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The beampattern of a conventional frequency diverse array (FDA) with
linear frequency pattern (i.e. the centre frequency of each antenna
element is linearly increasing) is coupled in range and angle. FDA
with random frequency pattern can decouple the range and angle
with high probability only when the number of elements is sufficiently
large. The ambiguity of frequency patterns that are random permu-
tations of a linear FDA is examined. An eigenvector-based criterion
to identify possible ambiguity in target localisation using such arrays
is proposed. Numerous results are presented to verify the effectiveness
of the proposed ambiguity identification criterion.
Introduction: The frequency diverse array (FDA) has attracted
increasing attention in recent years [1–9]. FDA can produce a range–
angle-dependent beampattern by employing a small linear frequency
increment across the antenna elements. This range–angle-dependent
beampattern can be exploited for range-dependent interference suppres-
sion [1], range ambiguity resolution [2], and performance enhancement
in synthetic aperture radar [3] and moving target indication [4].

However, the beampattern of a conventional FDA with linear
frequency pattern is coupled in range and angle dimensions, that is,
there might be multiple range–angle pairs that match well with the
echo from a point target at a specific spatial location, hence introducing
ambiguity in target indication [5]. To overcome this problem, several
decoupled methods were introduced. FDA with nonlinear frequency
increments based on, e.g. a logarithmic frequency pattern [6], square
or cubic frequency pattern [7], can achieve a beampattern with a
single maximum at the target location. Meanwhile, the range and
angle of the target can be decoupled by using a MIMO technique [8].
Some other methods based on multi-carrier modulation and subarray
were also investigated.

Random FDA was proposed in [5] for decoupled target indication
with low system complexity. Stochastic characteristics of the beam-
pattern including the mean, variance, and asymptotic distribution
were analytically derived. These results are accurate for arrays with a
sufficiently large number of elements. However, when the number of
elements is small, the random FDA cannot always produce a decoupled
range–angle beampattern. In some cases, it may produce a beampattern
with multiple ambiguous mainlobes. Therefore, it is of interest to
develop some simple criteria to identify unambiguous random fre-
quency patterns for target localisation using small-scale arrays. In this
Letter, we consider frequency patterns that are random permutations
of a linear FDA with a small number of elements. Since the beampattern
cannot be written in a closed form, an eigenvector-based method is
proposed to analyse the relationship between the frequency pattern
and ambiguity. This leads to a simple criterion that can be used to iden-
tify unambiguous frequency patterns for target localisation.

Signal model: Consider a uniform linear array consisting of N elements.
The carrier frequency at the nth element is

fn = f0 + mnDf , n = 0, 1, . . . , N − 1 (1)

where Df is the frequency increment across the array elements and
f0 is the reference carrier frequency. mn is the nth element of the
N × 1 frequency pattern vector m containing a random permutation
of the integers 0 to N − 1.

The transmitted signal of the nth element can be expressed as
sn(t) = ej2pfnt . We consider the case where the receiver is band limited
and the nth element only receives/processes the signal with carrier
frequency fn [9]. Choose the first element as the reference. Thus, the
received echo of the nth element is [5]

yn(t, r, u) = b0 e
j2pfn t−((2(r−nd sin u))/c)[ ]

= b0 e
j2p(f0+mnDf )t e−j2pf0(2r/c) ej2p n((2f0d sin u)/c)−mn(2Dfr/c)( )

(2)

where b0 stands for the complex reflection amplitude of the target,
u denotes the angle of the target (measured from the normal direction
to the target direction), r is the slant range of the target, whereas d is
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the interspacing of the elements. To avoid the grating lobes in angle
dimension of the transmit–receive beampattern, we consider d ≤ l0/4
[5, 9]. The item nmn((2Dfd sin u)/c) is ignored since Df ≪ f0 and
d sin u ≪ r. After coherent demodulation, (2) becomes

yn(r, u) = j(r) ejQ(n,mn , r, u) (3)

where j(r) = b0 e
−j2pf0(2r/c) and Q(n,mn,r,u) = 2p n((2f0d sin u)/c)−

(
mn(2Dfr/c)).

Since we are interested in the relationship between the frequency
pattern and ambiguity in target localisation, we consider the scenario
of one target and no noise. Therefore, the received signal can be
written in vector form as

y(r, u) = a(r, u)j(r) (4)

where a(r, u) = [ejQ(0,m0 , r, u), . . . , ejQ(N−1,mN−1 , r, u)]T and y(r,u) =
[y0(r,u),y1(r,u), . . . ,yN−1(r,u)]

T.

Proposed criterion: In conventional FDAs with a linear frequency
pattern mn = n. Since the elements of the steering vector a(r, u) are
a geometric series, the beampattern can be written in a closed
form. However, this is impossible for random FDAs. In the following,
we introduce an eigenvector-based method to analyse the array
response. For notational simplicity, we henceforth use Qn instead of
Q(n, mn, r, u).

The cross-spectral matrix of the array output is given by
A(r, u) = a(r, u)a(r, u)H. The N − 1 eigenvectors associated with the
N − 1 zero eigenvalues of A(r, u) span the noise subspace G(r, u).
When a(r̂, û ) = a(r, u)

a(r̂, û )HG(r, u)G(r, u)Ha(r̂, û ) = 0 (5)

where r̂, û denotes estimates of the range and angle of the target,
respectively. We can rewrite (5) as

a(r̂, û )
H
G(r, u)G(r, u)Ha(r̂, û )

= 2(N − 1)− 2 cos [(Q̂1 − Q̂0)− (Q1 −Q0)]

−2 cos [(Q̂2 − Q̂0)− (Q2 −Q0)]− · · ·
−2 cos [(Q̂N−1 − Q̂0)− (QN−1 −Q0)] = 0

(6)

Equation (6) specifies a linear system, with the kth equation

(Q̂k − Q̂0)− (Qk −Q0) = 2plk , k = 1, 2, . . . , N − 1 (7)

where l1, l2, . . . , lN−1 are arbitrary integers. Substituting Qn =
2p n((2f0d sin u)/c)− mn(2Dfr/c)

( )
into (7), the equations can be

written as

1 m0 − m1

2 m0 − m2

· · · · · ·
N − 1 m0 − mN−1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

2f0d

c
( sin û − sin u)

2Df

c
(r̂ − r)

⎡
⎢⎣

⎤
⎥⎦ =

l1
l2
· · ·
lN−1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (8)

When the linear system has the unique solution 0, the range and angle
can be uniquely identified with r̂ = r and û = u, respectively.
Otherwise, we have ambiguous estimates. The number of solutions to
(8) depends on the rank of the corresponding augmented matrix
which depends on the array pattern mn. To analyse the solutions to
(8), we employ the following augmented matrix of the equations:

1 m0 − m1 l1
0 (m0 − m2)− 2(m0 − m1) l2 − 2l1
· · · · · ·
0 (m0 − mN−1)− (N − 1)(m0 − m1) lN−1 − (N − 1)l1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (9)

Consider the N − 2 elements of the second column (other than
the first element): (m0 − m2)− 2(m0 − m1), . . . , (m0 − mN−1)−
(N − 1)(m0 − m1). The greatest common divisor of these elements is

P = gcd ((m0 − m2)− 2(m0 − m1), . . . ,

(m0 − mN−1)− (N − 1)(m0 − m1))
(10)

Let Q denote the number of solutions to (8)

if P = 0 Q = 1 (11)

if P = 1 Q = 1 (12)

if P . 1 Q = P (13)
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Equations (11)–(13) compose the proposed criterion for ambiguity
identification. In particular, (12) signifies the unambiguous condition,
which means (8) has the unique solution 0, leading to unambiguous esti-
mates of the range and angle. Both (11) and (13) signify the ambiguous
conditions, under which (8) has other solutions besides 0, which causes
ambiguous range–angle estimates. The number of ambiguous localis-
ations of (11) is infinite while the number of ambiguous localisations
of (13) is P − 1.

It is worth noting that as the number of elements is larger, the possi-
bility of an ambiguous frequency pattern becomes smaller.

Numerical results: Consider a uniform linear array. The reference
carrier frequency is f0 = 3GHz, whereas the frequency increment is
Df = 1MHz. The element spacing is d = 0.025m. We suppose one
target located in the angle u = 0W and the slant range r = 10 km.

First, we suppose the number of elements is N = 4. The number of
all possible permutation frequency patterns is N ! = 24. Using the
proposed criterion, it can be shown that there exist 12 unambiguous
frequency patterns and 12 ambiguous ones. We consider three frequency
patterns, [0 1 2 3], [3 1 0 2], and [2 0 3 1], as examples. The greatest
common divisor associated with these three frequency patterns com-
puted by (10) is P = 0, P = 1, and P = 5, respectively. Fig. 1 illustrates
the locus of the solution set of (8) and the multiple signal classification
(MUSIC) spectrum using these three frequency patterns. In particular,
Figs. 1a, c, and e show the loci of (8) with frequency patterns
[0 1 2 3], [3 1 0 2], and [2 0 3 1], respectively, whereas Figs. 1b, d,
and f are the corresponding MUSIC spectra. Note that solutions that
meet all equations in (8) are the intersections of the solution locus of
each individual equation. It is seen that the number of solutions to (8)
is Q = 1 with the frequency pattern [0 1 2 3], Q = 1 with [3 1 0 2],
and Q = 5 with [2 0 3 1]. This verifies our analytical results expressed
in (11)–(13). Moreover, the number of peaks of the MUSIC spectrum as
shown in Figs. 1b, d and f is infinite, one, and greater than one (but
finite), respectively, which again verifies our results (11)–(13).
Therefore, the proposed criterion is effective in ambiguity identification
for target localisation.
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Fig. 1 Example frequency patterns when N = 4

a, c, e Solution locus of (8) with frequency patterns [0 1 2 3], [3 1 0 2], and
[2 0 3 1]
b, d, f Corresponding MUSIC spectrum
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Next, we examine how the likelihood of obtaining an ambiguous fre-
quency pattern is affected by the number of array elements. Fig. 2 shows
the percentage of ambiguous frequency patterns when the number of
elements varies from N = 4 to 11. It is seen that the percentage of
ambiguous frequency pattern reduces as the number of elements
increase, and decrease below 1% when N . 10. The proposed criterion
is more useful for small arrays.
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Fig. 2 Percentage of ambiguous frequency pattern

Conclusion: A simple criterion to identify unambiguous frequency
patterns for target localisation was proposed. The criterion was
derived by an eigenvector-based method. Simulations verify the
effectiveness of the criterion.
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