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Abstract

We present a generalized multichannel amplitude-and-phase coded modulation scheme for differential space–time communi-
cations. Our scheme utilizes code matrices consisting of an amplitude and a phase component, which can be thought of as a
space–time multichannel generalization of the scalar amplitude and phase shift keying (APSK) constellation. The amplitude com-
ponent takes a scalar coefficient that controls the total transmission power, while the phase component is a unitary matrix formed
from PSK symbols. Both the amplitude and phase components are differentially encoded and admit efficient differential decoding.
We show that the maximum likelihood (ML) decoding of the amplitude coefficient and phase matrix is decoupled. Moreover, the
phase matrix, when constructed from orthogonal designs, is amenable to decoupled differential decoding of the phase entries, which
further simplifies the decoding complexity significantly. Simulation results show that the proposed amplitude–phase differential
space–time coded modulation scheme achieves a performance close to its phase-only counterpart, while providing higher spectral
efficiency offered by amplitude modulation.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Utilizing multi-antenna transmission, space–time modulation/coding offers diversity and possibly coding gain to
the receiver (e.g., [4] and references therein). Coherent detection of space–time codes requires channel estimation for
multiple radio links, which is a costly and challenging task, especially in fading environments [11]. Differential or non-
coherent space–time modulation/coding, on the other hand, circumvents this difficulty. A number of differential space–
time modulation schemes have been proposed for both flat-fading [6,7,12,13,22] and frequency-selective fading [3,16–
18] channels. Most of these schemes utilize unitary code matrices formed by phase-shift-keying (PSK) entries. These
unitary code matrices can be thought of as multichannel extensions of the standard PSK constellations. Therefore, we
may call these schemes as generalized multichannel phase-only modulation based differential space–time techniques.
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Fig. 1. 16-APSK constellation.

As is well known, PSK constellations are power inefficient when transmission rate is high (e.g., [19]). This
motivated the use of multi-level constellations, such as amplitude-and-phase shift keying (APSK), for differential
transmissions in single-antenna systems (see [1] and references therein). Differential space–time modulation using
multi-level constellations were examined in several recent studies. Specifically, Tao and Cheng [21] proposed a scheme
that forms space–time code matrices with multi-level entries from orthogonal designs [23]. Since the code matrix car-
ries non-uniform energy (in terms of the Frobenius norm of the transmitted code matrix), their decoding technique
requires an estimate of the energy of the previous code matrix in order to decode the current one. As a result, error
propagation may occur. Another method introduced by Xia [25] utilizes APSK constellations for systems equipped
with two transmit antennas. Specifically, the technique is to draw two APSK symbols at a time that are used to form
an Alamouti code matrix [2]. Unlike the previous method, the code matrices so generated have constant energy due
to a unique design constraint such that one of the symbol pair is always picked from the inner ring and the other from
the outer ring of the APSK constellation (see Fig. 1 for an example of 16-APSK). The code matrix is differentially
encoded, similarly to the differential Alamouti scheme [7]. In addition, a one-bit amplitude coefficient, which is dif-
ferentially encoded by differential ASK [1], is used to control the overall energy transmitted from the two transmit
antennas. Both the Alamouti code matrix and the amplitude coefficient can be differentially decoded, thus without
incurring error propagation.

In this paper, we introduce a generalized multichannel amplitude-and-phase coded modulation scheme that is
amenable for differential space–time transmissions. The proposed scheme utilizes space–time multichannel code ma-
trices that can be expressed as a product of an amplitude and a phase component. Naturally, these space–time code
matrices can be thought of as multichannel generalizations of the APSK constellations. The amplitude component is
a scalar that controls the total transmission power, and the phase component is a unitary matrix formed from PSK
symbols (note that [25] uses APSK symbols to construct the matrix). Both the amplitude and phase components are
differentially encoded and allow efficient differential decoding. Whereas [25] was tailored for systems with two trans-
mit antennas, our proposed coding scheme can accommodate systems with an arbitrary number of antennas. Section 3
contains some further discussions on the distinctions between the proposed and Xia’s coding methods. We examine
differential detection based on the maximum likelihood (ML) principle for the proposed space–time coded modulation
scheme. We show that the ML detection of the amplitude coefficient and phase matrix is decoupled; furthermore, the
phase code matrix, if constructed by orthogonal designs, offers decoupled differential decoding of the phase entries,
thus further reducing the decoding complexity. The proposed scheme yields full spatial diversity. Simulation results
show that the proposed amplitude–phase differential space–time coded modulation scheme achieves a performance
close to its phase-only counterpart, while providing higher spectral efficiency offered by amplitude modulation.

The rest of the paper is organized as follows. Section 2 contains preliminaries on channel model, differential
space–time coded modulation and APSK constellations. In Section 3, we introduce our generalized multichannel
amplitude-and-phase coded modulation scheme, and discuss how it can be used for differential space–time communi-
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cations. Differential detection based on the ML criterion for the proposed scheme is examined in Section 4. Numerical
examples are presented in Section 5 to compare the proposed scheme and a standard differential space–time coded
modulation technique that uses phase-only modulation. Finally, we summarize this work in Section 6.

2. Preliminaries

In this section, we discuss the channel fading model, and briefly review the phase-only differential space–time
coded modulation and APSK constellations. First, we summarize notation used in this paper.

2.1. Notation

Vectors (matrices) are denoted by boldface lower (upper) case letters. All vectors are column vectors. Superscripts
(·)∗, (·)T , (·)H denote the complex conjugate, transpose, and conjugate transpose, respectively. �(·) takes the real
part of the argument. E{·} denotes the statistical expectation. CN (0,1) denotes a zero-mean, unit-variance complex
Gaussian random variable with independent real and imaginary parts, each having variance 1/2. IN denote the N ×N

identity matrix. ⊗ denotes the matrix Kronecker product [8]. Let Y � {ym,n} denote an M × N matrix. Then, vec(Y)

denotes an MN × 1 vector formed by stacking the columns of Y on top of each other, and ‖Y‖ denotes the Frobenius
norm of Y (e.g., [8]):

‖Y‖2 = tr
(
YH Y

) =
∑
m,n

|ym,n|2, (1)

where tr(·) denotes the trace of a square matrix.

2.2. Channel model

We consider a wireless communication system equipped with NT transmit antennas and NR receive antennas.
We assume that the underlying channels are frequency non-selective (frequency-selective fading can be dealt with
by equalization or multicarrier signaling; see, e.g., [3,16]). Let sμ,t denotes the symbol transmitted from the μth
transmitted antenna during the t th symbol period. The baseband signal received at the νth receive antenna is given by

yν,t = √
ρ

NT∑
μ=1

hμ,ν,t sμ,t + wν,t , t = 0,1, . . . ; ν = 1, . . . ,NR, (2)

where ρ is a power scaling factor to be explained shortly, hμ,ν,t denotes the complex-valued fading coefficients
between the μth transmit and νth receive antenna at time t , and wν,t denotes the additive channel noise at receive
antenna ν and time t , which is independently, identically distributed (i.i.d.) CN (0,1) with respect to both t and ν. We
consider Rayleigh fading channels so that {hμ,ν,t } are i.i.d. (with respect to μ and ν) CN (0,1) random variables. The
fading coefficients may change continuously accordingly to, e.g., the Jakes’ model [14]. We assume that the fading
rate is relatively slow so that the underlying channels remain approximately unchanged for 2NT symbol periods to
facilitate differential detection. To ensure that the total transmission power is properly scaled so that it is independent
of the number of transmit antennas, we impose the constraint:

E

{
NT∑
μ=1

|sμ,t |2
}

= 1. (3)

It follows that ρ in (2) is the average signal-to-noise ratio (SNR) per receive antenna.
Let

Yn =
⎡
⎣ y1,nNT

. . . y1,(n+1)NT −1
...

. . .
...

yNR,nNT
. . . yNR,(n+1)NT −1

⎤
⎦

NR×NT

, (4)
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and note that subscript n denotes the code block index. Likewise, let H ∈ C
NR×NT , Sn ∈ C

NT ×NT , and Wn ∈ C
NR×NT

be matrices formed from {hμ,ν,t }, {sμ,t }, and {wν,t }, respectively. Then, (2) can be expressed as

Yn = √
ρHnSn + Wn. (5)

2.3. Phase-only differential space–time coded modulation

Differential unitary space–time coded modulation schemes considered in [12,13] can be thought of as multichannel
phase-only techniques, since the unitary code matrices used therein can be interpreted as phase matrices and no
amplitude modulation is involved. Let C be a codebook that contains a set of NT × NT unitary code matrices formed
from PSK symbols. In particular, let S0 be any NT ×NT unitary matrix. The differential space–time coded modulation
proposed in [12,13] takes the following form:

Sn = Sn−1Cn, n = 1,2, . . . , (6)

where Cn ∈ C which is selected according to a certain mapping rule that maps a set of information bits to a code
matrix. Under the channel model described in the above, the ML differential detector for Cn is given by [13]

Ĉn = arg max
Cn∈C

�{
tr
(
CnYH

n Yn−1
)}

. (7)

2.4. APSK constellations

We finally review the notation associated with APSK constellations, which form the basis of the proposed
amplitude–phase differential space–time coding scheme. Consider an 2M-APSK constellation that consists of a com-
bination of an independent M-PSK: exp{j2πm/M}, m = 0,1, . . . ,M − 1, and a binary ASK (2-ASK): rL and rH
with

1

2

(
r2
L + r2

H

) = 1. (8)

Let

γ � rH /rL. (9)

Then, it is ready to show that

rL =
√

2/(γ 2 + 1). (10)

Fig. 1 depicts an example of the 16-APSK constellation. Note that each 2M-APSK symbol carries log2 M + 1 bits of
information, with 1 bit carried by the 2-ASK while log2(M) bits by the M-PSK.

Differential detection for scalar 16-APSK was considered in [1], with several improved versions reported later.
Differential APSK is appealing to mobile communications due to its implementational simplicity and robustness
against carrier phase variations [1].

3. Amplitude–phase differential space–time coded modulation

In this section, we present a new differential space–time coded modulation scheme based on generalized amplitude-
and-phase multichannel modulation. For ease of exposition, we will focus on the case with NT = 2 transmit antennas.
The extension to an arbitrary NT is straightforward, and is briefly discussed afterward. To initiate the transmission of
the nth code block, the space–time encoder takes a total of 2 log2 M + 1 bits of information and map them to a 2 × 2
unitary matrix Cn, formed from a pair of M-PSK symbols, and a one-bit coefficient

αn ∈ {1, γ, 1/γ }, (11)

where γ is defined in (9). As we shall see, a bit “0” will be mapped to αn = 1 and a bit “1” be mapped to α = γ

or 1/γ , depending on the encoder state. The composite space–time code matrix αnCn is a multichannel extension
of the scaler APSK constellation, with αn being denoted as the amplitude coefficient and Cn the phase matrix. The
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space–time code matrix αnCn is then differentially modulated (to be specified shortly) and transmitted over a period
of 2 symbol periods, thus yielding a spectral efficiency of (log2 M + 0.5) bits/s/Hz.

The unitary phase matrix Cn can be formed in various ways. Examples include the diagonal cyclic space–time
codes [12], unitary cyclic and bicyclic group codes [13], high-rate group codes [20], and Cayley transform based codes
[10], among others. For efficient decoding, we consider the one based on orthogonal designs [23], which reduces to the
Alamouti scheme for NT = 2 [2]. In particular, we map the first 2 log2 M bits of information to two M-PSK symbols
cn,1 and cn,2. The phase code matrix is formed as follows:

Cn = 1√
2

[
cn,1 −c∗

n,2
cn,2 c∗

n,1

]
, (12)

where the scaling factor of 1/
√

2 is to ensure that Cn is unitary and we assume that cn,1 and cn,2 are drawn from
a unit-energy M-PSK constellation. The last information bit is mapped to the amplitude coefficient αn as described
below.

• Initialization:
For n = 0, let

D0 = I2, (13)

β0 = rL. (14)

The first transmitted space–time code matrix is

S0 = β0D0. (15)

Note that D0 can be replaced by any unitary 2 × 2 matrix without affecting the performance. Likewise, we can
also initialize β0 = rH if (16) is modified accordingly to ensure proper transition of the amplitude.

• Differential encoding:
For n > 0, the encoder takes a total of 2 log2 M +1 bits of information, in which the first 2 log2 M bits are mapped
to Cn, formed as in (12), and the last bit, denoted by bn, is mapped to the amplitude coefficient αn. The amplitude
coefficient is assigned and differentially encoded according to the following rule:

αn =
{1, if bn = 0,

γ, if bn = 1 and βn−1 = rL,

1/γ, if bn = 1 and βn−1 = rH ,

(16)

βn = βn−1αn. (17)

The phase matrix is differentially encoded as follows:

Dn = Dn−1Cn. (18)

The transmitted space–time code matrix Sn is given by

Sn = βnDn = Sn−1(αnCn). (19)

The above multichannel amplitude–phase modulation achieves full spatial diversity offered by orthogonal designs.
Specifically, it is easy to show that the difference of two code matrices (Si − Sj ), for Si �= Sj , is full rank, which en-
sures full diversity according to the rank criterion in [24]. Meanwhile, the use of an amplitude coefficient βn provides
additional power efficiency compared to phase-only modulation, which will be shown in Section 5.

It is straightforward to extend the scheme to the case with NT > 2 transmit antennas. We may simply use orthogonal
designs for arbitrary NT to construct Cn (see [5,23]), which will retain full diversity and efficient decoding, but at the
cost of losing rate for NT > 2. Alternatively, we may also consider using other unitary space–time coded modulation
schemes, such as [10,12,13,20], for Nt > 2, although the decoding complexity is in general higher, especially for large
NT and/or transmission rate.

Our coding scheme is closely related to Xia’s method [25], but there are several major distinctions. Specifically,
Xia’s method was intended primarily for systems with only two antennas, whereas our coding scheme can be applied
in systems with any number of transmit antennas. In particular, Xia’s method divides the information bits into three
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streams, one is to select symbols from the inner ring of the 2-APSK, one is to select symbols from the outer ring,
and the third is to select the amplitude bit. If more than two transmit antennas are involved, a direct extension would
require APSK with more than two amplitude levels, which will create some difficulties, or the encoding process should
be modified. In contrast, we approach breaks the encoding process into two steps, one for amplitude coding and one
for (multichannel) phase coding. While the amplitude coding process is identical to Xia’s method, our phase coding
process is different and it directly encodes on PSK constellations, as opposed to APSK constellations in Xia’s method.
As a result, we do not have any problem extending to more than 2 transmit antennas, which is briefly discussed in the
above.

Another distinction is that we have developed an ML differential detector, as shown in the next section, and proved
that the ML detection of the amplitude bit and the phase matrix is decoupled. Our ML detection also differs from
Xia’s detection in that the phase matrix is decoded before the amplitude bit, whereas the reverse order is performed
in [25].

4. ML differential detection

The signals received at the NR receive antennas are described by (5). Substituting (19) into (5) leads to

Yn = √
ρHnSn−1(αnCn) + Wn

= (Yn−1 − Wn−1)(αnCn) + Wn

= αnYn−1Cn + Vn, (20)

where we have assumed that Hn remains unchanged within two adjacent code blocks (see Section 2.2), and

Vn � Wn − αnWn−1Cn. (21)

We next determine the covariance matrix of vn � vec(Vn). Let wn � vec(Wn) and wn−1 � vec(Wn−1). Then,

E
{
vnvH

n

} = E
{
wnwH

n

} + α2
nE

{
vec(Wn−1Cn)vecH (Wn−1Cn)

}
(22)

= INRNT
+ α2

nE
{(

CT
n−1 ⊗ INT

)
wn−1wH

n−1

(
CT

n−1 ⊗ INR

)H }
(23)

= INRNT
+ α2

n

(
CH

n Cn

)T ⊗ INR
(24)

= (
1 + α2

n

)
INRNT

, (25)

where (22) is due to that Wn and Wn−1 are independent of one another, in (23) and (24), we used the identities [9]

vec(AB) = (BT ⊗ I)vec(A), (26)

(A ⊗ C)(B ⊗ D) = (AB) ⊗ (CD), (27)

for arbitrary matrices A, B, C and D with compatible sizes, and in (25), we used the fact that Cn is unitary. The above
calculation reveals that conditioned on Cn, Vn consists of i.i.d. complex Gaussian entries with zero mean and variance
1 + α2

n.
In the sequel, we consider ML detection based on (20). The likelihood function of Yn, conditioned on αn, Cn and

Yn−1, is given by (e.g., [15])

p(Yn|Yn−1, αn,Cn) = 1

πNRNT (1 + α2
n)

NRNT
exp

{
− 1

1 + α2
n

‖Yn − αnYn−1Cn‖2
}
. (28)

Maximizing the likelihood function is equivalent to minimizing

f (αn,Cn) � NRNT log
(
1 + α2

n

) + ‖Yn − αnYn−1Cn‖2

1 + α2
n

. (29)

Since Cn is unitary, we have

‖Yn − αnYn−1Cn‖2 = ‖Yn‖2 + α2
n‖Yn−1‖2 − 2αn�

{
tr
(
YH

n Yn−1Cn

)}
. (30)



Aut
ho

r's
   

pe
rs

on
al

   
co

py

H. Li, T. Li / Digital Signal Processing 17 (2007) 261–271 267

Therefore, f (αn,Cn) can be expressed as

f (αn,Cn) = f1(αn) − f2(αn)f3(Cn), (31)

where

f1(αn) � NRNT log
(
1 + α2

n

) + ‖Yn‖2 + α2
n‖Yn−1‖2

1 + α2
n

, (32)

f2(αn) � 2αn

1 + α2
n

, (33)

f3(Cn) � �{
tr
(
YH

n Yn−1Cn

)}
. (34)

Equation (31) indicates that the decoding of αn and Cn is decoupled. In particular, we can first decode Cn by maxi-
mizing f3(Cn), and then substitute the maximizing Cn back into (31) to decode αn.

To proceed, we first decode the phase matrix by maximizing f3(Cn) over all possible phase matrices. If Cn is
obtained by orthogonal designs, the decoding of Cn can be further simplified and the associated decoding complexity
is linear, which is shown next. As in Section 3, we assume NT = 2 and the extension to NT � 2 is straightforward.
Specifically, it is easy to see that maximizing f3(Cn) is equivalent to minimizing

f ′
3(Cn) = ‖Yn − Yn−1Cn‖2. (35)

Let yn,1 and yn,2 be the first and second column of Yn, and yn−1,1 and yn−1,2 are similarly defined for Yn−1. We can
write f ′

3 as follows (see (12))

f ′
3(cn,1, cn,2) = ‖yn,1 − cn,1yn−1,1 − cn,2yn−1,2‖2 + ‖yn,2 + c∗

n,2yn−1,1 − c∗
n,1yn−1,2‖2 (36)

= ‖yn,1 − cn,1yn−1,1 − cn,2yn−1,2‖2 + ‖y∗
n,2 − cn,1y∗

n−1,2 + cn,2y∗
n−1,1‖2 (37)

= ‖ỹn − Ỹn−1cn‖2, (38)

where in (37) we took the conjugation of the second term, which does not affect the norm, and in (38), we used the
following definitions:

ỹn �
[
yT
n,1, yH

n,2

]T
, (39)

cn � [cn,1, cn,2]T , (40)

Ỹn−1 �
[

yn−1,1 yn−1,2
y∗
n−1,2 −y∗

n−1,1

]
. (41)

It is ready to verify that Ỹn−1 has orthogonal columns and

ỸH
n−1Ỹn−1 = (‖yn−1,1‖2 + ‖yn−1,2‖2)I2. (42)

Therefore, the phase angles of cn, i.e.,

θn � arg(cn), (43)

can be estimated by computing arg(ỸH
n−1ỹn) followed by rounding to the nearest multiple of 2π/M . Clearly, the

decoding of cn,1 and cn,2 is decoupled, and the complexity is linear in NT .
Once we have the decoded symbols ĉn,1 and ĉn,2, we use them to form Ĉn, substitute it back to (31) and decode

αn as follows:

α̂n = arg min
αn∈{1,γ,1/γ }f (αn, Ĉn). (44)

Finally, α̂n is mapped a bit “0” if α̂n = 1, and a bit “1” if α̂n = γ or 1/γ .
Overall, the decoding complexity is only slightly higher than that of a phase-only counterpart scheme, e.g., [22],

due to the extra minimization incurred in (44).
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Fig. 2. Bit error rate (BER) as a function of Eb/N0 for a phase-only differential space–time coding (DSTC) with 8PSK and 16PSK, and the
proposed amplitude–phase DSTC scheme with 2ASK and 8PSK in Rayleigh fading channels when NT = 2 and NR = 1.

5. Numerical results

We consider a system equipped with NT = 2 transmit antennas and NR = 1 receive antenna. The underlying
channel is flat Rayleigh fading, i.e., the channel coefficients contained in H are generated as i.i.d. C(0,1) random
variables, varying independently from trial to trial. We consider two differential space–time coding (DSTC) schemes,
namely the proposed one based on generalized multichannel amplitude–phase modulation, which will henceforth be
referred to as DSTC/Amplitude–Phase for brevity, and the one in [22], which can be interpreted as a multichannel
phase-only scheme in this paper and, hence, is referred to as DSTC/Phase-Only. Due to the additional amplitude bit
used in our scheme, we cannot match the data rate for both schemes exactly. Instead, we compare the two schemes
for the nearest possible data rates. The performance measure is the bit error rate (BER) as a function of Eb/N0, where
Eb denotes the total energy per bit used in the transmission.

Fig. 2 depicts the BER of the DSTC/Phase-Only scheme with 8PSK and 16PSK constellations, respectively, with
the associated data rate of 3 bits/s/Hz and 4 bits/s/Hz, respectively. Also shown there is the BER of the proposed
DSTC/Amplitude–Phase scheme with 16APSK (i.e., 2ASK and 8PSK) with a rate of 3.5 bits/s/Hz. The 2ASK uses
γ = 1.6, which was found to provide good performance for our scheme. In this and next examples, the value of γ was
found by simulation. That is, we tried many values of γ with a range of SNR, and picked the one that gave the lowest
BER in all simulations. The optimum γ is the one that minimizes the exact average BER and, in general, varies with
SNR. However, an exact expression of the average BER (averaged with respect to the channel fading) is unavailable
this time.

Fig. 3 depicts the BER of the DSTC/Phase-Only scheme with 16PSK (4 bits/s/Hz) and 32PSK (5 bits/s/Hz),
respectively, and our DSTC/Amplitude–Phase scheme with 32APSK (4.5 bits/s/Hz) and γ = 1.5. Finally, Fig. 4
depicts the BER of the DSTC/Phase-Only scheme with 32PSK (5 bits/s/Hz) and 64PSK (6 bits/s/Hz), respectively,
and our DSTC/Amplitude–Phase scheme with 64APSK (5.5 bits/s/Hz) and γ = 1.3.

It is seen from Figs. 2 to 4 that the proposed scheme achieves BER close to that of the lower-rate DSTC/Phase-
Only scheme, and outperforms the higher-rate DSTC/Phase-Only scheme. This is particularly the case when the
transmission rate increases, as shown in Figs. 3 and 4. Also noted is that all schemes yield full spatial diversity, which
can be verified by examining the slope of the BER curves.

6. Concluding remarks

We have presented a differential space–time coded modulation scheme based on generalized multichannel ampli-
tude and phase modulation. We have shown that the proposed scheme admits decoupled decoding of the amplitude
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Fig. 3. Bit error rate (BER) as a function of Eb/N0 for a phase-only differential space–time coding (DSTC) with 16PSK and 32PSK, and the
proposed amplitude–phase DSTC scheme with 2ASK and 16PSK in Rayleigh fading channels when NT = 2 and NR = 1.

Fig. 4. Bit error rate (BER) as a function of Eb/N0 for a phase-only differential space–time coding (DSTC) with 32PSK and 64PSK, and the
proposed amplitude–phase DSTC scheme with 2ASK and 32PSK in Rayleigh fading channels when NT = 2 and NR = 1.

coefficient and phase matrix, as well as decoupled decoding of the phase entries of the phase matrix, given that the lat-
ter is formed by orthogonal designs. The proposed amplitude–phase differential space–time coding scheme achieves
a BER performance close to its counterpart based on phase-only modulation, and offers higher spectral efficiency
provided by amplitude modulation at the cost of slightly higher decoding complexity.

Our studies also open up several future research directions. First, as suggested by one of our reviewers, an alterna-
tive technique would be to consider a “hybrid” approach that utilizes differential modulation for the phase code matrix
but non-coherent modulation for the amplitude coefficient. Such a hybrid scheme, however, appears more difficult to
decode. A critical issue is to develop efficient decoding techniques. Second, there is an interest to extend our studies
to include quadrature amplitude modulation (QAM) constellations, which offer better power efficiency than APSK at
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high data rates. In general, differential space–time designs with QAM will be less convenient since more than two
amplitude levels may be involved in differential modulation and, furthermore, the number of constellation points as-
sociated with each amplitude level is not fixed. Finally, we may consider adaptive modulation in amplitude-and-phase
coded multichannel systems by letting the number of amplitude levels adapt to the channel fading. Specifically, we
can use more amplitude levels as the channel condition improves. As adaptive modulation usually requires channel
feedback, this extension will be a further departure from the differential approach considered here which is primarily
for open-loop applications.
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