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Abstract

AC power lines have been considered as a convenient and low-cost medium for intra-building
automation systems. In this paper, we investigate the problem of estimating the channel order and root
mean squared (RMS) delay spread associated with the power lines, which are channel parameters that
provide important information for determining the data transmission rate and designing appropriate
equalization techniques for power lines communications (PLC). We start by showing that the key to
the RMS delay spread estimation problem is the determination of the channel order, i.e., the effective
duration of the channel impulse response. We next discuss various ways to estimate the impulse
response length from a noise-corrupted channel estimate. In particular, four different methods,
namely a signal energy estimation (SEE) technique, a generalized Akaike information criterion
(GAIC) based test, a generalized likelihood ratio test (GLRT), and a modified GLRT, are derived for
determining the effective length of a signal contaminated by noise. These methods are compared with
one another using both simulated and experimentally measured power line data. The experimental
data was collected for power line characterization in frequencies between 1 and 60 MHz.
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1. Introduction

Traditional communication carriers for home and building automation systems have
been twisted pairs, coaxial cables, or optical fibers. However, the infrastructures of using
such media are usually expensive to deploy. In contrast, AC power lines, which have
already been installed in nearly every home and building and can be easily accessed via
wall socket plugs, provide a convenient carrier for communications in home and building
automation systems. The cost of such systems may be drastically reduced if power lines
can be utilized in place of conventional data transmission media. In addition, power line
communication (PLC) systems are subject to few regulatory issues. For these reasons, PLC
has received much interest recently [1].

In spite of the above stated advantages, power lines do not represent a friendly envi-
ronment for data transmission since they were not designed for such a purpose. Variable
attenuation and impedance, impedance modulation, impulse noise, and continuous-wave
jamming have been the major obstacles to reliable communications in PLC [1]. The recent
applications of spread spectrum and forward error correction techniques to PLC have been
quite successful in removing or alleviating the noise impediment [1-5]. Additionally, the
consumer electronic bus (CEBus) has also been widely adopted, which provides a standard
communication network protocol for the PLC industry [1,2,6]. As a result of these efforts,
various PLC devices are on the market today.

Like any other communication systems, the performance of PLC is determined by a
number of channel parameters, such as impedance, noise, signal attenuation, and root
mean squared (RMS) delay spread. Extensive characterizations of the noise, impedance,
and signal attenuation on power lines at frequencies up to 500 KHz are available in the
literature (see, e.g., [7-9]). Most PLC devices currently on the market are also designed
for this frequency range. These devices are usually good for applications with data rates
lower than 100 Kbps. For video transmission and other similar applications, however, the
data rates are in the range of Mbps, which corresponds to a much wider frequency band,
typically in the range of 1-60 MHz. It is known that channel order and RMS delay spread
are important parameters that affect the data transmission rate over the channel. A careful
characterization of these parameters is therefore of particular importance for reliable high-
speed data transmissions over power lines [10,11].

Following the general assumption for most communications channels, we herein assume
that the PLC channel is a finite impulse response (FIR) filter [10,12,13]. The purpose
of this study is to investigate the problem of channel order and RMS delay spread
estimation for PLC. In practice, the PLC channel impulse response can be measured using
some channel sounding technique, such as the impulse channel sounding described in
Section 4.2. The measured channel impulse response can be considered as the true impulse
response contaminated by measurement noise which does not vanish with time. With this
observation, one needs to determine from the noise-contaminated channel estimate the
effectiveduration of the impulse response, outside which the measurements are primarily
attributed to the noise.

In this paper, we present a number of methods to solve the above effective signal length
estimation problem. The first method under consideration is a signal energy estimation
(SEE) based test. The idea of this method is to estimate and accumulate the signal energy
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from each data sample until when the contribution from the remaining data measurements
to the total signal energy becomes insignificant. This specific point in time is then identified
as the terminating point of the signal. The second test makes use of the generalized Akaike
information criterion (GAIC) [14], a statistical criterion that has been extensively used for
model structure selection in system identification [15] and many other applications (see,
e.g., [16]). As we will see, both SEE and GAIC involve parameters of user choice which
may affect the performance of these tests, and yet it is unknown how to make such choices
precisely in order to have the desired performance. To circumvent this difficulty, we derive
ageneralized likelihood ratio test (GLRT) to deal with the effective signal length estimation
problem. Although GLRT has a more predictable performance, it is a valid test only when
a large number of data samples are available. With limited data length, the performance
of GLRT is also limited. The final method we consider for signal length estimation is a
modified GLRT. The modified GLRT overcomes the drawbacks of the other three tests but
retains their advantages. It is found that the modified GLRT works well in both simulated
and experimental examples and may be the preferred method in practice.

In addition to PLC, the proposed algorithms can be used in other applications as well.
For example, in orthogonal frequency division multiplexing (OFDM) communications
systems, each OFDM symbol containsyelic prefix(CP) to combat channel dispersion
[12,17]. In order to effectively remove the inter-symbol interference (ISI) at the receiver,
the duration of the CP has to be longer than the impulse response of the channel. On the
other hand, using the CP introduces a bandwidth and energy loss which are proportional
to the length of the CP, implying that the length of the CP should be made as small as
possible. Therefore, an accurate estimate of the channel order plays an important role in
determining the length of the CP.

The remainder of this paper is organized as follows. Section 2 formulates the problem
of interest. In Section 3 we derive the four proposed tests for effective signal length
estimation. Numerical examples that compare the four tests are presented in Section 4.
Finally, we summarize the study in Section 5.

2. Problem formulation

In the study, the impulse response of an AC power ki@ is assumed to have a
finite durationM [10-13]. This assumption also allows the case whém decays fast
enough such that beyond a certain point in tinxe) becomes insignificant, i.es(n) ~ 0
forn > M. Givens(n) and the (effective) signal lengt¥f, the associated mean delay and
RMS delay spread normalized with respect to the sampling interval can be determined as

M 2
PEpY LA L) ()
Zn:l s€(n)

and, respectively,

M _ 2.2
S D opeq(n—p)%s (n). @)

Sl s2(n)
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In practice, the power line impulse response) is seldom known exactly. A typical
way to estimate (n) is to measure the frequency response of the power line channel using
some channel sounding technique and then apply the inverse Fourier transform to the
estimated frequency response (see Section 4). The resulting signadan be considered
as an estimate af(n) contaminated by noise:

x(n)=sn)+en), n=12,...,N, 3

wheree(n) denotes the estimation error which is modeled as a zero-mean white Gaussian
noise with unknown variancee2 and is assumed to be independent @f) [10,11], and
N is chosen such thaV »> M. The problem of interest here is to estimate the channel
orderM and the RMS delay spreagkys from the measurements (n)},’z’zl.

Supposing first tha¥ is known, we can estima{e(n)},i”:l by the maximum likelihood
technique. Specifically, the negative log-likelihood functiodxof)} is (see, e.g., [18])

M N
N 1
Vi = Ino? + 57 S [xm —sm]?+ > x2m) { + constant (4)
n=1 n=M+1

The maximum likelihood estimates Of(n)} andaf are obtained by minimizing the above
cost function with respect to the unknown parameters, which yields

Sm)y=xm), n=12,...,.M, (5)
and
1 X
~2 2
O’e—ﬁ Z x“(n). (6)
n=M+1

Using (5) and (6) in (4) gives
. N, .,
min _Vy = —Iné; + constant @)
{s()}, 02 2

If M is known, we can replace(n) in (1) and (2) bys(n) to obtain an estimate of the
RMS delay spread. The remaining question is how to estimate the signal lengthich
is discussed next.

3. Signal length estimation

In this section we derive four different tests to estimate the effective signal léigth
namely the signal energy estimation (SEE) based test, the generalized Akaike information
criterion (GAIC) based test, the generalized likelihood ratio test (GLRT), and the modified
GLRT.
3.1. SEE based test

The SEE based test consists of choosing a sufficiently largatisfyingM < L < N
so that the noise variance can be estimated by u{s’tm@)},’;’: ;» Calculating the total
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signal energy based on the noise variance estimate, and using the signal energy estimate
to determine the signal length. Specifically, let y denote the total average energy of
{x(n)}n _,» thatis,
N
Ery2)  E[x*(n)] =N - L+1o?, (8)
n=L
whereE[-] denotes the expectation. The total noise average erergy

E, *ZE 2(n) N L+1 Ein. 9

Let E, denote the total average energy ), i.e., Ex = ZflvzlE[xz(n)]. The total
deterministic signal energy is obtained As£ Z,’,V:lsz(n) = E, — E.. In practice,E,
andE;y can be estimated @, = YV, x2(n) andE.y = Y.V, x%(n), respectively. It
follows that an estimate df; is

—— —Ern. 10
N—L+1 (10)

The proposed SEE test calculates the signal energy contribution at each data sample,
which isx2(n) — E}/N. The signal energy estimate at each individual data sample is then
accumulated and compared with the in (10). In more exact terms, the test consists of
the following steps:

Stepl. CalculateE using (10).

Step2. SetM =1 andE/ =0.

Step3. ComputeES’ = ES +x2(M) — Ee/N. Here, the updateéi’ is the estimated total
deterministic signal energy up to time ind&k

Step4. If E/ >« E; or M = L, then the signal length estimatésge is equal toM and
the test stops; otherwise, set= M + 1 and go to Step 3. Here, is a parameter of user
choice, typically 09 < « < 0.99.

It should be noted that the choice bfshould be made with a trade-off in mind. Spe-
cifically, a smallL may look appealing at a first sight since itimplies that the noise variance
estimate will be generated using more data samples and thus will have a better statistical
property. On the other hand, a too smalimay violate the conditiod. > M and produce
inaccurate noise and signal energy estimates, which will ultimately affect the signal length
estimation accuracy.

As one can see, the SEE test is a method based on intuitive calculations of the signal
and noise energies. It is simple but with a somewhat limited capability for detecting signal
boundaries (see Section 4 for details). As such it is necessary to derive more sophisticated
techniques that may yield better performance for signal length estimation.

-~

E,=E, —

3.2. GAIC based test

The generalized Akaike information criterion (GAIC) has been a popular statistical
criterion for model structure selection in system identification [14,15]. We describe here
how to adopt this criterion to determine the effective signal lergth
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The GAIC cost function has the form [14,15]
GAIC,; = V;; +yIn(INN)(M + 1), (11)
where (see (6) and (7))

N
szgln(% > xz(n)>. (12)

n=M+1

Here, M is assumed to be the signal lengtt(+ 1) is thus the total number of unknown
parameters for the data model in (3)), ands a parameter of user choice. The GAIC
estimate]VIGNc of the true signal lengthd/ is obtained by minimizing the above cost
function with respect td. It should be noted that the double logarithniliny) in (11)
gives the slowest rate at which the second term in the right-hand side of (11) should
increase withN to guarantee the consistency of the signal length estimate obtained by
minimizing (11) [19].

The proposed GAIC based test determingsaic by the following steps:

Stepl. Choose a sufficiently large so thatM < L < N.

Step2. Calculate the cost function GA}Cfor M=12,... L.

Step3. The GAIC estimate o# is obtained as

Moaic =argminGAIC,;,, M=12,...,L. (13)
M

Remark 1. As one may have noticed, using either the SEE or GAIC based test for
determiningM involves user parameters, vizin SEE and they in GAIC, which may

affect the accuracy of the signal length estimate, but whose choice is not easy. Specifically,
making a choice of these parameters to achieve a certain probability of detection (or
missing) is not really possible. It would be desirable to derive methods that can somehow
control the risk of making a wrong decision. Such methods should be of greater interest in
real applications.

3.3. GLRT

The generalized likelihood ratio for testing = M againstM = M + K (for some
K > 1) is given by (see (6) and (7)) [15]

1 I 1 Y
A:Nln[ﬁ Z xz(n)j|—N|n|:ﬁ Z xz(n)j|
n=M+1 n=M+K+1
N2
=Nln[ ZN"=M+1X (zn) } (14)
Zn:M+K+lx (n)

For N > 1 and under the hypothesis

Ho: M>M, (15)
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it can be shown thatt is x2 distributed withk degrees of freedom, denoted by
A~ x2(K). (16)

To see this, we rewritel as follows:

M+K 2 5 M+K 2
::M+K+1x2(”) 5=M+K+1x2(”)
Let
1 N
53=N Z x2(n). (18)
n=M+K+1

Here,5 2 is an estimate of2. Note that forN > 1,52 ~ o2, In view of this observation,
we have (undeHp)

1 M+K
~ 20\ o o2
ANU_E Z x%(n) ~ x2(K), (19)
n=M+1

which proves (16). R
The GLRT for determining the signal length estimadg rt is summarized below:
Stepl. Choose a thresholdfrom a table of thex 2 distribution such that

Priy <ily~x%K)} =a, (20)

where 09 < o < 0.99 (see the discussions below).

Step2. SetM = 1.

Step3. CalculateA according to (14).

Stepd. If A <A atM and alsaA < A is true in more than 99% of the cases correspond-
ingtoM +1, M +2,...,L — K, thenMgLrt = M and stop; otherwise, séf = M + 1
and go to Step 3.

A brief explanation of Step 4 is as follows. For the reason discussed in Sectidd &4,
a small integer, typicall)k < 10. However, a smalk may be a bad choice for signals that
are small over some intervals within the signal duration, such as the sinc-like test signal
used in Section 4. Whel happens to be in one of those intervals and &lsie too small
to include any significant signal energy in the denominator of (17), it is very likely that
the inequalityA < A will be true. Hence, to find out the real signal boundary one has to
check the inequalityl < A not only atM but at the rest data samples as well. We shall
keep in mind that even if the boundary sample has beemhit,». may not be true for all
of the rest data samples due to the random nature of the noise. Nevertheless, the inequality
should hold true for the majority (e.g., 8%) of the rest data samples beyond the signal
boundary.

Observe that the risk of rejectinp when Hg holds (the probability of false alarm)
equals 1- «. In general, the risk of acceptinp when it is not true cannot be determined
for the statistics introduced previously unless one restricts considerably the class of
alternative hypotheses against whighy is tested. Thus, in applications the valuecof
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or, equivalently, the test threshaolds chosen by considering only the probability of false
alarm. Doing so, we shall keep in mind thateagcreases, the probability of false alarm
decreases, but the other type of risk increases. Typiaalig, chosen between 0.9 and
0.99 [15].

Remark 2. It should be noted that the above GLRT is a valid test only wNer> oo.
Additionally, 2 is a poor estimate ob2 if N is not large enough, particularly so if
M + K +1 < M. It would be of interest to modify the GLRT somehow such that the
above problems are avoided. Such a modified GLRT indeed exists, as discussed next.

3.4. Modified GLRT

As mentioned in the previous sectiaré in (18) is usually not a good estimate @}.
A better estimate is

N

2 1

Uezzm Z x%(n), (22)
n=L+1

whereM < L < N. We now replace thé?2 in (19) by the abové 2 and define

M+K 2
N-L Z:n=ll;1+1x (1) aN-L m
K ZLLHXZ(”) K p2

Under the hypothesiBlp, we havep; /a2 ~ x2(K) andpz/o2 ~ x2(N — L), respectively.
Moreover, if M + K < L, p1 andp, are independent of one another. It follows that under
the above conditionsA is F distributed withK and N — L degrees of freedom [15],
written as

A~F(K,N—1L). (23)

Observe that (23) holds in finite samples, whereas most other tests, including the original
GLRT, requireN — oo.

The choice ofK should be made carefully. Fo¥ > M, this is perhaps not very
important since anyk > 1 will lead to a similar performance. Fai < M, however,
the choice becomes more critical. To reduce the risk of underestim@tirgsmallK is
recommended. To see this, let us assume khas$ very large such thak > M. Then
underestimating/ by 1 or 2 will not increase; too much (particularly so iM is small),
and hence the risk of underestimatifgmay be large. As a result, a smalkgrin this case
should be used. However, as mentioned in Section 3.3, a gmalh bad choice for signals
that are small over certain intervals within the signal duration. In a way similar to what we
adopted there, we recommend chooskngl 10, computinga for M =1,2,..., L — K,
and, finally, determining/ as theM at and beyond which the inequality < § holds in
more than 98% of the remaining cases correspondingfe- 1, M+ 2, ..., L — K . Here,
8 is a threshold determined such that

Plz<8|z~F(K,N-L)}=aq, (24)
andua is between 0.9 and 0.99.

AL

(22)
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To sum up, the modified GLRT determin&ncirr in the following steps:

Stepl. ChooseK < 10 and a threshol8 from a table of theF distribution so that (24)
is satisfied.

Step2. Calculatea for M =1,2,...,L — K.

Step3. The signal length estimatécLrr is the smallesi at which A < § is true
and for which the inequality is also true in more tham9®of the cases corresponding to
M+1,M+2 ..., L—K.

4. Numerical results

We compare the performance of the four tests described in the previous section for
effective signal length estimation. Both simulated and experimental data are used for
comparison. In the following, we use= 0.96 for the SEE testy = 2 for GAIC, and
a = 0.99 for GLRT and the modified GLRT (referred to as mGLRT henceforth).

4.1. Simulated examples

The simulated data consists of a pulse having a certain shape corrupted by a zero-mean
white Gaussian noise with varian@ﬁ. We consider both a rectangular pulaé £ 40) and
a sinc-like pulse having a raised cosine spectrum. The roll-off factor for the latter is 1. The
sinc-like pulse is shifted and truncated to have a duration of 80 samples. Figure 1 shows
a realization of the test data corresponding to the two different pulses wj1eno.05,
where dashdot lines represent noise-free signals and solid lines denote noise-contaminated
signals, respectively. The results shown below are obtained using 200 Monte Carlo trials.
For each individual trial, a total number &f = 450 samples are used ahd= 200.

In the first example, we investigate the effect of the noise variance on the performance
of the proposed tests. Based on our discussion in the previous section, the pakimeter
used in GLRT and mGLRT is suggested to be a small numkieg (L0). Here we choose
K = 4. (Inthe next example, we demonstrate numerically how different valu&saffect
the performance.) The results are shown in Fig. 2 for the rectangular pulse and Figs. 3a—3c
for the sinc-like pulse.

For the rectangular pulse, the signal lengtlis= 40 and the associated RMS delay
can be calculated using (1) and (2)oggus = 11.54. Figure 2 shows the root mean squared
errors (RMSE) of the RMS delay spread estimates as a function of the noise varfance
In our simulation, we have observed that a number of signal length estimates obtained
by GLRT are equal td.. Such an estimate is called antlier. We did not weed out the
outliers in the calculation of the empirical statistics of the parameter estimates since the
other methods do not suffer from this problem. Due to the outliers, we can see that the
performance of GLRT is considerably affected. The results in Fig. 2 also suggest that
the other three tests perform similarly fog up to 0.01. As the signal becomes more
noisy, the performance of GAIC and mGLRT remains relatively unaffected, whereas SEE
degrades substantially. We have also calculated the empirical mean and standard deviation
of the signal length estimates for the rectangular pulse. The results demonstrate a similar
pattern as in Fig. 2 and thus are not included here.
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Rectangular Pulse

Waveform

Waveform

20 40 60 80 100 120 140 160 180 200

Sinc-like Pulse Having a Raised Cosine Spectrum

| | | | | | | | |

20 40 60 80 100 120 140 160 180 200
n

Fig. 1. Tests signals used in the simulated examples.

K=4 (rectangular pulse)
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Fig. 2. RMSE ofors for the rectangular pulse versu§ whenN =450, L =200, andK = 4.

For the sinc-like pulse, the situation is more subtle since the magnitude of the pulse

decreases rapidly as increases. Specifically, the magnitude fog= 60 is more than

15 dB smaller than the peak magnitude. Hence, it may not be appropriate to determine

the effectivelength to beM = 80 even though the signal is truncated to zeronfgr 80.
Nevertheless, the RMS delay spread for this signal is easily calculatedtgize= 7.21.
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K=4 (sinc-like pulse)
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Fig. 3. Empirical statistics of the parameter estimates for the sinc-like pulse w;?rsulsenN =450 L = 200,
andK = 4. (a) Mean ofM. (b) Standard deviation d#f. (c) RMSE of6rus.

Figs. 3a—3c show the empirical mean and standard deviation of the signal length estimates
and the RMSE'’s of the RMS delay spread estimates for the sinc-like pulse. We can see that
SEE in the current case appears to underestimate the signal Iengtmﬁlﬁmamall but
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K=4 (sinc-like pulse)
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Fig. 3. (Continued.)

overestimate the signal length Wheﬁ is large. The mean and standard deviation of the
signal length estimates and the RMSE of the delay spread estimates obtained by GLRT are
larger than those by GAIC and mGLRT, which is due to GLRT outliers. It is observed that
GAIC and mGLRT in general yield similar performance. A noticeable difference between
the two tests occurs ar;? = 0.1, for which the latter outperforms the former slightly.

Next, we present a numerical example to show the effect of choosing diff€rentthe
performance of GLRT and mGLRT. The setting is similar to the previous example except
thato? is fixed at some value ankl is varied from 1 to 20. We consider both a moderate
and a noisy scenarios, correspondingrfo: 0.01 andcre2 = 0.1, respectively. To reduce
the number of figures, we only consider the sinc-like pulse here. (Similar conclusions
can be drawn for the rectangular waveform.) The RMSE’s of the RMS delay estimates
versusK are shown in Fig. 4. We observe that the choicekKot 1 obtains the best
performance for both tests wheif = 0.01. However, for noisy situation corresponding
to crez = 0.1, a largerK is recommendedK > 4). It is also seen that GLRT in general
degrades significantly & increases, while the performance of MGLRT remains relatively
unchanged for a wider range &f. Hence, the choice af for mGLRT is easier to make
than for GLRT. We do not recommend a large (such ask > 10) for mGLRT since
increasingK leads to an increased computational complexity of mGLRT (see (22)).

4.2. Experimental example
We now consider an experimental example. We first briefly describe the PLC channel

sounding system used to obtain the measurement data. For more details of the system
and measurement process, we refer the interested readers to [10]. Figure 5 shows a block
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Fig. 4. RMSE oférps versusk whenN = 450 andL = 200 (upper figure correspondsd§ =0.01 and lower
one corresponds toez =0.1).

AC computer
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i digital storz
signal coupler coupler 1g1fl storage
generator HPF HPF oscilloscope

o

calibration

trigger
generator

Fig. 5. Power line channel measurement system.

diagram that uses impulse channel sounding to measure the impulse response of the AC
power line channel. The coupler box plugging into the AC wall outlet (the top path in
Fig. 5) behaves like a highpass filter, shown in Fig. 6, with the 3 dB cutoff at 1 MHz. The
probing signal passes through the coupler and the AC power line network and exits through
a similar coupler plugged in a different outlet. A direct coupler to coupler connection is
used to calibrate the test setup (the bottom path in Fig. 6). A low-noise amplifier (LNA)
with at least 54 dB gain is used in front of the digital storage oscilloscope (DSO) to reduce
the noise figure and increase the sensitivity of the system. The LNA has a built-in lowpass
filter with the 3 dB cutoff frequency at 70 MHz in the front stage. Additionally, a high-
precision adjustable (0—-80 dB) attenuator is placed after the receiving coupler, making it
possible to center the dynamic range of the LNA/DSO combination for the signal level
of each outlet pair. This allows the system to capture noise spikes and temporal noise
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Fig. 6. Coupler circuit.

Impulse Response
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Fig. 7. Impulse response of the power line channel (1-60 MHz) and the corresponding effective signal length
estimates.

fluctuations. The DSO has a bandwidth of 500 MHz, implying a high resolution, and the
capability for long time captures.

The probing impulse used is a specially truncated sinc waveform, with a duration of
17 ns and a flat frequency characteristics from 0.85 to 63.6 MHz. The highpass charac-
teristics of the couplers and the lowpass filter in the LNA limit the receiving sensitivity
of the system to the 1 to 60 MHz frequency band. The sampling frequency is 1 GHz and
the total number of data samplesAs= 20000. The measurements were performed at
two residential houses by averaging over 100 to 1000 scope sweeps depending on the
noise situation. Figure 7 shows the impulse response of a specific power line channel
corresponding to the frequency band 1-60 MHz. For channel order and RMS delay spread
estimation, we choosé = N/2. The effective signal length estimates obtained by the
four tests under study are also shown in the figure. We notice that GLRT fails again
since the GLRT estimate is an outlier, with a value equal.1dt is also seen that SEE
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obviously underestimates the effective signal length. On the other hand, the estimates given
by GAIC and mGLRT appear to be more accurate. After obtaining the effective signal
length estimate, we can use (1) and (2) to calculate the mean delay and RMS delay spread.
Specifically, the RMS delay spread estimates for the 1-60 MHz frequency band obtained
by SEE, GAIC, and mGLRT are 0.19, 0.27, and 0.28 ps, respectively. With no equalization,
the maximum transmission rate is inversely proportional to the RMS delay spread:

maximum transmission rate (25)

ORMS

It follows that the maximum data transmission rate is approximately 2.63 Mbps. The
above calculation is somewhat optimistic since other factors, such as attenuation and noise
characteristics of the PLC channel, which are important in determining the transmission
rate, were not counted. Additionally, the impulse responses were obtained using one
specific set of measurements. It is our experience that the RMS delay spread could vary
significantly depending on the loads and environment of the power lines networks.

5. Conclusions

In this paper, we have examined the problem of channel order and RMS delay spread
estimation for power line communications (PLC). It has been shown that the critical
parameter is the channel order since the delay spread is readily calculated once the former
is available. We have presented four different methods, namely the signal energy estimation
(SEE) based test, the generalized Akaike information criterion (GAIC) based test, the
generalized likelihood ratio test (GLRT), and the modified GLRT, to solve this problem.
The performance of these tests has been compared using both simulated and experimental
data. The experimental data has been collected to characterize the power line channel in
the frequency range of 1-60 MHz. Our results have shown that the GAIC based test and
the modified GLRT in general perform better than the other two tests; furthermore, the
modified GLRT may be preferred to the GAIC based test because the former has more
control over the performance in terms of the probability of detection, and is thus more
convenient to use.
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