
1954 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 7, JULY 1998

Performance Analysis of Forward-Backward
Matched-Filterbank Spectral Estimators

Hongbin Li, Student Member, IEEE, Jian Li, Senior Member, IEEE, and Petre Stoica,Fellow, IEEE

Abstract—The problem of complex spectral estimation is of
great interest in many applications. This paper studies the gen-
eral class of the forward-backward matched-filterbank (MAFI)
spectral estimators including the widely used Capon as well as
the more recently introduced amplitude and phase estimation of
a sinusoid (APES) methods. In particular, we show by means of a
higher order expansion technique that the one-dimensional (1-D)
Capon estimator underestimates the true spectrum, whereas the
1-D APES method is unbiased; we also show that the bias of
the forward-backward Capon is half that of the forward-only
Capon (to within a second-order approximation). Furthermore,
we show that these results can be extended to the two-dimensional
(2-D) Capon and APES estimators. Numerical examples are also
presented to demonstrate quantitatively the properties of and the
relation between these MAFI estimators.

I. INTRODUCTION

COMPLEX spectral estimation is important in a variety of
applications such as target range signature estimation and

synthetic aperture radar (SAR) imaging [1]. Many nonpara-
metric complex spectral estimators make use of adaptive finite
impulse response (FIR) filterbanks. An important member of
this class of approaches is the Capon spectral estimator [2], [3].
The fact that Capon is actually amatched-filterbank(MAFI)
spectral estimator was elaborated in [4]. It was found that
Capon and the more recently introduced amplitude and phase
estimation of a sinusoid (APES) method [1] are both members
of the class of the MAFI spectral estimators. A number of
results on the statistical and computational performance of
the Capon and APES estimators were also presented in [4].
However, the study in [4] was somewhat limited since it
only consideredforward-only MAFI estimators. Owing to
the general belief thatforward-backwardapproaches usually
provide better estimation results and hence are more often used
than their forward-only counterparts [5], the more interesting
question would be how the forward-backward MAFI estima-
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tors perform when compared with one another as well as with
their forward-only counterparts.

In this paper, we study the more general forward-backward
MAFI estimators. By making use of a higher order expansion
technique, we prove that Capon is biased downward, whereas
APES is unbiased (to within a second-order approximation).
In addition, we find that the bias of the forward-backward
Capon is approximately half that of the forward-only Capon.
An analysis of the two-dimensional (2-D) extensions of these
MAFI estimators reveals that the 2-D MAFI estimators behave
similarly to their one-dimensional (1-D) counterparts, which
is due to the fact that apersymmetric[6] structure of the
covariance matrix is retained in the 2-D MAFI estimators.
The theoretical results in the paper, supplemented with the
empirical observation that Capon usually underestimates the
spectrum in samples of practical length while APES is nearly
unbiased, are believed to provide a compelling reason for
preferring APES over Capon.

The MAFI approach to spectral estimation may also be used
to devise new spectral estimators. Even though we show here
that a reasonable implementation of a seemingly novel MAFI
spectral estimator is reduced back to APES, it remains an open
issue whether other interesting MAFI spectral estimators exist.

The paper is organized as follows. In Section II, we discuss
the forward-backward MAFI methods. The Capon and APES
estimators are shown to be special realizations of the MAFI
approach. As seen there, the MAFI interpretation provides
insights into the Capon and APES estimators and the relations
between them. The statistical and computational analyses of
the MAFI estimators are given in Section III. We next describe
the 2-D extensions of the forward-backward MAFI approaches
in Section IV. Section V contains the numerical examples.
Finally, we conclude the paper in Section VI.

II. FORWARD-BACKWARD MAFI M ETHODS

Filterbank approaches decompose the observations
of a stationary signal as

(1)

where denotes the complex amplitude of the sinusoidal
signal with frequency , and denotes the noise (or
residual) term at frequency, which is assumed to be zero
mean. The problem of interest is to estimate for any
given .
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Briefly stated, most filterbank spectral approaches address
the aforementioned problem by following two main steps: a)
pass the data through a bandpass filter with varying
center frequency and b) obtain the estimates for

of the complex amplitude from the filtered data.
The bandpass filter used is usually an-tap FIR filter with
its coefficient vector given by

(2)

where denotes the transpose. (The choice of is
discussed in Section V.) Observe that the notation emphasizes
the dependence of the vector in (2) on the center frequency.
Although rules for choosing vary, a rather general one for
the choice of a matched filter is discussed in Section II-B.

A. Forward-Backward Approaches

Let

(3)

be the overlapping vectors constructed from the data ,
where . In what follows, is referred
to as theforward data vector. Let
be formed from in the same manner as is from

. Then, the forward vectors can be written as

(4)

where is given by

(5)

Likewise, thebackward data vectorsare constructed as

(6)

where denotes the complex conjugate. Let
be formed from the same way as

is formed from . Then, the backward vector can
be written as

(7)

where

(8)

It is straightforward to verify that the forward and back-
ward vectors are related by the complex conjugate symmetry
property

(9)

where denotes the exchange matrix whose antidiagonal
elements are ones and all the others are zero.

Suppose that the initial phase of the sinusoidal signal in (1)
is a random variable uniformly distributed over the interval

and independent of the noise term. By making use of

this assumption as well as (9), the covariance matrix of
or, equivalently, of , is given by

(10)

where denotes the conjugate transpose, and is the
noise covariance matrix and is given by

(11)

Note that both and are Hermitian Toeplitz matrices. Let

and , respectively, denote the sample covariance matrices
of and , that is

(12)

(13)

(Note that since , which follows from (9), there

is no need to compute separately.) The forward-backward
estimate of is given by

(14)

The in (14) is Hermitian but no longer Toeplitz. By using
(9), we can show that is a persymmetricmatrix [6], i.e.,

(15)

The forward-backward approaches use both the forward and
backward data vectors to obtain the estimateof , whereas
the forward-only approaches use only the forward data vectors
to estimate by . As is persymmetric, we can expect
that is generally a better estimate of than .

B. MAFI Filters

By definition, the matched filter is designed such that the
corresponding signal-to-noise (SNR) ratio in the filter output
is maximized, that is

(16)

The solution is obtained by making use of the
Cauchy–Schwartz inequality (see, e.g., [7])

(17)

where is assumed to be invertible. It is readily checked
that the solution in (17) satisfies

(18)

which implies that the filter given in (17) passes the frequency
undistorted. This property is a basic requirement of all



1956 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 7, JULY 1998

filterbank approaches. By making use of this observation and
of (4) and (7), we have

(19)

and

(20)

The least squares (LS) estimate of obtained by using
(19) and (20) is given by

(21)

where and are, respectively, the normalized Fourier
transforms of the forward and backward data vectors

(22)

(23)

Since is Toeplitz and, therefore, persymmetric, we can
show that the in (17) satisfies [1]

(24)

Consequently, it follows, after some calculation, that (21) is
equivalent to

(25)

Hence, due to the persymmetry of , the forward-
backward estimate of has the same form as the
forward-only estimate of , i.e., both are given by (25).
However, the filter vector obtained with the forward-
backward approach is different from that corresponding to the
forward-only approach [1].

Although neither Capon nor APES was derived in the MAFI
framework (for original derivations of these methods, we refer
to [1], [2], and [7]), in what follows, we show that two natural
estimators of in (17) lead to the Capon and APES
filters, respectively. More interestingly, we also show that even
though a third natural estimator of gives a new filter
that is different from the former two, the spectral estimator
corresponding to the new filter turns out to be equivalent to
APES as well.

Capon Filter: By (10), one natural choice is to estimate
as

(26)

where is some estimate of , and is the forward-
backward sample covariance matrix given in (14). By making
use of the matrix inversion lemma [6], we can see that the
second term in (26) has no influence on thein (17). Hence,
when (26) is substituted into (17), the matched filter reduces
to the Capon filter [2], [3]

(27)

Since is persymmetric, (25) applies. By substituting (27)
into (25), we obtain the Capon estimate of

(28)

The forward-only Capon estimate of has a similar form,
except that is replaced by .

APES Filter: Ignoring the fact that is known, we
obtain the LS estimate of the vector in (4) as

(29)

Inserting (29) into (26) will yield a plausible estimate of .
Yet, the so-obtained is not persymmetric. Observe that
an estimate of that uses only the forward data vectors
can be obtained as

(30)

A persymmetric estimate of can be obtained by using
both the forward and backward data vectors

(31)

where

(32)

and we have used the fact that . Using
this in (17) yields the APES filter [1]

(33)

Consequently, the APES estimate of is given by [see
(25)]

(34)

Like the Capon estimates, the forward-only APES estimate of
is similar to (34), except that is replaced by

[1].
Another Matched Filter:Equations (4) and (7) suggest an-

other way to estimate the noise covariance matrix

(35)

where and denote some
estimates of and , respectively. A simple calcu-
lation shows that the previous can be rewritten as (in
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what follows, we sometimes omit the dependence onfor
notational convenience)

(36)

By using the matrix inversion lemma (twice), we can see that
the last and the third terms of (36) can be dropped without
affecting the matched filter vector. Let be the matrix made
from the first two terms of (36). Then, by using the matrix
inversion lemma once again, we have (37), shown at the
bottom of the page, which gives, for the matched filter vector,
(38), also shown at the bottom of the page. The previous filter
is, in general, different from both the Capon and APES filters
since neither of the latter two depends on an estimate of ,
whereas the former does. In spite of this fact, in Appendix A,
we prove that, for a certain natural choice of in (35)

(39)

holds true.

III. COMPUTATIONAL AND STATISTICAL ANALYSIS

A. Computational Complexity

Applying the matrix inversion lemma to (31) yields

(40)

where is the identity matrix. Let denote the
Hermitian square root of the positive definite matrix . Let

(41)

(42)

(43)

The Capon and APES spectral estimators can be expressed as
relatively simple functions of

(44)

and (45), shown at the bottom of the page, where

(46)

Hence, computationally, APES is only slightly more involved
than Capon. More specifically, the amount of computation
required by Capon or APES is dominated by calculating

and the matrix-vector products in (41)–(43). By us-
ing (83), as well as the facts that and

, which follow from (9), it is
clear that the additional amount of computation needed by
APES, as compared with Capon, is fairly small (see Section V
for the simulation results). Note that using (44) and (45) for
the implementation of Capon and APES requires calculating
(41)–(43) for each of interest, which becomes computation-
ally increasingly more intensive as the number of frequency
samples increases. This is especially so in 2-D applications,
such as when forming SAR images. By using a technique
recently presented in [8], however, the amount of computation
by both Capon and APES can be substantially reduced. Refer
to [8] for more implementation details. Nevertheless, it is
convenient to use (44) and (45) to visually compare the
computational complexities of Capon and APES.

(37)

(38)

(45)
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B. Statistical Performance

The forward-backward Capon and APES spectral estimators
can be shown to have the sameasymptotic varianceunder the
following condition:

C: The signal can be written as in (1), where is
a zero-mean stationary random process with finite spectral
density at

(47)

In more exact terms, the following result holds true.
Theorem 1: Under Condition and the additional assump-

tion that is circularly symmetrically distributed, the
estimation errors in the Capon and APES spectral estimators
are asymptotically circularly symmetrically distributed with
zero-mean and the common variance

(48)

Proof: See Appendix B.
The need to enforce Condition limits, to some extent, the

importance of the previous result. Indeed, the assumption made
in is satisfied if (and essentially only if) the signal has
a mixed spectrum,and is the location of a spectral line.
The result of Theorem 1 is relevant to the spectral analysis
of a target with dominant point scatterers in the presence
of distributed clutter (see [1] and the references therein).
In some other applications, however, the main interest is
in the continuous component of the spectrum. For example,
Condition does not hold exactly for a target with distributed
scatterers since the signature spectrum is continuous at.

That the previous result is of a somewhat limited interest
is also due to itsasymptotic character. Indeed, in applications
with medium or small-sized data samples, the spectral estima-
tors under study have been found to behave quite differently
in contradiction with what is predicted by the (asymptotic)
result of Theorem 1 (see the numerical examples in Section V).
The finite-sample analysisof the spectral estimators under
discussion would consequently be of considerable interest.
However, a complete analysis, if possible, appears to be rather
difficult at best. Apartial one, by making use of ahigher-order
Taylor expansion technique, is nevertheless feasible. The result
follows.

Theorem 2: To within a second-order approximation and
under the mild assumption that the third-order moments of

and are zero, Capon is biased downward, whereas
APES is unbiased, that is

(49)

and

(50)

for sufficiently large values of . Additionally, the bias for
the forward-backward Capon is half that of the forward-only
Capon.

Proof: See Appendix C.

We believe that (49) and (50) provide a theoretical mo-
tivation for preferring APES to Capon in most spectral es-
timation exercises. Moreover, Theorem 2 also suggests that
the forward-backward Capon should be preferred over the
forward-only Capon. While the forward-only APES is also
unbiased [4], the forward-backward APES is usually observed
with slightly better resolution and sidelobe properties [1] at
the cost of slightly more computations.

IV. 2-D EXTENSIONS

We briefly describe the 2-D extensions of the forward-
backward MAFI spectral estimators. We first decompose the
observations as

(51)

where denotes the complex amplitude of a 2-D
sinusoidal signal with frequency , and
denotes the noise (or residual) term at frequency ,
which is assumed to be zero mean. Next, in a manner similar
to the 1-D case, we form the forward and backward
data matrices

(52)

where and . Let

vec (53)

vec (54)

where vec denotes the operation of stacking the columns of
a matrix on top of each other. Let

(55)

where denotes the Kronecker matrix product, and

(56)

Then, and can be written as

(57)

(58)

where

(59)

and and are, respectively, formed
from in the same ways as and

are made from .
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Suppose that the initial phase of the sinusoidal signal of (51)
is a random variable uniformly distributed over the interval

and independent of the noise term. Then, the covariance
matrix of or, equivalently, of is given by

(60)

where is the covariance matrix of or
. By making use of the fact that

(61)

we can see that is persymmetric. Similarly, is also
persymmetric.

The forward-backward sample covariance matrix takes the
form

(62)

where and denote the sample covariance matrices of
and , respectively, given by

(63)

(64)

By making use of (61), we can see thatis also persymmetric.
Let denote the impulse response of an

2-D FIR filter, and let

(65)

Like in the 1-D case, the impulse response of the matched
filter is given by

(66)
Since

(67)

the LS estimate of obtained from the filtered data is given
by [similarly to (21) in the 1-D case]

(68)

where

(69)

(70)

Since is persymmetric, (68) can be written as

(71)

The Capon method estimates the noise covariance matrix as

(72)

where denotes some estimate of . The
in (72) can be shown to be persymmetric. There-

fore, with (72) substituted in (66) and then (66) substituted in
(71), we obtain the Capon estimate of as

(73)
The APES estimate of takes the form

(74)

where

(75)

By observing (61), (69), and (70), we can show that
is also persymmetric. Hence, (71) can be used to obtain

as

(76)

Based on the 2-D extensions described above, it is not
difficult to see that all the results of the previous section also
hold true for the 2-D Capon and APES estimators. Indeed,
as seen in Appendixes B and C, the proofs of these results
are critically dependent only on the persymmetric property
of the true and sample covariance matrices or, equivalently,
the conjugate symmetry properties as shown in (9) and (61).
Therefore, the proofs for the 2-D estimators follow the same
pattern as those for the 1-D case, and thus, they are omitted.

V. NUMERICAL EXAMPLES

In the following, we study the Capon and APES complex
amplitude estimates in a number of cases of interest. For
both the 1-D and 2-D examples given below, we compare
the performance of the forward-only Capon and APES as
well as the forward-backward Capon and APES, which are,
for simplicity, referred to as FCapon, FAPES, FBCapon, and
FBAPES, respectively.

A. One-Dimensional Complex Spectral Estimation

The 1-D data used in the examples consists of a sum of 15
complex sinusoids with the real and imaginary parts shown
in Figs. 1(a) and (b), respectively, corrupted by a zero-mean
complex white Gaussian noise. The data length is chosen as

. In what follows, we are interested in the bias and
variance properties of the estimators under study. The bias and
variance results shown below correspond to the frequency of
the first sinusoid, and they are obtained from 100 independent
realizations.
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(a) (b)

Fig. 1. One-dimensional complex amplitude of the sum of 15 sinusoids used in the simulations. (a) Real part. (b) Imaginary part.

We begin by studying the performance of the estimators as
the signal-to-noise ratio (SNR) varies. The SNR for theth
sinusoid is defined as

SNR dB (77)

where is the complex amplitude of theth sinusoid, and
is the spectral density of the additive noise at frequency

. The filter length is chosen as . The real and
imaginary parts of the bias are shown in Figs. 2(a) and (b),
respectively, as a function of SNR. As seen from these
figures, FAPES and FBAPES are almost unbiased, whereas
FCapon and FBCapon are biased downward. In addition,
we notice that the bias for FCapon is approximately twice
that of FBCapon. All these observations are consistent with
the prediction of the theory. The variances of the real and
imaginary parts of the amplitude estimates are shown in
Figs. 2(c) and (d), respectively. It appears that all of the
estimators display similar variances. However, as shown in the
next example, the variance of Capon becomes notably larger
than that of APES as increases.

Next, we study the effect of the filter length on the
estimators. The SNRis fixed at 20 dB. As varies, the
real and imaginary parts of the bias are shown in Figs. 3(a)
and (b), respectively. From these figures, we can see that
both FAPES and FBAPES are unbiased for all practical filter
lengths, whereas the bias of Capon grows significantly with
increasing . (A practical filter length means that should
not be too small [1]. In fact, all filterbank methods reduce
to the Fourier transform approach when , and only
when is sufficiently large, the filterbank approach shows
noticeable improvement over the Fourier method [1].) All
estimators seem to perform similarly for up to a fourth of
the data length, with Capon being slightly biased downward.
As the filter length increases further, the performance of Capon
degrades rapidly, whereas that of APES remains unaffected.
This observation is strengthened by the variance results shown
for the real and imaginary parts of the amplitude estimates in
Figs. 3(c) and (d), respectively.

It is known that as increases, all of the estimators
under study achieve better spectral resolution and that the
best resolution is obtained at [1]. This fact, along
with the statistical results shown in the previous examples,
indicates that the choice of for Capon should be made by
a tradeoff between resolution and statistical stability. Usually,
we choose . Although the choice of
for Capon is difficult to make, it is easy to see that APES
achieves the best performance at since with this
choice, APES achieves the highest possible resolution as well
as the best statistical properties in terms of bias and variance.
The previous examples also show that FAPES and FBAPES
perform similarly in terms of bias and variance properties for
the frequency of interest.

To compare the computational complexities of the estima-
tors under study, we count the flops required by each of them
for the case, where , , and the complex spectra
are evaluated at 256 equally spaced points. The flops required
by FCapon and FBCapon are approximately the same, whereas
the flops needed by FAPES and FBAPES are, respectively,
1.08 and 1.41 times of that by the Capon estimators.

B. Two-Dimensional Complex Spectral Estimation

As was mentioned in Section IV, the 2-D Capon and
APES estimators behave rather similarly to their 1-D coun-
terparts. Since the problems encountered in applications such
as synthetic aperture radar imaging are concerned with 2-
D complex spectral estimation, we include a couple of 2-D
numerical examples here. The data employed consists of three
2-D sinusoids corrupted by a 2-D zero-mean complex white
Gaussian noise, with . The sinusoids are
located in the frequency domain at and

, and their amplitudes are and ,
respectively. The bias and variance for the amplitude estimate
of the first 2-D sinusoid are obtained from 100 independent
realizations. The SNR for theth 2-D sinusoid is similarly
defined as in (77). The bias and variance of the four estimators
under study versus SNRare shown in Figs. 4(a) to (d),
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(a) (b)

(c) (d)

Fig. 2. Empirical bias and variance of the 1-D MAFI estimators as SNR1 varies whenN = 64 andM = 15. (a) Real part of the bias. (b) Imaginary part
of the bias. (c) Variance of the real part of the estimated amplitude. (d) Variance of the imaginary part of the estimated amplitude.

respectively, where . Figs. 5(a) to (d) show
the statistical results as the 2-D FIR filter length varies, where
SNR is fixed at 20 dB. We assume in Figs. 5(a) to (d) that

. As seen from these plots, the performance of
the 2-D MAFI estimators indeed resembles that of their 1-
D counterparts, and therefore, we refer the readers to the 1-D
examples for comments.

VI. CONCLUSION

We have studied the forward-backward MAFI approaches to
complex spectral estimation. The Capon and APES estimators
are shown to belong to the class of the MAFI methods. By
using a higher order expansion technique, we have proved
that to within a second-order approximation, Capon is biased,
whereas APES is unbiased and that the bias of the forward-
backward Capon is half that of the forward-only Capon. We
also show that all these conclusions carry over to the 2-
D MAFI estimators. Since, computationally, APES is only
slightly more involved than Capon, the preference of APES
over Capon in practical applications follows logically because
of the better statistical properties associated with the former.

APPENDIX A
PROOF OF (39)

The use of the MAFI filter given in (38) for spectral
estimation requires an initial estimate of . However, we
can avoid that in the following way. By (25), the LS estimate
of using the MAFI filter is given by

(78)

where is given by (38). Substituting (38) into (78), and
after simple manipulations, we obtain

(79)

where we, like before, omit the dependence onfor notational
simplicity. By borrowing the notations defined in (41)–(43),
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(a) (b)

(c) (d)

Fig. 3. Empirical bias and variance of the 1-D MAFI estimators as the filter lengthM varies whenN = 64 and SRN1 = 20 dB. (a) Real part of the bias.
(b) Imaginary part of the bias. (c) Variance of the real part of the estimated amplitude. (d) Variance of the imaginary part of the estimated amplitude.

the solution to (79) is straightforward to obtain

(80)

Next, we evaluate the APES estimator as given by (45). We
first compute the

(81)

where

(82)

Substituting (81) into (45) and performing some simple ma-
nipulations, we obtain

(83)

Comparing (80) and (83) confirms that APES and MAFI
coincide.
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(a) (b)

(c) (d)

Fig. 4. Empirical bias and variance of the 2-D MAFI estimators as SNR1 varies whenN1 = N2 = 32 andM1 = M2 = 8. (a) Real part of the bias. (b)
Imaginary part of the bias. (c) Variance of the real part of the estimated amplitude. (d) Variance of the imaginary part of the estimated amplitude.

APPENDIX B
PROOF OF THEOREM 1

From (4) and (7), we have

(84)

(85)

where and , respectively, are defined as

(86)

(87)

First, we calculate the first- and second-order moments of
and

(88)

(89)

(90)

(91)

(92)

(93)

where is the covariance sequence of or .
Note that (90) and (91) are due to the circularly symmetric
distribution assumption. It then follows from (92), (93), and
Condition that

(94)
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(a) (b)

(c) (d)

Fig. 5. Empirical bias and variance of the 2-D MAFI estimators as the filter lengthM = M1 = M2 varies whenN1 = N2 = 32, and SRN1 = 20

dB. (a) Real part of the bias. (b) Imaginary part of the bias. (c) Variance of the real part of the estimated amplitude. (d) Variance of the imaginary
part of the estimated amplitude.

where the last equality follows from the standard results on the
transfer of spectral densities through linear systems. Among
others, the previous calculations imply that as
and tend to and (in the mean square sense),
respectively. , therefore, goes to . Hence,

and have the same limit as .
Let denote a generic FIR vector, and let denote the

deterministic vector that is the limit of (the possibly random)
when goes to infinity. Observe that for all methods under

study, the associated and vectors satisfy

and (95)

By using this observation with (25) and (84), we obtain

(96)

Since tends to zero as goes to infinity, it follows from
(96) that the estimation error can be asymptotically written as
(to a first-order approximation)

(97)

Then, it readily follows that

as (98)

and

(99)

and the proof is concluded.

APPENDIX C
PROOF OF THEOREM 2

Proof of (49): By using (27) and (96), we obtain

(100)

In what follows, we use the symbol to denote an “asymptotic
equality” that holds to within asecond-orderapproximation.
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A straightforward manipulation of (100) yields

(101)

which, in turn, implies (102), shown at the bottom of the page.

Next, we note that

(103)

We also recall (88) and the assumption that and

have zero third-order moments. Since

(104)

which is like (9), we have

(105)

By using these facts, along with (102), we can write

(106)

By the Cauchy-Schwartz inequality, the quantity between the

curly parentheses in (106) is negative and so is its expectation.

Hence, (49) follows.

The bias for the forward-only Capon spectral estimate

can be obtained by replacing the forward-backward
sample covariance in (100)–(102) by the forward-only
sample covariance matrix , as defined in (12), and by

following a similar treatment we did in (106). The result is

(to a second-order approximation)

(107)

Hence, to within a second-order approximation, the bias of

the forward-backward Capon is indeed one half that of the

forward-only Capon.
Proof of (50): By making use of the fact that

, (50) can be proved similarly to (49). By (33) and

(102)
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(96), we have

(108)

Therefore, we obtain

(109)

Next, note that

(110)

where we have made use of (103) and (84) and (85). Using
again the assumption of zero third-order moments of
and , and combining (109) and (110) yields (to a second-
order approximation)

(111)

and the proof is complete.
To motivate the normalizing factor used in both (49) and

(50), we mention the fact that bothand are , and
this implies that the second-order approximation previously
used for both and is .
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