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Abstract

AC power lines have been considered as a convenient and low-cost medium for intra-b
automation systems. In this paper, we investigate the problem of estimating the channel order
mean squared (RMS) delay spread associated with the power lines, which are channel param
provide important information for determining the data transmission rate and designing appr
equalization techniques for power lines communications (PLC). We start by showing that the
the RMS delay spread estimation problem is the determination of the channel order, i.e., the e
duration of the channel impulse response. We next discuss various ways to estimate the
response length from a noise-corrupted channel estimate. In particular, four different me
namely a signal energy estimation (SEE) technique, a generalized Akaike information cr
(GAIC) based test, a generalized likelihood ratio test (GLRT), and a modified GLRT, are deriv
determining the effective length of a signal contaminated by noise. These methods are compa
one another using both simulated and experimentally measured power line data. The expe
data was collected for power line characterization in frequencies between 1 and 60 MHz.
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1. Introduction

Traditional communication carriers for home and building automation systems
been twisted pairs, coaxial cables, or optical fibers. However, the infrastructures of
such media are usually expensive to deploy. In contrast, AC power lines, which
already been installed in nearly every home and building and can be easily acces
wall socket plugs, provide a convenient carrier for communications in home and bu
automation systems. The cost of such systems may be drastically reduced if powe
can be utilized in place of conventional data transmission media. In addition, powe
communication (PLC) systems are subject to few regulatory issues. For these reaso
has received much interest recently [1].

In spite of the above stated advantages, power lines do not represent a friendl
ronment for data transmission since they were not designed for such a purpose. V
attenuation and impedance, impedance modulation, impulse noise, and continuou
jamming have been the major obstacles to reliable communications in PLC [1]. The
applications of spread spectrum and forward error correction techniques to PLC hav
quite successful in removing or alleviating the noise impediment [1–5]. Additionally
consumer electronic bus (CEBus) has also been widely adopted, which provides a s
communication network protocol for the PLC industry [1,2,6]. As a result of these ef
various PLC devices are on the market today.

Like any other communication systems, the performance of PLC is determined
number of channel parameters, such as impedance, noise, signal attenuation, a
mean squared (RMS) delay spread. Extensive characterizations of the noise, imp
and signal attenuation on power lines at frequencies up to 500 KHz are available
literature (see, e.g., [7–9]). Most PLC devices currently on the market are also de
for this frequency range. These devices are usually good for applications with data
lower than 100 Kbps. For video transmission and other similar applications, howev
data rates are in the range of Mbps, which corresponds to a much wider frequency
typically in the range of 1–60 MHz. It is known that channel order and RMS delay sp
are important parameters that affect the data transmission rate over the channel. A
characterization of these parameters is therefore of particular importance for reliable
speed data transmissions over power lines [10,11].

Following the general assumption for most communications channels, we herein a
that the PLC channel is a finite impulse response (FIR) filter [10,12,13]. The pu
of this study is to investigate the problem of channel order and RMS delay s
estimation for PLC. In practice, the PLC channel impulse response can be measure
some channel sounding technique, such as the impulse channel sounding desc
Section 4.2. The measured channel impulse response can be considered as the true
response contaminated by measurement noise which does not vanish with time. W
observation, one needs to determine from the noise-contaminated channel estim
effectiveduration of the impulse response, outside which the measurements are pri
attributed to the noise.

In this paper, we present a number of methods to solve the above effective signal
estimation problem. The first method under consideration is a signal energy estim
(SEE) based test. The idea of this method is to estimate and accumulate the signa
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from each data sample until when the contribution from the remaining data measure
to the total signal energy becomes insignificant. This specific point in time is then iden
as the terminating point of the signal. The second test makes use of the generalized
information criterion (GAIC) [14], a statistical criterion that has been extensively use
model structure selection in system identification [15] and many other applications
e.g., [16]). As we will see, both SEE and GAIC involve parameters of user choice w
may affect the performance of these tests, and yet it is unknown how to make such c
precisely in order to have the desired performance. To circumvent this difficulty, we d
a generalized likelihood ratio test (GLRT) to deal with the effective signal length estim
problem. Although GLRT has a more predictable performance, it is a valid test only
a large number of data samples are available. With limited data length, the perfor
of GLRT is also limited. The final method we consider for signal length estimation
modified GLRT. The modified GLRT overcomes the drawbacks of the other three tes
retains their advantages. It is found that the modified GLRT works well in both simu
and experimental examples and may be the preferred method in practice.

In addition to PLC, the proposed algorithms can be used in other applications as
For example, in orthogonal frequency division multiplexing (OFDM) communicat
systems, each OFDM symbol contains acyclic prefix(CP) to combat channel dispersio
[12,17]. In order to effectively remove the inter-symbol interference (ISI) at the rece
the duration of the CP has to be longer than the impulse response of the channel.
other hand, using the CP introduces a bandwidth and energy loss which are propo
to the length of the CP, implying that the length of the CP should be made as sm
possible. Therefore, an accurate estimate of the channel order plays an important
determining the length of the CP.

The remainder of this paper is organized as follows. Section 2 formulates the pr
of interest. In Section 3 we derive the four proposed tests for effective signal l
estimation. Numerical examples that compare the four tests are presented in Se
Finally, we summarize the study in Section 5.

2. Problem formulation

In the study, the impulse response of an AC power lines(n) is assumed to have
finite durationM [10–13]. This assumption also allows the case wheres(n) decays fas
enough such that beyond a certain point in times(n) becomes insignificant, i.e.,s(n) ≈ 0
for n >M. Givens(n) and the (effective) signal lengthM, the associated mean delay a
RMS delay spread normalized with respect to the sampling interval can be determin

µ =
∑M

n=1ns
2(n)∑M

n=1 s
2(n)

, (1)

and, respectively,

σRMS =
√√√√∑M

n=1(n− µ)2s2(n)∑M
s2(n)

. (2)

n=1
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In practice, the power line impulse responses(n) is seldom known exactly. A typica
way to estimates(n) is to measure the frequency response of the power line channel
some channel sounding technique and then apply the inverse Fourier transform
estimated frequency response (see Section 4). The resulting signalx(n) can be considere
as an estimate ofs(n) contaminated by noise:

x(n) = s(n) + e(n), n = 1,2, . . . ,N, (3)

wheree(n) denotes the estimation error which is modeled as a zero-mean white Ga
noise with unknown varianceσ 2

e and is assumed to be independent ofs(n) [10,11], and
N is chosen such thatN � M. The problem of interest here is to estimate the cha
orderM and the RMS delay spreadσRMS from the measurements{x(n)}Nn=1.

Supposing first thatM is known, we can estimate{s(n)}Mn=1 by the maximum likelihood
technique. Specifically, the negative log-likelihood function of{x(n)} is (see, e.g., [18])

VM = N

2
lnσ 2

e + 1

2σ 2
e

{
M∑
n=1

[
x(n)− s(n)

]2 +
N∑

n=M+1

x2(n)

}
+ constant. (4)

The maximum likelihood estimates of{s(n)} andσ 2
e are obtained by minimizing the abov

cost function with respect to the unknown parameters, which yields

ŝ(n) = x(n), n = 1,2, . . . ,M, (5)

and

σ̂ 2
e = 1

N

N∑
n=M+1

x2(n). (6)

Using (5) and (6) in (4) gives

min
{s(n)}, σ2

e

VM = N

2
ln σ̂ 2

e + constant. (7)

If M is known, we can replaces(n) in (1) and (2) byŝ(n) to obtain an estimate of th
RMS delay spread. The remaining question is how to estimate the signal lengthM, which
is discussed next.

3. Signal length estimation

In this section we derive four different tests to estimate the effective signal lengM,
namely the signal energy estimation (SEE) based test, the generalized Akaike infor
criterion (GAIC) based test, the generalized likelihood ratio test (GLRT), and the mo
GLRT.

3.1. SEE based test

The SEE based test consists of choosing a sufficiently largeL satisfyingM � L � N

so that the noise variance can be estimated by using{x(n)}N , calculating the tota
n=L
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signal energy based on the noise variance estimate, and using the signal energy e
to determine the signal length. Specifically, letELN denote the total average energy
{x(n)}Nn=L, that is,

ELN �
N∑

n=L

E
[
x2(n)

]= (N − L+ 1)σ 2
e , (8)

whereE[·] denotes the expectation. The total noise average energyEe is

Ee �
N∑

n=1

E
[
e2(n)

]= N

N − L + 1
ELN. (9)

Let Ex denote the total average energy ofx(n), i.e., Ex �
∑N

n=1E[x2(n)]. The total
deterministic signal energy is obtained asEs �

∑N
n=1 s

2(n) = Ex − Ee. In practice,Ex

andELN can be estimated aŝEx =∑N
n=1 x

2(n) andÊLN =∑N
n=L x2(n), respectively. It

follows that an estimate ofEs is

Ês = Êx − N

N − L+ 1
ÊLN. (10)

The proposed SEE test calculates the signal energy contribution at each data s
which isx2(n)− Êe/N . The signal energy estimate at each individual data sample is
accumulated and compared with thêEs in (10). In more exact terms, the test consists
the following steps:

Step1. CalculatêEs using (10).
Step2. SetM̆ = 1 andÊ ′

s = 0.
Step3. ComputêE ′

s = Ê ′
s +x2(M̆)− Êe/N . Here, the updated̂E ′

s is the estimated tota
deterministic signal energy up to time index̆M.

Step4. If Ê ′
s � κÊs or M̆ = L, then the signal length estimatêMSEE is equal toM̆ and

the test stops; otherwise, setM̆ = M̆ + 1 and go to Step 3. Here,κ is a parameter of use
choice, typically 0.9� κ � 0.99.

It should be noted that the choice ofL should be made with a trade-off in mind. Sp
cifically, a smallL may look appealing at a first sight since it implies that the noise vari
estimate will be generated using more data samples and thus will have a better sta
property. On the other hand, a too smallL may violate the conditionL � M and produce
inaccurate noise and signal energy estimates, which will ultimately affect the signal
estimation accuracy.

As one can see, the SEE test is a method based on intuitive calculations of the
and noise energies. It is simple but with a somewhat limited capability for detecting s
boundaries (see Section 4 for details). As such it is necessary to derive more sophis
techniques that may yield better performance for signal length estimation.

3.2. GAIC based test

The generalized Akaike information criterion (GAIC) has been a popular statis
criterion for model structure selection in system identification [14,15]. We describe
how to adopt this criterion to determine the effective signal lengthM.
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The GAIC cost function has the form [14,15]

GAICM̆ = VM̆ + γ ln(lnN)(M̆ + 1), (11)

where (see (6) and (7))

VM̆ = N

2
ln

(
1

N

N∑
n=M̆+1

x2(n)

)
. (12)

Here,M̆ is assumed to be the signal length ((M̆ + 1) is thus the total number of unknow
parameters for the data model in (3)), andγ is a parameter of user choice. The GA
estimateM̂GAIC of the true signal lengthM is obtained by minimizing the above co
function with respect toM̆ . It should be noted that the double logarithm ln(lnN) in (11)
gives the slowest rate at which the second term in the right-hand side of (11) s
increase withN to guarantee the consistency of the signal length estimate obtain
minimizing (11) [19].

The proposed GAIC based test determinesM̂GAIC by the following steps:
Step1. Choose a sufficiently largeL so thatM � L � N .
Step2. Calculate the cost function GAIC̆M for M̆ = 1,2, . . . ,L.
Step3. The GAIC estimate ofM is obtained as

M̂GAIC = argmin
M̆

GAICM̆ , M̆ = 1,2, . . . ,L. (13)

Remark 1. As one may have noticed, using either the SEE or GAIC based tes
determiningM involves user parameters, vizκ in SEE and theγ in GAIC, which may
affect the accuracy of the signal length estimate, but whose choice is not easy. Spec
making a choice of these parameters to achieve a certain probability of detecti
missing) is not really possible. It would be desirable to derive methods that can som
control the risk of making a wrong decision. Such methods should be of greater inte
real applications.

3.3. GLRT

The generalized likelihood ratio for testingM = M̆ againstM = M̆ + K (for some
K � 1) is given by (see (6) and (7)) [15]

Λ = N ln

[
1

N

N∑
n=M̆+1

x2(n)

]
− N ln

[
1

N

N∑
n=M̆+K+1

x2(n)

]

= N ln

[ ∑N

n=M̆+1
x2(n)∑N

n=M̆+K+1
x2(n)

]
. (14)

ForN � 1 and under the hypothesis

H0: M̆ � M, (15)
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it can be shown thatΛ is χ2 distributed withK degrees of freedom, denoted by

Λ ∼ χ2(K). (16)

To see this, we rewriteΛ as follows:

Λ = N ln

[
1+

∑M̆+K

n=M̆+1
x2(n)∑N

n=M̆+K+1
x2(n)

]
N�M̆+K≈ N

∑M̆+K

n=M̆+1
x2(n)∑N

n=M̆+K+1
x2(n)

. (17)

Let

ˆ̄σe
2 = 1

N

N∑
n=M̆+K+1

x2(n). (18)

Here, ˆ̄σe
2 is an estimate ofσ 2

e . Note that forN � 1, ˆ̄σe
2 ≈ σ 2

e . In view of this observation
we have (underH0)

Λ ≈ 1

σ 2
e

M̆+K∑
n=M̆+1

x2(n) ∼ χ2(K), (19)

which proves (16).
The GLRT for determining the signal length estimatêMGLRT is summarized below:
Step1. Choose a thresholdλ from a table of theχ2 distribution such that

Pr
{
y � λ | y ∼ χ2(K)

}= α, (20)

where 0.9� α � 0.99 (see the discussions below).
Step2. SetM̆ = 1.
Step3. CalculateΛ according to (14).
Step4. If Λ � λ atM̆ and alsoΛ � λ is true in more than 90α% of the cases correspon

ing to M̆ + 1, M̆ + 2, . . . ,L − K, thenM̂GLRT = M̆ and stop; otherwise, set̆M = M̆ + 1
and go to Step 3.

A brief explanation of Step 4 is as follows. For the reason discussed in Section 3.4K is
a small integer, typicallyK � 10. However, a smallK may be a bad choice for signals th
are small over some intervals within the signal duration, such as the sinc-like test
used in Section 4. When̆M happens to be in one of those intervals and alsoK is too small
to include any significant signal energy in the denominator of (17), it is very likely
the inequalityΛ � λ will be true. Hence, to find out the real signal boundary one ha
check the inequalityΛ � λ not only atM̆ but at the rest data samples as well. We s
keep in mind that even if the boundary sample has been hit,Λ � λ may not be true for al
of the rest data samples due to the random nature of the noise. Nevertheless, the in
should hold true for the majority (e.g., 90α%) of the rest data samples beyond the sig
boundary.

Observe that the risk of rejectingH0 whenH0 holds (the probability of false alarm
equals 1− α. In general, the risk of acceptingH0 when it is not true cannot be determin
for the statistics introduced previously unless one restricts considerably the cla
alternative hypotheses against whichH0 is tested. Thus, in applications the value ofα
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or, equivalently, the test thresholdλ is chosen by considering only the probability of fa
alarm. Doing so, we shall keep in mind that asα increases, the probability of false alar
decreases, but the other type of risk increases. Typically,α is chosen between 0.9 an
0.99 [15].

Remark 2. It should be noted that the above GLRT is a valid test only whenN → ∞.
Additionally, ˆ̄σ e

2 is a poor estimate ofσ 2
e if N is not large enough, particularly so

M̆ + K + 1 < M. It would be of interest to modify the GLRT somehow such that
above problems are avoided. Such a modified GLRT indeed exists, as discussed ne

3.4. Modified GLRT

As mentioned in the previous section,ˆ̄σe
2 in (18) is usually not a good estimate ofσ 2

e .
A better estimate is

ˆ̃σe
2 = 1

N − L

N∑
n=L+1

x2(n), (21)

whereM � L � N . We now replace thē̂σe
2 in (19) by the abovễσe

2 and define

∆ � N − L

K
·
∑M̆+K

n=M̆+1
x2(n)∑N

n=L+1 x
2(n)

� N −L

K
· ρ1

ρ2
. (22)

Under the hypothesisH0, we haveρ1/σ
2
e ∼ χ2(K) andρ2/σ

2
e ∼ χ2(N −L), respectively.

Moreover, ifM̆ + K � L, ρ1 andρ2 are independent of one another. It follows that un
the above conditions,∆ is F distributed withK andN − L degrees of freedom [15
written as

∆ ∼ F(K,N − L). (23)

Observe that (23) holds in finite samples, whereas most other tests, including the o
GLRT, requireN → ∞.

The choice ofK should be made carefully. For̆M � M, this is perhaps not ver
important since anyK � 1 will lead to a similar performance. For̆M < M, however,
the choice becomes more critical. To reduce the risk of underestimatingM, a smallK is
recommended. To see this, let us assume thatK is very large such thatK � M. Then
underestimatingM by 1 or 2 will not increaseρ1 too much (particularly so ifM is small),
and hence the risk of underestimatingM may be large. As a result, a smallerK in this case
should be used. However, as mentioned in Section 3.3, a smallK is a bad choice for signal
that are small over certain intervals within the signal duration. In a way similar to wh
adopted there, we recommend choosingK � 10, computing∆ for M̆ = 1,2, . . . ,L − K,
and, finally, determininĝM as theM̆ at and beyond which the inequality∆ � δ holds in
more than 90α% of the remaining cases corresponding toM̆ +1, M̆ +2, . . . ,L−K. Here,
δ is a threshold determined such that

Pr
{
z � δ | z ∼ F(K,N − L)

}= α, (24)

andα is between 0.9 and 0.99.
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To sum up, the modified GLRT determineŝMmGLRT in the following steps:
Step1. ChooseK � 10 and a thresholdδ from a table of theF distribution so that (24

is satisfied.
Step2. Calculate∆ for M̆ = 1,2, . . . ,L − K.
Step3. The signal length estimatêMmGLRT is the smallestM̆ at which∆ � δ is true

and for which the inequality is also true in more than 90α% of the cases corresponding
M̆ + 1, M̆ + 2, . . . ,L− K.

4. Numerical results

We compare the performance of the four tests described in the previous sect
effective signal length estimation. Both simulated and experimental data are us
comparison. In the following, we useκ = 0.96 for the SEE test,γ = 2 for GAIC, and
α = 0.99 for GLRT and the modified GLRT (referred to as mGLRT henceforth).

4.1. Simulated examples

The simulated data consists of a pulse having a certain shape corrupted by a zer
white Gaussian noise with varianceσ 2

e . We consider both a rectangular pulse (M = 40) and
a sinc-like pulse having a raised cosine spectrum. The roll-off factor for the latter is 1
sinc-like pulse is shifted and truncated to have a duration of 80 samples. Figure 1
a realization of the test data corresponding to the two different pulses whenσ 2

e = 0.05,
where dashdot lines represent noise-free signals and solid lines denote noise-conta
signals, respectively. The results shown below are obtained using 200 Monte Carlo
For each individual trial, a total number ofN = 450 samples are used andL = 200.

In the first example, we investigate the effect of the noise variance on the perform
of the proposed tests. Based on our discussion in the previous section, the paramK

used in GLRT and mGLRT is suggested to be a small number (K � 10). Here we choos
K = 4. (In the next example, we demonstrate numerically how different values ofK affect
the performance.) The results are shown in Fig. 2 for the rectangular pulse and Figs
for the sinc-like pulse.

For the rectangular pulse, the signal length isM = 40 and the associated RMS del
can be calculated using (1) and (2) asσRMS = 11.54. Figure 2 shows the root mean squa
errors (RMSE) of the RMS delay spread estimates as a function of the noise varianσ 2

e .
In our simulation, we have observed that a number of signal length estimates ob
by GLRT are equal toL. Such an estimate is called anoutlier. We did not weed out th
outliers in the calculation of the empirical statistics of the parameter estimates sin
other methods do not suffer from this problem. Due to the outliers, we can see th
performance of GLRT is considerably affected. The results in Fig. 2 also sugges
the other three tests perform similarly for aσ 2

e up to 0.01. As the signal becomes mo
noisy, the performance of GAIC and mGLRT remains relatively unaffected, whereas
degrades substantially. We have also calculated the empirical mean and standard d
of the signal length estimates for the rectangular pulse. The results demonstrate a
pattern as in Fig. 2 and thus are not included here.
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pulse

ermine
Fig. 1. Tests signals used in the simulated examples.

Fig. 2. RMSE ofσ̂RMS for the rectangular pulse versusσ2
e whenN = 450,L = 200, andK = 4.

For the sinc-like pulse, the situation is more subtle since the magnitude of the
decreases rapidly asn increases. Specifically, the magnitude forn � 60 is more than
15 dB smaller than the peak magnitude. Hence, it may not be appropriate to det
theeffectivelength to beM = 80 even though the signal is truncated to zero forn � 80.
Nevertheless, the RMS delay spread for this signal is easily calculated to beσRMS = 7.21.
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Fig. 3. Empirical statistics of the parameter estimates for the sinc-like pulse versusσ2
e whenN = 450,L = 200,

andK = 4. (a) Mean ofM̂ . (b) Standard deviation of̂M . (c) RMSE ofσ̂RMS.

Figs. 3a–3c show the empirical mean and standard deviation of the signal length es
and the RMSE’s of the RMS delay spread estimates for the sinc-like pulse. We can s
SEE in the current case appears to underestimate the signal length whenσ 2

e is small but
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Fig. 3. (Continued.)

overestimate the signal length whenσ 2
e is large. The mean and standard deviation of

signal length estimates and the RMSE of the delay spread estimates obtained by GL
larger than those by GAIC and mGLRT, which is due to GLRT outliers. It is observed
GAIC and mGLRT in general yield similar performance. A noticeable difference betw
the two tests occurs atσ 2

e = 0.1, for which the latter outperforms the former slightly.
Next, we present a numerical example to show the effect of choosing differentK on the

performance of GLRT and mGLRT. The setting is similar to the previous example e
thatσ 2

e is fixed at some value andK is varied from 1 to 20. We consider both a moder
and a noisy scenarios, corresponding toσ 2

e = 0.01 andσ 2
e = 0.1, respectively. To reduc

the number of figures, we only consider the sinc-like pulse here. (Similar conclu
can be drawn for the rectangular waveform.) The RMSE’s of the RMS delay estim
versusK are shown in Fig. 4. We observe that the choice ofK = 1 obtains the bes
performance for both tests whenσ 2

e = 0.01. However, for noisy situation correspondi
to σ 2

e = 0.1, a largerK is recommended (K � 4). It is also seen that GLRT in gener
degrades significantly asK increases, while the performance of mGLRT remains relati
unchanged for a wider range ofK. Hence, the choice ofK for mGLRT is easier to mak
than for GLRT. We do not recommend a largeK (such asK > 10) for mGLRT since
increasingK leads to an increased computational complexity of mGLRT (see (22)).

4.2. Experimental example

We now consider an experimental example. We first briefly describe the PLC ch
sounding system used to obtain the measurement data. For more details of the
and measurement process, we refer the interested readers to [10]. Figure 5 shows
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e = 0.1).

Fig. 5. Power line channel measurement system.

diagram that uses impulse channel sounding to measure the impulse response of
power line channel. The coupler box plugging into the AC wall outlet (the top pa
Fig. 5) behaves like a highpass filter, shown in Fig. 6, with the 3 dB cutoff at 1 MHz.
probing signal passes through the coupler and the AC power line network and exits th
a similar coupler plugged in a different outlet. A direct coupler to coupler connecti
used to calibrate the test setup (the bottom path in Fig. 6). A low-noise amplifier (L
with at least 54 dB gain is used in front of the digital storage oscilloscope (DSO) to re
the noise figure and increase the sensitivity of the system. The LNA has a built-in lo
filter with the 3 dB cutoff frequency at 70 MHz in the front stage. Additionally, a hi
precision adjustable (0–80 dB) attenuator is placed after the receiving coupler, ma
possible to center the dynamic range of the LNA/DSO combination for the signal
of each outlet pair. This allows the system to capture noise spikes and tempora
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Fig. 6. Coupler circuit.

Fig. 7. Impulse response of the power line channel (1–60 MHz) and the corresponding effective signa
estimates.

fluctuations. The DSO has a bandwidth of 500 MHz, implying a high resolution, an
capability for long time captures.

The probing impulse used is a specially truncated sinc waveform, with a durati
17 ns and a flat frequency characteristics from 0.85 to 63.6 MHz. The highpass c
teristics of the couplers and the lowpass filter in the LNA limit the receiving sensit
of the system to the 1 to 60 MHz frequency band. The sampling frequency is 1 GH
the total number of data samples isN = 20000. The measurements were performe
two residential houses by averaging over 100 to 1000 scope sweeps depending
noise situation. Figure 7 shows the impulse response of a specific power line c
corresponding to the frequency band 1–60 MHz. For channel order and RMS delay
estimation, we chooseL = N/2. The effective signal length estimates obtained by
four tests under study are also shown in the figure. We notice that GLRT fails
since the GLRT estimate is an outlier, with a value equal toL. It is also seen that SE
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obviously underestimates the effective signal length. On the other hand, the estimate
by GAIC and mGLRT appear to be more accurate. After obtaining the effective s
length estimate, we can use (1) and (2) to calculate the mean delay and RMS delay
Specifically, the RMS delay spread estimates for the 1–60 MHz frequency band ob
by SEE, GAIC, and mGLRT are 0.19, 0.27, and 0.28 µs, respectively. With no equaliz
the maximum transmission rate is inversely proportional to the RMS delay spread:

maximum transmission rate≈ 1

2σRMS
. (25)

It follows that the maximum data transmission rate is approximately 2.63 Mbps
above calculation is somewhat optimistic since other factors, such as attenuation an
characteristics of the PLC channel, which are important in determining the transm
rate, were not counted. Additionally, the impulse responses were obtained usin
specific set of measurements. It is our experience that the RMS delay spread cou
significantly depending on the loads and environment of the power lines networks.

5. Conclusions

In this paper, we have examined the problem of channel order and RMS delay
estimation for power line communications (PLC). It has been shown that the c
parameter is the channel order since the delay spread is readily calculated once the
is available. We have presented four different methods, namely the signal energy esti
(SEE) based test, the generalized Akaike information criterion (GAIC) based tes
generalized likelihood ratio test (GLRT), and the modified GLRT, to solve this prob
The performance of these tests has been compared using both simulated and expe
data. The experimental data has been collected to characterize the power line cha
the frequency range of 1–60 MHz. Our results have shown that the GAIC based te
the modified GLRT in general perform better than the other two tests; furthermor
modified GLRT may be preferred to the GAIC based test because the former has
control over the performance in terms of the probability of detection, and is thus
convenient to use.
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