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Abstract—The problem of complex spectral estimation is of tors perform when compared with one another as well as with
great interest in many applications. This paper studies the gen- their forward-only counterparts.
eral class of the forward-backward matched-filterbank (MAFI) In this paper, we study the more general forward-backward

spectral estimators including the widely used Capon as well as . . . .
the more recently introduced amplitude and phase estimation of MAFI estimators. By making use of a higher order expansion

a sinusoid (APES) methods. In particular, we show by means of a technique, we prove that Capon is biased downward, whereas
higher order expansion technique that the one-dimensional (1-D) APES is unbiased (to within a second-order approximation).
Capon estimator underestimates the true spectrum, whereas the |n addition, we find that the bias of the forward-backward
1-D APES method is unbiased; we also show that the bias of : ; _
I 0 S 5 S g sty o oy g,
Capon (to within a second-order approximation). Furthermore, ; .
we show that these results can be extended to the two-dimensionalMAFI estimators reveals that the 2-D MAFI estimators behave
(2-D) Capon and APES estimators. Numerical examples are also similarly to their one-dimensional (1-D) counterparts, which
presented to demonstrate quantitatively the properties of and the js due to the fact that g@ersymmetric[6] structure of the
relation between these MAFI estimators. covariance matrix is retained in the 2-D MAFI estimators.
The theoretical results in the paper, supplemented with the
empirical observation that Capon usually underestimates the
spectrum in samples of practical length while APES is nearly
OMPLEX spectral estimation is important in a variety ofinbiased, are believed to provide a compelling reason for
applications such as target range signature estimation qngferring APES over Capon.
synthetic aperture radar (SAR) imaging [1]. Many nonpara- The MAFI approach to spectral estimation may also be used
metric complex spectral estimators make use of adaptive finitedevise new spectral estimators. Even though we show here
impulse response (FIR) filterbanks. An important member g{at a reasonable implementation of a seemingly novel MAFI
this class of approaches is the Capon spectral estimator [2], [§}ectral estimator is reduced back to APES, it remains an open
The fact that Capon is actually matched-filterbanKMAFI)  jssue whether other interesting MAFI spectral estimators exist.
spectral estimator was elaborated in [4]. It was found thatThe paper is organized as follows. In Section II, we discuss
Capon and the more recently introduced amplitude and phage forward-backward MAFI methods. The Capon and APES
estimation of a sinusoid (APES) method [1] are both membesstimators are shown to be special realizations of the MAFI
of the class of the MAFI spectral estimators. A number fpproach. As seen there, the MAFI interpretation provides
results on the statistical and computational performance igfights into the Capon and APES estimators and the relations
the Capon and APES estimators were also presented in Kdtween them. The statistical and computational analyses of
However, the study in [4] was somewhat limited since the MAFI estimators are given in Section I1l. We next describe
only consideredforward-only MAFI estimators. Owing to the 2-D extensions of the forward-backward MAFI approaches

the general belief thaiorward-backwardapproaches usually jn Section IV. Section V contains the numerical examples.
provide better estimation results and hence are more often uggghlly, we conclude the paper in Section VI.

than their forward-only counterparts [5], the more interesting
question would be how the forward-backward MAFI estima-
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Briefly stated, most filterbank spectral approaches addrels assumption as well as (9), the covariance matriy @
the aforementioned problem by following two main steps: @y, equivalently, ofy(l), is given by
pass the datdy(n)} through a bandpass filter with varying

center frequencyw and b) obtain the estimates(w) for R £ E{y()y" ()} = E{y()y" (1)}

w € [0,27) of the complex amplitude from the filtered data. = |a(w)|?ap(w)all (W) + Q(w) (10)
The bandpass filter used is usually &frtap FIR filter with

its coefficient vector given by where(-)# denotes the conjugate transpose, &(d) is the

noise covariance matrix and is given by

Qw) = B{a.)el ()} = E{e.(el ()} (A1)
where ()" denotes the transpose. (The choice Mf is

discussed in Section V.) Observe that the notation emphasi2ée that bothR and Q are Hermitian Toeplitz matrices. Let
the dependence of the vector in (2) on the center frequencyR andR, respectively, denote the sample covariance matrices
Although rules for choosind,,, vary, a rather general one forof {§(I)} and {y(1)}, that is

the choice of a matched filter is discussed in Section II-B.

h,=[h1 hy ... hul" )

L—1
s 1
R=-) yOy"u 12
A. Forward-Backward Approaches L~ yhy= () (12)
Let s oq Lt
] . R=2 Y 50570, (13)
y = yl+1) ... y(l+M-1)] 1=0

[=0,1,...,.L—1 (3) R T
(Note that sinceR = JR J, which follows from (9), there

be the overlapping vectors constructed from the d@@)}, is no need to comput® separately.) The forward-backward
where L = N — M + 1. In what follows, y(I) is referred ogtimate ofR is given by

to as theforward data vectorLet e, (l),l = 0,1,...,L —1
be formed from{e,,(n)} in the same manner ag!) is from R — }(f{ + R) (14)
{y(n)}. Then, the forward vectors can be written as

y(1) = [a(w)an (w)]e™! + e,(1) (4) The R in (14) is Hermitian but no longer Toeplitz. By using

a (9), we can show thaR is a persymmetrianatrix [6], i.e.,
where ap,(w) is given by

R =JR7J. (15)
ay(w)=[1 v ... JdM-DeT (5)
The forward-backward approaches use both the forward and
Likewise, thebackward data vectorare constructed as backward data vectors to obtain the estinatef R, whereas

~ . . the forward-only approaches use only the forward data vectors
yi)=1ly (N*_ =1 (ATT_ 1-2) to estimateR by R. As R is persymmetric, we can expect
y(N-I-M))", 1=01....L-1 (6 thatRis generally a better estimate & than R.

where (-)* denotes the complex conjugate. L&t(l),l =

0,1,...,L — 1 be formed from{c.(n)} the same way as B- MAFI Filters
y(l) is formed from{y(n)}. Then, the backward vector can By definition, the matched filter is designed such that the
be written as corresponding signal-to-noise (SNR) ratio in the filter output

. is maximized, that is
y(1) = [a(w)an (w)]e™ + &, (1)

h7au (w)]”
where hwzarglnax| ()]

M BIQ(w)h, (16)

i(w) = a*(w)e SN, () The solution is obtained by making use of the

It is straightforward to verify that the forward and back-C auchy-Schwartz inequality (see, e.g., [7])

ward vectors are related by the complex conjugate symmetry Q Yw)ay (w)
ropert h, = —7 _ (17)
property aM(w)Q l(w)aM(w)
y() =Jy"(L—1-1) (9)  whereQ(w) is assumed to be invertible. It is readily checked

. - that the solution in (17) satisfies
where J denotes the exchange matrix whose ant|d|agonzt11l (17

elements are ones and all the others are zero. hila(w) =1 (18)
Suppose that the initial phase of the sinusoidal signal in (1)

is a random variable uniformly distributed over the intervakhich implies that the filter given in (17) passes the frequency

[0,27) and independent of the noise term. By making use af undistorted. This property is a basic requirement of all
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filterbank approaches. By making use of this observation annhceQ(w) is persymmetric, (25) applies. By substituting (27)

of (4) and (7), we have into (25), we obtain the Capon estimate @fw)
Hory jwl H= _ - L
h‘w Y(l) - CY(UJ)G + hu, ew(l)v l= 07 17 s 7L 1 (19) &C (w) _ a]\Hl(w)AR lg(w) ) (28)
and ' all (w)Rtay(w)
hy(l) = eI NV 0 (w)e™! + hlf e, (1) The forward-only Capon estimate ofw) has a similar form,

1=0,1,...,L —1. (20) except thatR is replaced byR.
APES Filter: Ignoring the fact thaty,(w) is known, we

The least squares (LS) estimate @fw) obtained by using obtain the LS estimate of the vectatw)ay (w) in (4) as

(19) and (20) is given by
a(w) = 3 lge) + eVl W] @) lodw)ar ()] = glw). (29)
,,nserting (29) into (26) will yield a plausible estimate@Qfw).
Yet, the so-obtaine@)(w) is not persymmetric. Observe that
an estimate ofQ(w) that uses only the forward data vectors

whereg(w) andg(w) are, respectively, the normalized Fourie
transforms of the forward and backward data vectors

E(w) = 1 Lz_:ly(l) —jwl 22) can be obtained as

I ¢ . . . -
- Qw) =R ~ [(w)ans (W)][c(w)an ()]

g(w) = % > (e (23) =R - g(w)g"(w). (30)
=0

, , , i A persymmetric estimate df)(w) can be obtained by using
Since Q(w) is Toeplitz and, therefore, persymmetric, we cagyin the forward and backward data vectors
show that theh, in (17) satisfies [1]

Ihe, = iV 24y QW)= %[é«u) +3Q (@] = R - GW)GT(w) (31)

Consequently, it follows, after some calculation, that (21) ighere

equivalent to 1

a(w) = h¥g(w). (25) Glw) = 58w g (32)

Hence, due to the persymmetry @®(w), the forward- .4 e have used the fact theg* (w) = ¢**(I-Dg(w). Using
backward estimate ofx(w) has the same form as theyc Q(w) in (17) yields the APES filter [1]

forward-only estimate ofv(w), i.e., both are given by (25).
However, the filter vectorh, obtained with the forward- , Q L(w)an(w)

. . . hA‘PES — i .
backward approach is different from that corresponding to the w all ()Q L (w)an (@)
forward-only approach [1]. M M

Although neither Capon nor APES was derived in the MARbonsequently, the APES estimate @fw) is given by [see
framework (for original derivations of these methods, we ref&gg5)]
to [1], [2], and [7]), in what follows, we show that two natural

(33)

estimators ofQ(w) in (17) lead to the Capon and APES . () all (WQ N w)g(w) (34)
: ; ; i QAPES\W) = A .
filters, respectively. More interestingly, we also show that even afl (W)Q~(w)an (w)

though a third natural estimator &}(w) gives a new filter
that is different from the former two, the spectral estimatdrike the Capon estimates, the forward-only APES estimate of

corresponding to the new filter turns out to be equivalent tg(w) is similar to (34), except thaf)(w) is replaced byQ(w)

APES as well. [1].
Capon Filter: By (10), one natural choice is to estimate Another Matched Filter: Equations (4) and (7) suggest an-
Q(w) as other way to estimate the noise covariance maf}ix)
QW) =Rl Pau@ali@) (26 @)
where@(w) is some estimate af(w), andR is the forward- 1 L=t

< ~ Jwl
backward sample covariance matrix given in (14). By making = 57 2_[(¥(D) — &(w)an(w)e”™)
use of the matrix inversion lemma [6], we can see that the

=
second term in (26) has no influence on Hein (17). Hence, x (§(1) — &(w)an (w)e’“HT + (F(1) — d(w)an (w)e’')
when (26) is substituted into (17), the matched filter reduces x (y(1) — &(w)aM(w)@M)H] (35)
to the Capon filter [2], [3]
where &(w) and &(w) = &*(w)e V=Y« denote some

5 —1
R ap (w) (27) estimates ofa(w) and &(w), respectively. A simple calcu-

hSapon _ )
ajf(w)R=tay (w) lation shows that the previouQ(w) can be rewritten as (in
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what follows, we sometimes omit the dependencewofor va(w) = R 2g(w) (42)
notational convenience) v3(w) = R™Y2g(w). (43)
A - 1 ok 1 ok
Qw)=R--[a"g+a glay; —camu[d"g +a g]”
N 2 - M2 The Capon and APES spectral estimators can be expressed as
Q relatively simple functions of;(w),i = 1,2,3
+ |a*ayal;. (36)
H
By using the matrix inversion lemma (twice), we can see that Qcapon(w) = M (44)
the last and the third terms of (36) can be dropped without [ (@)

affecting the matched filter vector. L€ be the matrix made

from the first two terms of (36). Then, by using the matrixand (45), shown at the bottom of the page, where
inversion lemma once again, we have (37), shown at the

bottom of the page, which gives, for the matched filter vector, L[ @) v (w)rs(w)
(38), also shown at the bottom of the page. The previous filter Ew) = B {u?f{(w)w(w) lws@)? |~ L (46)
is, in general, different from both the Capon and APES filters

since neither of the latter two depends on an estimate ©f, . . . .
P te(0} ence, computationally, APES is only slightly more involved

whereas the former does. In spite of this fact, in Appendix At% c M ifically. th ¢ of i
we prove that, for a certain natural choicedafv) in (35) an t-apon. More speciically, the amount of computation

required by Capon or APES is dominated by calculating

dvarr(w) = dapes(w) (39) R~Y/? and the matrix-vector products in (41)—(43). By us-
ing (83), as well as the facts tha»||? = |vs||* and
holds true. (VHvs) eI V=1 = pHys, which follow from (9), it is
clear that the additional amount of computation needed by
11l. COMPUTATIONAL AND STATISTICAL ANALYSIS APES, as compared with Capon, is fairly small (see Section V

for the simulation results). Note that using (44) and (45) for
the implementation of Capon and APES requires calculating
(41)—(43) for eachw of interest, which becomes computation-
ally increasingly more intensive as the number of frequency
Q_l(w) —R!_ f{_lG(w)[G”(w)f{_lG(w) —1! samples increases. _This is es_pecially S0 in _2-D applicat_ions,
Ho b1 such as when forming SAR images. By using a technique

x G ()R (40) recently presented in [8], however, the amount of computation
by both Capon and APES can be substantially reduced. Refer
to [8] for more implementation details. Nevertheless, it is
convenient to use (44) and (45) to visually compare the
vi(w) = R 2ay(w) (41) computational complexities of Capon and APES.

A. Computational Complexity
Applying the matrix inversion lemma to (31) yields

wherel is the 2 x 2 identity matrix. LetR~1/2 denote the
Hermitian square root of the positive definite mafitx®. Let

-1 lp—-1/r%= 2*¥ o\ HPH—1
51 5 3 + R
Q7'ay = | R- (@' +a g)aﬁ} ay = |[R-1 4 2R (@Bt a gayRT
: 1 - Jaf R (@ E+47R)
_ R'ay — jaflR7 "8 + & gR'ay + jafiR‘ayR[a'g +d g (37)
1 - jafiRA* G+ & g
MAFI Q lay R-lay + saf RtayR-1a'g + & g] - Lall R-1a*g +a glRtay
b = Ay w3 . @9
aMﬂ apy a]wR_lalW
_ va(w)||?
vl (wira(w) — 5[ (Wir(w) v (wivs(w)]E Hw) b|[ 2(W)l]
A vy (w)va(w)
dares(w) = (45)
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B. Statistical Performance We believe that (49) and (50) provide a theoretical mo-

The forward-backward Capon and APES spectral estimatdf@tion for preferring APES to Capon in most spectral es-
can be shown to have the samgymptotic varianceinder the timation exercises. Moreover, Theorem 2 also suggests that
following condition: the forward-backward Capon should be preferred over the

. . . . . forward-only Capon. While the forward-only APES is also
C: The signaly(n) can be written as in (1), whete, () is unbiased [4], the forward-backward APES is usually observed

a zero-mean stationary random process with finite spectwl h slightly better resolution and sidelobe properties [1] at
density atw . ]
the cost of slightly more computations.
P.(w) < 0. 47)
IV. 2-D EXTENSIONS
In more exact terms, the following result holds true. We briefly describe the 2-D extensions of the forward-
Theorem 1: Under ConditionC and the additional assump-backward MAFI spectral estimators. We first decompose the
tion that e, (n) is circularly symmetrically distributed, the observations{y(n,,n2)} as
estimation errors in the Capon and APES spectral estimators Heormdama)
are asymptotically circularly symmetrically distributed with ~ %(n1,72) = a(wy, w2)e T2 ey 4, (01, n2)
zero-mean and the common variance n=0,1,...,Ny—1, ny=0,1,...,No—1
wy,wa € [0,27 51
lim LE{|a(w) — a(w)[*} = P.(w). (48) 1wz €[0,2m) (51)

L—oo

where a(w;,w») denotes the complex amplitude of a 2-D
Proof: See Appendix B. O sinusoidal signal with frequenwdl,wg), and Cioy wo (711,712)

The need to enforce Conditia@ limits, to some extent, the denotes the noise (or residual) term at frequefey, ws),
importance of the previous result. Indeed, the assumption ma&deich is assumed to be zero mean. Next, in a manner similar
in C is satisfied if (and essentially only if) the signglz) has to the 1-D case, we form th&f; x M, forward and backward
a mixed spectrumand w is the location of a spectral line.data matrices
The result of Theorem 1 is relevant to the spectral analysis Y (1, 1) = {y(n1,ms),

. . . i =l,....,1+M -1
of a target with dominant point scatterers in the presence M= it M

of distributed clutter (see [1] and the references therein). ng=ly,....lo+ My — 1}
In some other applications, however, the main interest is Y(l1,l2) = {y*(n1,n2)
in the continuous component of the spectrum. For example, ni=N —li—1,...,Ni = I, — M,

ConditionC does not hold exactly for a target with distributed o
. . . . ﬂQ—NQ—ZQ—].,...,NQ—ZQ—MQ}

scatterers since the signature spectrum is continuous at

That the previous result is of a somewhat limited interest L=01....In-1 1=01,...,Lr—-1 (52)
|s_also dge to |t$\sympt9t|c charactenndeed, in appl|cat|on§ whereL; = Ny — My +1andL, = Ny — M, + 1. Let
with medium or small-sized data samples, the spectral estima- B
tors under study have been found to behave quite differently v, 1) = vedY (i, b)) (53)
in contradiction with what is pred_icted by the (_asymp_totic) y(li,12) = vedY(ly, )] (54)
result of Theorem 1 (see the numerical examples in Section V). . _
The finite-sample analysiof the spectral estimators undethere ve¢| denotes the operation of stacking the columns of
discussion would consequently be of considerable interegtmatrix on top of each other. Let
However, a complete analysis, if possible, appears to be rather
difficult at best. Apartial one, by making use oflaigher-order
Taylor expansion techniques nevertheless feasible. The resulivhere ® denotes the Kronecker matrix product, and
follows.

Theorem 2: To within a second-order approximation and2a (wr) =11
under the mild assumption that the third-order moments ¢

Een,‘ l1,1x) andy(i1,l5) can be written as
€. (n) andé,(n) are zero, Capon is biased downward, whereas yli,l2) yl2)

ang, o, (Wi, wo) = ang, (we) @ ang, (wr) (55)

o JdMeDeT p =1 2. (56)

APES is unbiased, that is v, 1) = [@(W:L,w)aMl,Mz (wl7W2)]ej(wlzl+wzlz)
LE{&Ca.pon(w) - OC(CU)} 0 (49) + éwl sw2 (ll7 12) ' (57)
ow) - Y(l1,12) = [alwr,w2)an, a, (wi, ws)] e Critestz)
and + éwl,wz (l17 l?) (58)
LE{Gapps(w) — a(w)} =0 (50) Where

o - _ d(wy,wa) = a*(wl,wg)(z—j(N‘_1)“‘e_j(]v2_l)‘“'2 (59)
for sufficiently large values of.. Additionally, the bias for

the forward-backward Capon is half that of the forward-onlgnde,,, .., (/1,12) ande,, ., (l1,{2) are, respectively, formed
Capon. from {e., «,(n1,n2)} in the same ways ag(l1,l;) and
Proof: See Appendix C. O  y(l1,ly) are made from{y(ni,ns)}.
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Suppose that the initial phase of the sinusoidal signal of (51)The Capon method estimates the noise covariance matrix as
is a random variable uniformly distributed over the interval .
[0, 27) and independent of the noise term. Then, the covarian@®@ wlvf”?)

matrix of §(I;,15) or, equivalently, ofy({1,1,) is given by =R — |&(wr, w2)Pan,, v, (w1, w2)aly ap (wi,w2) (72)
= |a(wr, wa)|*an, m, (Wi, wa)afy, a, (wi,w2) where &(w;,w2) denotes some estimate ofw;,w»). The
+ Q(wy, ws) (60) Q(wri,w2) in (72) can be shown to be persymmetric. There-

_ . . fore, with (72) substituted in (66) and then (66) substituted in
where Q(w1,w2) is the covariance matrix @, ., (l1,12) Or (71), we obtain the Capon estimate @fw:,w-) as
é., wy(l1,12). By making use of the fact that

aH (w17w2)f{_lg(wlvw2)
y(i,lo) =Jy" (L1 —l1 —1,Ly —lo — 1) (61) GCapon(w1,w2) = My Mo

a]\Hh?MZ (w17 WQ)R_laJ\ll,J\lz (wb w2) '

we can see thaR is persymmetric. Similarly,Q is also (73)
persymmetric. The APES estimate of}(w;,w>) takes the form
The forward-backward sample covariance matrix takes the A -
form P Q(wi,wz) = R — G(wy,w2) G (wy, w1) (74)
R= (R+R) (62) “Where
1 -
. 5 _ . G(wi,wz) = —=[8(wr,w2)  glwr, w2)]. (75)
where R and R denote the sample covariance matrices of V2
{7, 1)} and {y(i1, 1)}, respectively, given by By observing (61), (69), and (70), we can show t@¥t.; , w,)
. Li—1Lz—1 is also persymmetric. Hence, (71) can be used to obtain
R= L1L2 lz_:o lz_:o ¥(l1, )37 (1, 1) (63)  @apes(wi,w2) as
. Li—1Lo—1 dares(wi,w2)
= L1L2 Yo > )y, ). (64) _ agy, a, (W1, w2) Q7 (Wi, wo)g(wr, w2) (76)
11=0 lI;=0

aﬁth (w1, WQ)Q_I(M, w?)aMl,Mz (wl s w2) .

By making use of (61), we can see tiiais also persymmetric. Based on the 2-D extensions described above, it is not

2 I:L)eItZIII;QwalIw dengttla the impulse response of afy x Mp difficult to see that all the results of the previous section also
) liter, and let hold true for the 2-D Capon and APES estimators. Indeed,
h, o, = vec[Hy, o, - (65) as seen in Appendixes B and C, the proofs of these results

o _ are critically dependent only on the persymmetric property

Like in the 1-D case, the impulse response of the matchgflthe true and sample covariance matrices or, equivalently,

filter is given by the conjugate symmetry properties as shown in (9) and (61).
B Q (wy, w2)an, g, (w1, ws) Therefore, the proofs for the 2-D estimators follow the same
by w, = - . pattern as those for the 1-D case, and thus, they are omitted.
Ang, My (w1,w2)Q (w17w2)aMl,Mz (w1,w2)
(66)
Since V. NUMERICAL EXAMPLES
h:‘rwzaMth (wiyw2) = 1 67) In the following, we study the Capon and APES complex

amplitude estimates in a number of cases of interest. For
the LS estimate ofr obtained from the filtered data is givenboth the 1-D and 2-D examples given below, we compare

by [similarly to (21) in the 1-D case] the performance of the forward-only Capon and APES as
1 ’ well as the forward-backward Capon and APES, which are,
dwy,ws) = 3 [ | E(wi,ws) + I N1—De for simplicity, referred to as FCapon, FAPES, FBCapon, and

FBAPES, respectively.

x ¢ I (No—D)ws gH(wl, wa)hy,, MQ] (68)
where A. One-Dimensional Complex Spectral Estimation

Li—1Ly—1 The 1-D data used in the examples consists of a sum of 15

glw,wa) = 7 L >0 gl lp)emItahiteelz) - (89)  complex sinusoids with the real and imaginary parts shown
1220 =0 in Figs. 1(a) and (b), respectively, corrupted by a zero-mean
Li—1Ly—1 complex white Gaussian noise. The data length is chosen as

g(wi,wr) = T L Z Z (Iy,lp)e(titezla) — (70) N = 64. In what follows, we are interested in the bias and
L2 20 =0 variance properties of the estimators under study. The bias and

variance results shown below correspond to the frequency of
the first sinusoid, and they are obtained from 100 independent
d(wi,w2) =hl | glw,ws). (71) realizations.

Since Q is persymmetric, (68) can be written as
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Fig. 1. One-dimensional complex amplitude of the sum of 15 sinusoids used in the simulations. (a) Real part. (b) Imaginary part.

We begin by studying the performance of the estimators aslt is known that asM increases, all of the estimators
the signal-to-noise ratio (SNR) varies. The SNR for #fie under study achieve better spectral resolution and that the

sinusoid is defined as best resolution is obtained & = N/2 [1]. This fact, along
o2 with the statistical results shown in the previous examples,
SNR, = 10log;, m (dB) (77) indicates that the choice a¥/ for Capon should be made by

a tradeoff between resolution and statistical stability. Usually,

where oy, is the complex amplitude of théth sinusoid, and We chooseN/4 < M < N/2. Although the choice of\/
P.(wy) is the spectral density of the additive noise at frequené§” Capon is difficult to make, it is easy to see that APES
wk. The filter length is chosen a&/ = 15. The real and achieves the best performancedt = N/2 since with this

imaginary parts of the bias are shown in Figs. 2(a) and (tgjoice, APES achieves the highest possible resolution as well
respectively, as a function of SNRAs seen from these 85 the best statistical properties in terms of bias and variance.
figures, FAPES and FBAPES are almost unbiased, wherdd Previous examples also show that FAPES and FBAPES
FCapon and FBCapon are biased downward. In additig?erform similarly in terms of bias and variance properties for
we notice that the bias for FCapon is approximately twidd® frequency of interest. . _
that of FBCapon. All these observations are consistent with T0 compare the computational complexities of the estima-
the prediction of the theory. The variances of the real af@rs under study, we count the flops required by each of them

imaginary parts of the amplitude estimates are shown ffr the case, wher&/ = 64, M = 24, and the complex spectra
Figs. 2(c) and (d), respectively. It appears that all of tHd€ evaluated at 256 equally spaced points. The flops required

estimators display similar variances. However, as shown in tR% FCapon and FBCapon are approximately the same, whereas

next example, the variance of Capon becomes notably lar§fa¢ flops needed by FAPES and FBAPES are, respectively,
than that of APES as/ increases. .08 and 1.41 times of that by the Capon estimators.

Next, we study the effect of the filter lengthy on the
estimators. The SNRis fixed at 20 dB. AsM varies, the
real and imaginary parts of the bias are shown in Figs. 3(%)
and (b), respectively. From these figures, we can see thaAs was mentioned in Section IV, the 2-D Capon and
both FAPES and FBAPES are unbiased for all practical fité&fPES estimators behave rather similarly to their 1-D coun-
lengths, whereas the bias of Capon grows significantly withrparts. Since the problems encountered in applications such
increasingM. (A practical filter length means that/ should as synthetic aperture radar imaging are concerned with 2-
not be too small [1]. In fact, all filterbank methods reduc® complex spectral estimation, we include a couple of 2-D
to the Fourier transform approach whéd = 1, and only numerical examples here. The data employed consists of three
when M is sufficiently large, the filterbank approach show&-D sinusoids corrupted by a 2-D zero-mean complex white
noticeable improvement over the Fourier method [1].) AlGaussian noise, withV; = N, = 32. The sinusoids are
estimators seem to perform similarly f&¢ up to a fourth of located in the frequency domain @.2,0.2), (0.25,0.25) and
the data length, with Capon being slightly biased downwar(h.4,0.7), and their amplitudes ar€™/*, ¢/*/* and 0.7¢7™/*,

As the filter length increases further, the performance of Capmspectively. The bias and variance for the amplitude estimate
degrades rapidly, whereas that of APES remains unaffectefl.the first 2-D sinusoid are obtained from 100 independent
This observation is strengthened by the variance results shawalizations. The SNR for théth 2-D sinusoid is similarly
for the real and imaginary parts of the amplitude estimates defined as in (77). The bias and variance of the four estimators
Figs. 3(c) and (d), respectively. under study versus SNRare shown in Figs. 4(a) to (d),

Two-Dimensional Complex Spectral Estimation
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Fig. 2. Empirical bias and variance of the 1-D MAFI estimators as SM&ies whenN = 64 and M = 15. (a) Real part of the bias. (b) Imaginary part
of the bias. (c) Variance of the real part of the estimated amplitude. (d) Variance of the imaginary part of the estimated amplitude.

respectively, wherelf; = M, = 8. Figs. 5(a) to (d) show APPENDIX A
the statistical results as the 2-D FIR filter length varies, where PROOF OF (39)

SNR; is fixed at 20 dB. We assume in Figs. 5(a) to (d) that the use of the MAFI filter given in (38) for spectral

M, = M>. As seen from these plots, the performance Qfsiimation requires an initial estimate @fw). However, we

the 2-D MAFI estimators indeed resembles that of their 1.1 avoid that in the following way. By (25), the LS estimate
D counterparts, and therefore, we refer the readers to the dea(w) using the MAFI filter is given by

examples for comments.

dnarr(w) = hiig(w) (78)

VI. CONCLUSION

We have studied the forward-backward MAFI approachesYéZere h‘“ IS given by .(38)' Subsutuyng (38) into (78), and
complex spectral estimation. The Capon and APES estimatBre " simple manipulations, we obtain

are shown to belong to the class of the MAFI methods. B A 1 A A

using a higher order expansion technique, we have prov%zliﬁR_laM — ~(g"R7'g)(a}; R ay)

that to within a second-order approximation, Capon is biased, 2
whereas APES is.unbiased and that the bias of the forward- 1|agf{f{—1g|1 AMAFT 4 [_(af{f{—lg) (8"R'ay)
backward Capon is half that of the forward-only Capon. We 2

also show that all these conclusions carry over to the 2- 1, a1/ HY -1 2 H{—1-

D MAFI estimators. Since, computationally, APES is only §(g R7g)(ayR aM)}m“AFI =ayR™g (79)
slightly more involved than Capon, the preference of APES

over Capon in practical applications follows logically becausghere we, like before, omit the dependence.dior notational
of the better statistical properties associated with the formesimplicity. By borrowing the notations defined in (41)—(43),
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Fig. 3. Empirical bias and variance of the 1-D MAFI estimators as the filter lehfjtharies whenV = 64 and SRN = 20 dB. (a) Real part of the bias.
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the solutiondyarr to (79) is straightforward to obtain where
GMAFI , , , , I
1 A = ||lvo|]7||lvs|]? — 2||lv2||” — 2||vsl||” — (vavs|” +4. (82)
— I/f{llg _ 5”1/3”2(1/{{1/2) || || || || || || || || | 2 |

Substituting (81) into (45) and performing some simple ma-
nipulations, we obtain

1 1
+ el = Sl
Lo e m 2, Y g 2 1, s g o2 & APES
— — + — - —
11HV2H |V1 V3| 21" V2| 4HV3H |V1 V2| = [41/;{{1/2 —2||V3||2(Vf{1/2)
+ Z(Vl va) (vi'vs) (vy'vs) +2(vfws) (13 va) "/ [IIva P vl P llvs|?
Lom om0 gove Loy 2} = 2w [Plal? = 2w |Pvs]” + 4l
+ - - .
gite) i) ve) = gl Pzt e val” = ol ] + 2o
(80) + (l/{{llg)*(l/{{llg) (1/511/3)* + (l/f{llg) (Vflyg)*(yfyg)
Next, we evaluate the APES estimator as given by (45). We — ||1/2||2|1/f{y3|2 + 2|y{{y3|2]. (83)
first compute theE—!
=1 = 2 ||”3|1|;_2* _”52{"3 } (81) Comparing (80) and (83) confirms that APES and MAFI
A=) el -2 coincide. O
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Fig. 4. Empirical bias and variance of the 2-D MAFI estimators as SN&ies whenN; = N» = 32 and M; = M, = 8. (a) Real part of the bias. (b)
Imaginary part of the bias. (c) Variance of the real part of the estimated amplitude. (d) Variance of the imaginary part of the estimated amplitude.

APPENDIX B
PROOF OF THEOREM 1

From (4) and (7), we have

g=aay+6
g=day +96

where$ and 8, respectively, are defined as

1 L—-1 )
6= 7 8. (eIt
=0
L—-1
.1 .
5= &, (eI,
=0

L—-1L-1
B{86™) = 5 > O B{eell (ty}e W
{=0 k=0
L—1

(84) =7z > (L-liDR@e (92)

i=—(L—1)
(85) L-1L-1

E{861} = 23" 3" Be (&l (k) et
=0 k=0
(86) == > (L—[ihRe(@)e ¥ (93)
i=—(L—1)
(87) where{R.(¢)} is the covariance sequence&f(l) or é..(I).
Note that (90) and (91) are due to the circularly symmetric

First, we calculate the first- and second-order moments ofdistribution assumption. It then follows from (92), (93), and

and é
E{6}=0
E{6} =0
E{66T} =0

E{66T} =0

Condition C that

(88)  Lim LE{§ET) = Jim LE{85"}

(89) L—oo =
(90) = > R.(i)e ™ = P(w)ayal] (94)
(91) i=—o0
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where the last equality follows from the standard results on tiid@en, it readily follows that
transfer of spectral densities through linear systems. Among

othe(s, the previous caIE;uIatiolns imply that As— o, g LE{(4—a)?} =0, asL— o (98)
and g tend to cay, and aap, (in the mean square sense), ) :
respectively. GG*, therefore, goes tda|?apall. Hence,
hSaren and hAPES have the same limit aé — . and
Let h denote a generic FIR vector, and let, denote the _ ) o -
deterministic vector that is the limit of (the possibly random) lim LE{|& —af"} =h lim LE{66" the
h when L goes to infinity. Observe that for all methods under _p L 2_p 99
study, the associatell andh., vectors satisfy = P(w)[hZam|" = P(w)  (99)
h'ay, =1, and hay =1. (95) and the proof is concluded. O
By using this observation with (25) and (84), we obtain APPENDIX C
N WE 96 PROOF OF THEOREM 2
a=hig=adt ‘ (96) Proof of (49): By using (27) and (96), we obtain
Since é tends to zero ad. goes to infinity, it follows from . af{f{—lg
(96) that the estimation error can be asymptotically written as *Capon — ¥ = 2l R—lay R-lay, (100)
M

(to a first-order approximation)
In what follows, we use the symbel to denote an “asymptotic

(97) equality” that holds to within aecond-ordemapproximation.

~ ~ H
&—a~hlé.
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A straightforward manipulation of (100) yields By using these facts, along with (102), we can write
_ 2
CA)éCapon — (a]\H{R lal\l) E{aCapon - Oé}
al(R'1-R 1§ alR 1§ Hp-1 LHp 1/ a5, ~+ay (o HR-15

— _ + - ~Ex (ay R tay) —§aMR (a*6+a*8)(ay;R16)

aﬁR*laA4 aﬁR*laA4 1
_ all R~ H(R —~R)R16 RS - §(aAH4R_1aM)(ocSH +asR™16

aMR—laM
1 1 1 ( MR 15){ MR_ (o *5‘*‘”‘5 ( J\Hl aM)

afR-1a all R-1ay aliR-lay 1

ij . M M - . ]\41_ + (a]wR aM)(atSH + CY(SH R~ a]\l:| }
__ayRT(R-RR'S N allR™1é 2

ajiR=tay afiR™tay = 5E{o/* (aMR*16) (afR tay)

aJ\Hlf{_Algaj\Hl(R_]L — f{_l)aM
(afR~tay) (affR™1ay)

_allR"Y(R-R)R™ 6+ allR™16

+a* (aﬁR_IS) (aAHfR_lg) (aAHfR_laM)
+ oc(aAH4R_1aM) |aAHfR_13|2

a]\H4RflaM a]\H4RflaM +d(a1\HfHR_1?M) (aMR 1‘15) 6HR aM)
(al R-16)allR-1(R — R)R~1ay 101 — o (aliR™'ay) (ali R716)” ]
(aJ\HlR_laM)Q (o) — & (ajyR ™ an) (ajfR7'8) (af;R™10)

2

— a(aAHfR_laM) 6HR 16
— d(aﬁR_laA4)2 6HR 16 }
1
= 2 (aMR a]w) {|a]\lR 16|
(6"R716)}. (106)

which, in turn, implies (102), shown at the bottom of the page.
Next, we note that

L—1 —
R— i ; [(ccanse?! + o(D)) (aapre?™! +é(l))H (afjR™'ay)
By the Cauchy-Schwartz inequality, the quantity between the
) o curly parentheses in (106) is negative and so is its expectation.
= la[anray, + 5( Hence, (49) follows.
1 b=l oy 3 e The bias for the forward-only Capon spectral estimate
+ 2L —~ [e“(l)e“ (1) +euDes (l)]' (103) éCapon can be obtqined by replacing the forward-backward
sample covarianc&® in (100)—(102) by the forward-only
sample covariance matrif{, as defined in (12), and by
following a similar treatment we did in (106). The result is
(to a second-order approximation)

+ (Gapre’™t + &(1) (Gan et + é(l))H]
_ - 1 _ .
a6 + a*b)all + gaM(oaSH + a6t

We also recall (88) and the assumption teatn) andé, (n)
have zero third-order moments. Since

ew(l) = Jéw(L -1 - 1) (104) (aAH{Rila]w)QE{CQMCaPOH _ CM}

~ a HRfl E HR715 2
which is like (9), we have a(ay R "ay) E{|ayR 4|

— (afiR™'ay)(6"R716)}. (107)
L-1 L-1
< 1 ~ —jwl __ 1 — % —jwl L A . .
6=7 ) &)™ =5 > Jer(L—1-1)e Hence, to within a second-order approximation, the bias of
=0 B =0 . the forward-backward Capon is indeed one half that of the
— e—iw(l-1 ] L Z &, (k)em ik | = gmiw(L-1)3§%, forward-only Capon. X a
L~ Proof of (50): By making use of the fact th&@* T —Q =

(105) O(1/+/L), (50) can be proved similarly to (49). By (33) and

(102)

—(aﬁR_lf{R_IS) (aﬁR_laM) + (aﬁR_lf{R_laM) (aﬁR_lg) }

(a]\H4R—1aM) 2

E{éacapon — o} = E{
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Therefore, we obtain
(aJ\HlQ_laM)QE{CAYAPEs — a}
~ E{-(afiQ*QQ~16) (aliQ 'an)
+ (i Q7'QQtay) (afiQ716) ). (109)

Next, note that

1 . 1 1 _
2 H ~w & H H
= |o|"apay + 3 a*éal + = 5 aréall + QaaMé
L-1
1. - 1 P O P , : :
+ Zaay 6 + = [ew(DeX (1) + e, (HeX (1)] Jian Li (S'87-M'91-SM'97) received the M.Sc.
2 L o and Ph.D. degrees in electrical engineering from The
1 1 Ohio State University, Columbus, in 1987 and 1991,
H - cH -+ « respectively.
— laf*anay; 2aaM¢5 5« 6aM - From April 1991 to June 1991, she was an

s,
-
. _ s - Adjunct Assistant Professor with the Department of
- ~*tSaJ\Eg — [66H + 66H] - Electrical Engineering, The Ohio State University.
2 From July 1991 to June 1993, she was an Assistant
1 k= . . Ib Professor with the Department of Electrical Engi-
= — e . (De e . (De neering, University of Kentucky, Lexington. Since
2L Z [ (el (D) + el (l)] August 1993, she has been with the Department
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ational Science Foundation Young Investigator Award and the 1996 Office
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order approximation)

N =

1 ~
— “aay b7 —
2068]\/[

E{CAYAPES — a} ~0 (111)
and the proof is complete. Petre Stoica (F'94) received the M.Sc. and
p i . . D.Sc. degrees, both in automatic control, from
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this implies that the second-order approximation previous
used for bothE{&capon — e} aNd E{éaprs — a} is O(1/L).
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