple to perform. We first
rewrite (10) as

(37)

where

(38)

(39)
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TABLE I
SUMMARY OF THE DEMA ALGORITHM

and

(40)

It follows that

(41)

Insertion of (41) into the cost function in (35) yields

(42)

where

(43)

and

(44)

In the last equality of (42), we have used the fact that
for any real-valued vector and any Her-

mitian matrix of proper dimensions. The maximization of
is similar to that in [18], as briefed next. Given

, may be a local maximum
over the interval only if is a stationary
point, i.e., is a zero of the polynomial

(45)

Both and are second-order polynomials
of , and so is (observe that the third-order terms

cancel out). Consequently, for each, can be conve-
niently found by rooting a second-order polynomial. Note
that is generally not differentiable at the boundary
points , . Hence,
evaluated at these point may be local maxima as well. It is
therefore guaranteed that the global maximum of is
attained at one of the stationary or boundary points and can be
located by evaluating and comparing at these points
one by one. A summary of the DEMA algorithm is given in
Table I.

Remark 1: It can be shown that the DEMA algorithm is an
asymptotic (for large ) ML estimator and asymptotically
achieves the Cramér–Rao bound (CRB) [17], the best perfor-
mance bound of any unbiased estimator. Furthermore, DEMA
is SNR consistent in the sense that, in the absence of noise,
the DEMA estimates of the parameters areexactas long as

has full rank. In that event, DEMA obtains the true
values of the parameters even with a finite number of data bits

which can be heavily correlated with one another.
This is seen by observing that in (26) approaches the true
matrix defined in (16) when .

Remark 2: The sufficient condition to apply the DEMA al-
gorithm is the existence of . A necessary condition for
the existence of is . Note that is a sum
of rank-1 matrices and, therefore, rank . If

, then DEMA will not be able to yield valid parameter
estimates. One solution is to use the Moore-Penrose pseudo-in-
verse [23] to compute . An alternative one is to replace

with , when , since is a con-
sistent estimate of . It should be stressed that either
way the in (26) is no longer an ML estimate. Additionally, re-
placing with implies that the knowledge of the in-
terfering users’ data bits is not used, and the so-obtained timing
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estimator is reduced to some correlator-type method. Specifi-
cally, one can show that when the training bits for theth user
are 1’s, replacing with in the DEMA algorithm
leads to

(46)

which is similar to the sliding correlator in [11].
Remark 3: For the sake of presentational simplicity, we have

assumed rectangular chip waveforms in the above derivation. It
is known that rectangular chip waveforms have infinite band-
width and hence are not feasible in practical systems. How-
ever, the DEMA algorithm can be extended in a straightforward
manner along the lines of [24] to the case of band-limited wave-
forms. The resulting DEMA algorithm will still be decoupled
with respect to different users and, therefore, be computationally
more attractive than the exact ML algorithm. The optimization
of the modified DEMA cost function, however, will no longer
consist of second-order polynomial rootings. Some nonlinear
optimization routine will have to be used in general.

C. Computational Complexity

In the following, we briefly discuss the computational com-
plexities of the DEMA and LSML algorithms. Complexity anal-
ysis of other methods, such as the MMSE and MUSIC timing
estimators, can be found, for example, in [18].

We list the numbers of flops involved in each step of the
DEMA algorithm in Table I. It is seen from Table I that for
the case where only one user’s timing is desired, DEMA re-
quires flops. In a sim-
ilar manner, we can show that the number of flops required
by the LSML algorithm in the single-user estimation case is

. If we assume that and
, then DEMA and LSML will have similar compu-

tational complexities. Yet in most cases of interest, LSML is
usually more involved than DEMA because of their different
constant factors. For example, in a scenario where ,

, , and , simulation results indicate that
the number of flops required by LSML is about 4.5 times that
by DEMA.

However, the difference becomes more striking for the mul-
tiuser estimation case. A -user timing estimation by DEMA
requires only flops in addition to those required for
the single-user estimation case. (Hence, estimating the timing
for one or users by DEMA essentially has the same order of
computational complexity.) On the other hand, LSML in the cur-
rent case requires flops and, therefore, is an order
of magnitude more involved than DEMA. To see this, recall that
LSML estimates one user at a time. It treats all users other than
the desired one as “colored noise” whose covariance matrix, the

in (23), needs to be estimated. As such,is estimated and
its inverse is computed times, which leads to a computational
load of flops. (For numerical stability, it has been
a common practice to calculate a matrix inverse implicitly by
solving some linear equation instead of calculating it explicitly.
The two approaches, however, have similar computational com-
plexity.) Additionally, it takes flops to determine the

LSML cost function (see (31) in [18]) and maximize it, as op-
posed to the flops in obtaining and maximizing a sim-
ilar cost function, the in (42), in DEMA. In the mul-
tiuser estimation case, this LSML cost function is determined
and maximized times, which gives rise to another com-
putational load of flops.

IV. NUMERICAL RESULTS

In this section, we compare DEMA with two other methods
that all require a training process, namely the LSML and
MMSE-RLS timing estimators. MMSE-RLS stands for the
MMSE timing estimator driven by the recursive least squares
(RLS) algorithm, which was found to significantly outperform
the MMSE estimator driven by the least mean squares (LMS)
algorithm [18]. The correlator is not considered herein because
of its well-known poor performance in a near–far multiuser
environment; nor is the MUSIC timing estimator. The reader is
referred to [18] for a numerical study of the correlator, LSML,
MMSE-RLS, and MUSIC algorithms.

Each user is assigned a Gold sequence of . In the
following, the timing estimate for one particular user is eval-
uated and compared, whose transmitted power,, is scaled
so that . The other users are given a random received
power with a log-normal distribution. The power of each inter-
fering signal has a meandB (to be specified) above the desired
user and a standard deviation of 10 dB, i.e., ,

, where . The additive noise
is white Gaussian with zero-mean and power spectral den-

sity of . The variance of the noise samples (normalized
as indicated above), in (5), is thus ,
where is the energy per bit for the first user. The timing off-
sets and the carrier phases are uniformly dis-
tributed over and, respectively, . The fading coef-
ficients are modeled as circularly symmetric complex
Gaussian random variables with zero-mean and unit variance.
The transmitted data bits for all users are equally likely to be

or with the exception that the first user’s training bits for
MMSE-RLS are all 1’s. (Note that we choose the MMSE timing
estimator with all 1’s training sequence because of its simplicity.
The MMSE timing estimator can be modified to work with arbi-
trary training sequence. See, e.g., [25].) In what follows, the pri-
mary performance measure used is the probability of correct ac-
quisition, which is defined to be the event . An-
other performance measure used is the root mean squared error
(RMSE) of the timing estimate given correct acquisition. The
results below are based on 500 Monte Carlo trials. The data bits
and the parameters for all users (with the ex-
ception that and the previous exception for MMSE-RLS
just mentioned) are changed from one Monte Carlo run to an-
other.

Performance Versus : Let , ,
dB, the oversampling factor , and the number of

data bits be varied from 5 to 100. All the other parameters
are as described above. Note that no timing estimates can be
formed by LSML, when , nor by DEMA, when

. For the latter case, we replace the singular
by . Fig. 1 shows the probability of correct ac-
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Fig. 1. Probability of correct acquisition versusM whenK = 10,N = 31,
Q = 1, E =N = 10 dB, and� � N(10; 100).

Fig. 2. Probability of correct acquisition versus near–far ratio whenK = 20,
N = 31,M = 100,Q = 1, andE =N = 10 dB.

quisition as changes. As one can see, DEMA gives the best
acquisition performance when . For small , all es-
timators degrade significantly, with MMSE-RLS being slightly
better than the others.

Performance Versus Near–Far Ratio:The near–far ratio is
defined as the ratio of the mean of the random powers of the in-
terfering users to that of the desired user. The parameters are the
same as in the previous example except that , ,
and the near–far ratio (defined asin decibels) is varied from
10 to 30 dB. As seen in Fig. 2, the near–far problem appears
to have little effect on DEMA, whereas the performances of
the other two, especially MMSE-RLS, degrade rapidly as the
near–far ratio increases.

Performance Versus : In this example we investigate the
performance of the estimators as the number of usersvaries.
The parameters are similar to those in the first example with the

Fig. 3. Probability of correct acquisition versusK whenN = 31,M = 100,
Q = 1,E =N = 10 dB, and� � N(10;100).

Fig. 4. Probability of correct acquisition versusE =N whenK = 10,N =
31,Q = 1,M = 100, and� � N(10;100).

exception that and is varied from 2 to 30. The
results are shown in Fig. 3. It is seen that the performance of
DEMA remains relatively unchanged, as opposed to the signif-
icant degradation of LSML and MMSE-RLS, as increases.

Performance Versus : Fig. 4 shows the probability of
correct acquisition as varies from 10 to 20 dB. The
other parameters are the same as those in the first example. We
see that DEMA gives the best acquisition performance for all
values of considered.

RMSE, CRB, and Bias:We now compare the RMSE of the
timing estimates with the CRB. The CRB for the timing esti-
mation problem is derived in the Appendix. Since the CRB is
a function of and the data bits for all users, all
these quantities are fixed in the Monte Carlo simulation in this
example (i.e., only the additive noise is varied). Fig. 5(a) shows
the RMSE of DEMA and LSML, and the CRB as varies. We
consider two cases, corresponding to the oversampling factor
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Fig. 5. RMSE and bias of the timing estimates, given correct acquisition, and
the CRB versusM whenK = 10,N = 31,M = 100,E =N = 10 dB, and
� � N(10; 100). (The bias, RMSE and CRB are normalized with respect to
T .) (a) RMSE and CRB. (b) Bias.

and , respectively. Note that the CRB is a per-
formance bound for unbiased estimators. It would therefore be
of interest to know if DEMA is unbiased. The empirical bias
of DEMA and LSML is shown in Fig. 5(b). Observe that in-
creasing in general improves the performance of both DEMA
and LSML in terms of RMSE and bias (except for the fluctua-
tion experienced by LSML for relatively small ). Also ob-
serve that the CRB corresponding to is smaller than that
corresponding to . It is seen that the bias of DEMA is
more than an order of magnitude smaller than its RMSE and,
hence, DEMA appears to be unbiased even for finite. It is
also seen that for moderately small (such as when ),
the RMSE of the DEMA timing estimates are very close to the
CRB for both and .

Data Bits Known Imperfectly:In the derivation of the
DEMA algorithm, we have assumed that the data bits for all
users are known perfectly. In this example we consider the case
when some of the data bits from users in normal transmission
are estimated incorrectly. We change the percentage of incor-
rect data bits from 0.1% to 10% and repeat the first example.
The results are shown in Fig. 6. We see that DEMA performs
reasonably well when only a small number (e.g., 1%) of data

Fig. 6. Probability of correct acquisition versus the percentage of incorrectly
estimated data bits whenK = 10, N = 31,Q = 1, M = 100,E =N =
10 dB, and� � N(10;100).

Fig. 7. Probability of correct acquisition versusM whenK = 10,N = 31,
Q = 1, M = 100, E =N = 10 dB, � � N(10;100), and two users
transmit identical data sequences.

bits are in error. As more data bits are estimated incorrectly, the
degradation of DEMA becomes more significant. For example,
when 5% of the estimated bits are in error, the probability of
correct acquisition drops to 0.774.

Correlated Data Bits: The derivation of DEMA uses the as-
sumption that the data bits for all users are i.i.d. Conceivably,
if the data bits transmitted by different users are heavily corre-
lated (which, however, seldom happens in practice), the perfor-
mance of DEMA could degrade considerably. This problem can
be solved under certain conditions, as explained in the sequel.
In an asynchronous systems where users enter and leave a cell
asynchronously, most active users will typically be in normal
transmission and only a few new users will need training. Since
the number of new users is unlikely to be very large, it is pos-
sible to choose a training pattern so that the training bits are
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Fig. 8. Probability of correct acquisition versusM whenK = 10,N = 31,Q = 1,E =N = 10 dB, and� � N(10; 100) in a time-varying Rayleigh fading
channel. (a) Mobile speed: 16 km/h(f T = 0:0013). (b) Mobile speed: 56 km/h(f T = 0:0047). (c) Mobile speed: 80 km/h(f T = 0:0067). (d) Mobile
speed: 97 km/h(f T = 0:008).

not or moderately correlated. The training bits transmitted by
the new users and the data bits transmitted by users in normal
transmission may be correlated. The effect of this correlation
can be made small by exploiting the SNR consistency property
of DEMA (see Remark 1 in Section III) and directing the new
users to increase the transmitting power for training. The data
bits transmitted by users in normal transmission may or may
not be highly correlated. This correlation, however, has little ef-
fect on the code-timing estimation for the new users. We show
this using an example. The example is similar to the first ex-
ample except that the data bits for the second and third users are
identical (completely correlated) all the time. Since is
always rank deficient in this case, we use the moore-penrose
pseudo-inverse to compute . The results for the first
user are shown in Fig. 7. If we compare Figs. 1 and 7, we see
that the correlation between the second and third users almost
has no effect on the timing estimates for the first user.

Time-Varying Rayleigh Fading Channel:Although all three
timing estimators under discussion assume that the channel re-

mains relatively unchanged over the time interval of code ac-
quisition, it would be of interest to see how they perform in
a time-varying Rayleigh fading environment. To that end, we
repeat the first example by replacing the time-invariant fading
coefficients with time-varying ones and keeping the other pa-
rameters unchanged. The fading process is simulated by gener-
ating zero-mean complex gaussian random process whose spec-
tral density is adjusted based on the Doppler rate according to
the Jakes model (see, e.g., [20] for details). A mobile cellular
system is simulated, where the carrier frequency is 900 MHz,
the data rate is 10 Kb/s, and all mobiles move at a constant speed.
Fig. 8(a)–(d) shows the probability of correct acquisition versus

when the mobile speed is 16, 56, 80, and 97 km/h, respec-
tively. The normalized doppler rates, defined as , for the
four situations are 0.0013, 0.0047, 0.0067, and 0.008, respec-
tively. It is seen that DEMA works quite well for low mobile
speeds but degrades considerably as the mobile speed increases.
This is not surprising since DEMA relies more on the data model
described in Section II than the others. When the model reflects
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the received data reasonably well, DEMA is able to yield the
most accurate timing estimates; otherwise, it may suffer from
a considerable performance degradation. On the other hand, by
assuming a less structured data model, LSML is less sensitive
to model mismatch than DEMA. This advantage, however, is
achieved at a loss in estimation accuracy when the channel is ap-
proximately time-invariant during code acquisition. It should be
noted since the time-invariant assumption made by the three es-
timators is significantly violated in Fig. 8(c) and (d), increasing
the length of data bits may or may not improve the acquisition
and a performance fluctuation happens. Note also that when the
mobile speed exceeds 50 mi/h, all methods under study degrade
significantly and, hence, it is not advisable to use them in fast
fading channels.

V. CONCLUSIONS

In this paper, we have investigated the problem of mul-
tiuser code-timing estimation in DS-CDMA systems. A new
code-timing estimation technique, referred to as the DEMA
algorithm, has been presented by assuming that the channel
is roughly time-invariant during code acquisition. It has been
shown that DEMA 1) is decoupled and computationally
efficient; 2) coincides with the ML method and achieves the
CRB asymptotically (for large ); and 3) obtains theexact
parameter estimates in the absence of noise even with finite
number of data bits which can be heavily correlated.

Although we have only considered flat fading in the study,
DEMA can be straightforwardly extended to frequency selective
multipath channels. An analysis similar to that in Section III
indicates that the DEMA algorithm will be decoupled between
different users, but not between the different paths of the same
user. Hence, an -dimensional search over the parameter space
will be needed, where is the number of paths for theth user.
Even so, the DEMA algorithm in this case will still be much
simpler than the exact ML method, which in general requires a
search over a -dimensional parameter space.

While DEMA works reasonably well for slow fading chan-
nels, it degrades significantly when the channel becomes highly
time-varying. In a recent study, the LSML algorithm was
extended to the case of using a multiple-antenna-based receiver
[26]. By exploiting spatial diversity, the proposed algorithm
therein appears to be able to better deal with time-varying
fading channels. However, the derivation of that algorithm still
assumed a time-invariant channel and it will collapse ultimately
when the motion of the mobile is relatively high. Apparently,
competitive code-timing acquisition techniques for fast fading
channels are yet to be discovered.

APPENDIX

CRAMÉR–RAO BOUND

The CRB is a lower bound on the variance of the estima-
tion error. It indicates the best performance that can be achieved
by any unbiased estimator. We derive herein the CRB for the
parameter estimates corresponding to the data model in (8). It
should be noted that the CRB derived in [18] is based on a dif-
ferent data model, as discussed in Section III-A. Moreover, the
CRB in [18] is in general a higher bound than the CRB given

below since the former assumes less prior information than the
latter.

Let . Let
and be similarly formed from

and , respectively. Then, can be
written as (for notational simplicity, we henceforth drop the de-
pendence of on )

(47)

where denotes the Kronecker product [23]. Let
, , , and

. We denote the unknown parameters in (47) by

(48)
Note that is solely parameterized by and will be
denoted by hereafter. Next, observe that

(49)

By using the Slepian–Bangs formula (see, e.g., [22]), the CRB
matrix for the problem under study is given elementwise by

(50)

Since and do not share any common elements, it follows
that CRB is block diagonal and the block that corresponds
to the signal parameter vectoris given by

(51)

Next, we evaluate the partial differentiation in (51) as follows:

(52)

where

(53)

and

(54)

The matrix in (53) is given by

(55)
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where . Using (52) in (51) yields

(56)

where

(57)

(58)

and

(59)

The matrices , and in (57) –(59) are defined as

(60)

(61)

and

... (62)
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