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Abstract—Hyperspectral imaging (HSI) sensors can provide
very fine spectral resolution that allows remote identification
of ground objects smaller than a full pixel in an HSI image.
Traditional approaches to the so-called subpixel target signal
detection problem are training inefficient due to the need for an
estimate of a large-size covariance matrix of the background from
target-free training pixels. This imposes a training requirement
that is often difficult to meet in a heterogeneous environment. In
this paper, a class of training-efficient adaptive signal detectors
is presented by exploiting a parametric model that takes into
account the nonstationarity of HSI data in the spectral dimension.
A maximume-likelihood (ML) estimator is developed to estimate
the parameters associated with the proposed parametric model.
Several important issues are discussed, including model order
selection, training screening, and time-series-based whitening and
detection, which are intrinsic parts of the proposed parametric
adaptive detectors. Experimental results using real HSI data
reveal that the proposed parametric detectors are more training
efficient and outperform conventional covariance-matrix-based
detectors when the training size is limited.

Index Terms—Adaptive signal detection, hyperspectral imaging
(HSI), nonstationarity, parameter estimation.

1. INTRODUCTION

YPERSPECTRAL sensors are a new class of imaging

spectroscopy sensors that divide the waveband of interest
into hundreds of contiguous narrow bands. Their fine spectral
resolution enables remote identification of ground objects based
on their spectral signatures. Hyperspectral imaging (HSI) has a
wide range of applications, including terrain classification, envi-
ronmental and agricultural monitoring, geological exploration,
ordinance remediation, tactical surveillance, and others [1].

A challenging problem in HSI applications is the so-called
subpixel target detection, which involves detecting objects oc-
cupying only a portion of a full pixel in an HSI image [2]. In
such a case, the signal produced by the HSI sensors consists
of both the object and background, with the latter behaving
effectively as interference that has to be suppressed for effec-
tive detection. The problem is reminiscent of that of detecting
a known signal with unknown amplitude in colored noise with
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unknown correlation! (e.g., [5]). A multitude of solutions have
been developed, including the Kelly’s generalized-likelihood
ratio (GLR) test [6], the adaptive matched filter (AMF) [7], and
the adaptive coherence estimator (ACE) test [8], [9], among
others. While these detectors can be used to solve the HSI sub-
pixel target detection problem, there is a major difficulty with
them in training-limited scenarios. In particular, the above de-
tectors are covariance-matrix-based techniques in that they all
rely on an estimate of the background covariance matrix, which
is obtained from target-free training pixels. The size of the back-
ground covariance matrix is identical to the number of spectral
bands that is typically in the order of hundreds. A good esti-
mate of the covariance matrix would require several hundred or
more target-free training pixels, which may not be available in
heterogeneous or dense-target environments. Another problem
with the above covariance-matrix-based detectors is complexity,
since the large-size covariance matrix has to be estimated and
inverted frequently.

There is a significant interest in developing training-efficient
detection techniques for training-limited applications, such as
the above HSI target detection approaches applied in heteroge-
neous environments. Another example is target detection based
on space—time adaptive processing (STAP) for airborne radars
[10], where range-dependent clutter characteristics, along with
other issues, prevent inclusion of a large number of range cells
far away from the test cell in the training set. One effective way
to reduce training requirement in STAP detection is to utilize
a suitable parametric model for the radar clutter and exploit
the model for target detection. In particular, multichannel au-
toregressive (AR) models have been found to be very effective
in representing the temporal correlation among pulse returns
[11]-[16]. A parametric detector based on such a multichannel
AR clutter model is developed in [11]-[14], which is referred to
as the parametric adaptive matched filter (PAMF). The PAMF
detector has been shown to significantly outperform the covari-
ance-matrix-based detectors for small training size.

For HSI applications, however, the data is nonstationary in
the spectral domain (see Section IV-A for details of such non-
stationarity),2 whereas AR models are by definition stationary.
To account for such nonstationarity, we introduce in this paper
a sliding-window-based nonstationary AR (NS-AR) model
to capture the spectral correlation of HSI data. We propose a
class of parametric adaptive signal detectors for HSI subpixel

I'We take a stochastic approach herein by modeling the background as a corre-
lated random vector with an unknown covariance matrix. There are other detec-
tors based on modeling the background as a deterministic quantity. (See [2]-[4]
and references therein for details).

2Such spectral nonstationarity shall not be confused with the spatial station-
arity that is often assumed for HSI data [2].
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target detection, and develop a maximum-likelihood (ML)
estimation algorithm to estimate the parameters associated
with the NS-AR model. In addition, we develop model order
selection, training screening, and time-series-based whitening
and detection techniques, which are intrinsic parts of the
proposed parametric adaptive detectors. We show via experi-
mental results with real HSI data that our proposed parametric
detectors are more efficient in training usage and outperform
the conventional covariance-matrix-based detectors when the
training size is limited.

The rest of the paper is organized as follows. Section II
contains the data model and problem statement. The covari-
ance-matrix-based detectors are briefly reviewed and discussed
in Section III. The proposed techniques, including an NS-AR
model, a class of parametric adaptive detectors, an ML param-
eter estimation algorithm, a model order selection method, and
a training screening approach, are detailed in Section IV. Ex-
perimental results illustrating the performance of the proposed
detectors under homogeneous, heterogeneous, and dense-target
environments are presented in Section V. Finally, Section VI
contains our concluding remarks.

II. DATA MODEL AND PROBLEM STATEMENT

Obtained through both spatial and spectral sampling, HSI
data is usually described as a data cube, whose face is a func-
tion of the spatial coordinates and depth is a function of spec-
tral bands or wavelengths. Each pixel can be represented as an
L x 1 real-valued vector: £ = [z(0),z(1),...,2z(L — 1)]7,
where L denotes the total number of spectral bands, (1) de-
notes the spectral response at the /th spectral band, and (- )7
denotes transpose. Since HSI data has nonzero mean [2], [17],
a preprocessing stage is usually invoked to remove the sample
mean estimated using the neighbor pixels.

In vector notation, the subpixel signal detection problem is
described by the following composite hypothesis test [2]:

H()Z.’B:b7
Hy:x=as+b,

target absent

target present D

where £ € RE*! is the demeaned test pixel, s € RE*! is
the signature vector of the target object with amplitude a, and
b € RE*! denotes the background plus system noise. We adopt
the standard assumption that the signature vector s is determin-
istic and known to the detector?; the amplitude a, however, is
assumed unknown. For the background, we follow a statistical
approach that models the background interference b as a multi-
variate Gaussian random vector with zero mean and an unknown
covariance matrix R, = E{bb" }. The Gaussian assumption has
been widely used for multispectral (e.g., [17]) and HSI data [2].
It leads to mathematical tractability and reasonably good perfor-
mance. Nevertheless, it should be noted that a Gaussian model

3The spectral signature may vary due to variations in atmospheric conditions
and other factors, and the uncertainty can be captured by a linear mixing model
[2]. We do not consider such spectral variations since our focus is effective can-
cellation of the background.
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is not fully appropriate to characterize the statistical behavior of
HSI data in many realistic cases, and alternative modeling ap-
proaches have been considered in [18]-[20].

Equation (1) implies that the background interference covari-
ance matrix is the same under both hypotheses. Since for a sub-
pixel target the area covered by background is different under
the two hypotheses, it is more appropriate to consider the fol-
lowing modified hypothesis [2], [21]:

Hy:x =0, targetabsent

H; :x=as+ ob, targetpresent 2)
where ¢ is unknown and, along with the signature amplitude a,
determined by the target fill factor, i.e., the percentage of the
pixel area occupied by the target [2].

Similar to [2], we assume that in addition to the test pixel
z, we have N training pixels 1, ...,z . In surveillance ap-
plications when the target class is rare or sparsely populated,
the training pixels are usually taken as those surrounding the
test pixel and assumed target free [2]. Again similar to [2], we
assume that x1,...,zN are independent and identically dis-
tributed (i.i.d.) Gaussian random vectors with zero mean and
covariance matrix Ry, and independent of the text pixel z.

The problem in question is to find an efficient decision rule
for the composite hypothesis testing problem (1) or (2), given
knowledge of the test pixel x, target signal signature s, and
training pixels z1, ...,z y. Our goal is to achieve good detec-
tion performance for small N.

Before closing this section, we remark that our parametric de-
tection schemes, as well as many others (e.g., in [2]), rely on the
perfect knowledge of the target spectral signature. Generally, the
target signature is available in its reflectance spectrum, whereas
the HSI sensors measure the radiance spectrum of the observed
materials. In order to apply these detection techniques, the HSI
data must be preprocessed to obtain reflectance data from the
radiance ones (e.g., through atmospheric correction) or, alterna-
tively, target spectral reflectance must be processed to obtain the
radiance spectrum. See [22], [23] for details.

III. COVARIANCE-MATRIX-BASED SOLUTIONS

A number of solutions to the above problem have been devel-
oped. If the covariance matrix Ry, is known exactly, the optimum
detector for (1) with unknown signal amplitude is the matched
filter (MF) [7]

Tp—1,2
m il tAF 3)
— = lv
sTR; s m

where tyir denotes the MF threshold. The MF detector is ob-
tained by a GLR approach (e.g., [5]), by which the ML estimate
of the unknown amplitude a is first estimated and then substi-
tuted back into the likelihood ratio to form a test statistic. In
practice, the MF detector cannot be implemented since Ry, is
typically unknown. However, it provides a baseline for perfor-

mance comparison when considering any realizable detection
scheme.



2706

In practice, the unknown R} can be replaced by some esti-
mate, such as the sample covariance matrix obtained from the
training pixels

1N
B T
R, = i nEZIznzn. 4

Using Rb in (3) leads to the so-called AMF detector [7]

~—1 |2

‘sTRb a;‘ H,

———7— Z lAMF &)

sTR, s Ho

where ¢ \r denotes the AMF threshold.

Alternatively, one can treat both a and R;, as unknowns and

estimate them successively by ML. Such a GLR approach was

pursued by Kelly [6], which gives the following Kelly test:

~—1 |2
‘sTRb z‘ H,
~—1 ~—1 2 tKelly (6)
(sTRb s) (N +zTR, z) Hy

where .11y denotes the corresponding threshold.
Another popular detector is the ACE test [8], [9]
A—1 |2

sTR, .'1:’

H,
.~ —1 ~—1 z tACE (7)
(sTRb s) (.'I:TR,, z) Ho
which is obtained by a GLR procedure that takes into account
not only the unknown amplitude a and background covariance
matrix Ry, but also the variability of the variance of the back-
ground under Hy and H; . Interestingly, the ACE test is the AMF
test (5) normalized by the signal energy weighted by the covari-

ance matrix inverse R; . By the Schwartz inequality, one can
see that the ACE test statistic is bounded between zero and one.

The AMF, Kelly, and ACE tests have constant false alarm rate
(CFAR). However, they entail a large training requirement. The
covariance matrix R}, has a dimension of L X L. Typical values
for L in real HSI systems are in the range of hundreds. An ac-
curate estimate of the covariance matrix would require a large
number of target-free training pixels, which may not be avail-
able, especially in nonhomogeneous environments. In addition,
the computational complexity of these detectors is high, since
Ry, has to be estimated and inverted frequently.

IV. PROPOSED APPROACH

In this section, we present a class of parametric adaptive
signal detectors with reduced training requirement. The pro-
posed detectors, which are detailed in Section IV-B, relies on
an NS-AR model introduced in Section IV-A, an ML parameter
estimation algorithm derived in Section IV-C, a model order
selection method discussed in Section IV-D, and a training
screening technique presented in Section IV-E.

A. Parametric Modeling of HSI Data

It is well known that the interference suppression ability of
the detectors discussed in Section III comes from a whitening
procedure. Consider, for example, the AMF detector (5). The
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whitening operation takes as inputs the signature vector s and
test pixel , and outputs whitened versions

T S S ®)

L —1/2 . A1 .
where R, / denotes the matrix square-root of R, .Following
the whitening, the AMF detector reduces to simple correlation
of the whitened outputs

|§T5,'|2 Hy
77— = lmr- 9)
55

If the whitening operation can be designed or approximated via
a parametric model without explicitly estimating R, then it is
conceivable that fewer training pixels are needed, provided that
the parametric model is parsimonious enough (without an ex-
traordinary number of parameters). This is the essence of our
parametric-model-based methods. Next, we consider two dif-
ferent parametric modeling approaches.

1) AR Modeling: AR models have been popular choices
for parametric modeling in spectral analysis, speech coding,
wireless channel modeling, seismic signal processing, among
others (e.g., [24]). Parametric adaptive detection based on
multichannel AR models has been considered in [11]-[14],
[25], [26] for airborne radar systems equipped with multiple
antennas. It was shown that significant saving in training and
complexity can be achieved by fitting the interference and radar
clutter into suitable multichannel AR models.

For the problem under study, the L x 1 background vector b,
or equivalently the observed signal £ under Hy, may be assumed
to be a scalar AR process which produces the L samples of b.
If an AR model is appropriate for HSI data, then the detection
problem amounts to first estimating the AR coefficients from
training data, whitening the signals by a whitening filter con-
structed from the AR coefficient estimates, and computing the
decision statistic from the whitened signals followed by thresh-
olding. For brevity, the above approach is referred to as the para-
metric adaptive matched filter (PAMF),* or normalized PAMF
(NPAMEF) [25] if the decision variable is normalized, similar to
the normalization imposed by the ACE detector of (7).

We have tested the above AR-based PAMF/NPAMEF detectors
with real HIS data using fixed AR parameters across the spec-
tral domain and found they suffer a performance loss compared
to the methods proposed here. The reason is that AR models
are not a suitable parametric model for HSI data. In partic-
ular, we find that HSI data are nonstationary in the spectral di-
mension, whereas fixed parameter AR models characterize sta-
tionary random processes. To see this, we have computed the
sample covariance matrix R, from a total of K = 24 x 46 =
1104 training pixels drawn from a homogeneous region of the
HSI data described in Section V. Fig. 1 depicts the main and
three subdiagonals of Rb, which correspond to the autocorrela-
tion function (ACF) at spectral lag O (i.e., variance), lag 1, lag
2 and lag 3, respectively, versus the spectral bands. Clearly, the
signal is not stationary since the variance and ACF at other lags
vary significantly across the spectral bands.

“4Details of the PAMF and NPAMF detectors can be inferred from the pro-
posed NS-PAMF and NS-NPAMF detectors discussed in Section IV-B, as the
former are special cases of the latter.
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Fig. 1. Sample estimates of the autocorrelation function at spectral lag 0

(variance), lag 1, lag 2, and lag 3 across the spectral bands.

2) NS-AR Modeling: Although HSI data is nonstationary
(NS) across the entire spectral dimension, it may be considered
approximately stationary over a sufficiently small number of
adjacent spectral bands. This can seen from Fig. 1, where the
variation of the sample statistics over a few adjacent spectral
bands is considerably smaller compared with that over the
entire spectral bands. In the following, we consider a NS-AR
modeling approach by taking into account such local station-
arity of HSI data. Specifically, let z,(l) denote the spectral
response at the /th spectral band of the nth training pixel z,,,
that is, £,, = [2,(0), ..., 2z, (L — 1)]7. Then, we slice z,, into
L — Ls + 1 overlapping subvectors

ot 2 [2a(D), .. wa(l+ Ly — D],
lZO,...7L_Ls (10)

where L, < L denotes the length of the subvectors. Equiv-
alently, these subvectors can be thought of as being obtained
by windowing x,, using a sliding window of size L. For suf-
ficiently small L, each subvector z,; can be modeled as an
Mth-order AR process

M

Tu(k) = = ai(m)z,(k —m) + w, (k)

m=1

k=11+1,....0+L,—1; n=1,...,N (1)

where w,, ;(k) denotes the modeling residual for the Ith
subvector x,, ;. The residual is Gaussian (since z,,(k) is so)
with zero mean and variance o7, and spectrally white so that
{wn1(k)} are independent with respect to k and n [24]. Note
that the [th set of the AR coefficients a;(1),...,a;(M) is
associated with the /th subvector z,,; and that different sub-
vectors are associated with different sets of AR coefficients.
For simplicity, we consider fixed AR model order M (also see
discussions in Section IV-D).

From the estimation perspective, the choice of M and
window size L should be made with tradeoffs among the
bias, variance, and stationarity of the modeling approach. A
large M might be desirable since it can provide better fitting
(lower bias) to the HSI data. Increasing M, however, would
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require the window size L; to increase accordingly since more
parameters are to be estimated, and, therefore, more data should
be provided within each subvector to reduce the variance of
parameter estimates. If Ly is too large, the assumption of sta-
tionarity within the subvector may be violated, which can cause
significant degradation. From the application aspect, however,
these parameters are related to the HSI sensor characteristics,
such as the operating spectral range, spectral resolution, etc.
For the HSI data used in this paper, we found a window size
8 < Ly < 15 is generally appropriate for modeling. Once L; is
selected, we can use information-criterion-based model order
selection techniques to determine M. We leave the details to
Section IV-D.

Instead of the above sliding-window-based NS-AR modeling
approach, one can consider an alternative NS-AR model that
models the HSI data across all the spectral bands

M
on(l) ==Y bi(m)an(l —m) + vn(l),
m=1
l=0,....,.L -1 (12

where b;(m) denotes the shift-varying AR coefficient and v,, (1)
the fitting error of the /th sample. Note that the above model
differs from (11) in that the AR coefficients are varying from
sample to sample, whereas in (11), they are assumed to remain
fixed within a sliding subvector of L, samples. An additional
parametric model for the shift-varying AR coefficients {b;(m)}
is necessary to ensure they can be estimated. This doubly para-
metric approach is more sensitive to the choice of the parame-
ters, whose estimation is also considerably more involved. In the
following, we consider only the sliding-window-based NS-AR
modeling approach.

B. NS-AR Model Based Parametric Adaptive Detectors

If the above NS-AR model (11) is appropriate for mod-
eling target-free HSI data (i.e., the background), then a
time-series-based (as opposed to the previous covariance-ma-
trix-based) whitening process can be developed without
explicitly estimating R;. This leads to a class of parametric
adaptive detectors that are summarized below:

» Step 1—Parameter Estimation: Estimate the NS-AR co-
efficients {a;(m)} in (11) and the variance {07} of the
residual from the training pixels {z,})_, by using an
ML-based estimation algorithm detailed in Section IV-C.
Let {a;(m), 57} denote the coefficient estimates.

o Step 2—Whitening: Form a shift-varying moving-av-
erage (MA) whitening filter from the parameter estimates
{a;(m), 62}, and whiten the test pixel  and target signa-
ture s as follows:

#(1) = Jll )+ 3 o (m)a(l - m)]
§(1) = Jll W+ Y s, (m)s(l —m)
L1 L1 (3

where Z(!) and (1) denote the /th output sample of the
whitening filter when the input is the test pixel £ and
target signature s, respectively. It should be noted from
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(13) that each set of the NS-AR parameter estimates, i.e.,
{a;(m)}M_, and 6, is used to compute one pair of output
samples x(l ) and 3(1); as the sliding window shifts to the
next position, we use the next set of parameter estimates
for whitening. In effect, (13) implements the whitening
operation (8) in a time-series fashion by taking into account
the NS nature of the signal. For an input of L spectral sam-
ples, the time-series-based whitening filter outputs L — L,
whitened samples due to initialization of the whitening
filter. Although such dimensionality reduction may affect
the detection performance, the impact is negligible for
small L, and large L, which is typical in HSI systems.

e Step 3—Detection: The outputs of the shift-varying
whitening filter corresponding to the test pixel x and
target signature s, respectively, are used to form the deci-
sion statistic. Depending upon how the decision statistic
is formed, we have a class of parametric detectors. For
example, the parametric counterparts of the covariance-ma-
trix-based AMF (5) and ACE (7) detectors are given by

‘2

DY OR()

H,;
= tng— )
lll:LlSil §2(l) [?0 NS—PAMF
(14)
N N 2
S w0 0
< INS—NPAMF
( =L, —152 )(Z=1_1$2 )) Ho

(15)

which are referred to as the NS-PAMF and NS-NPAMF de-
tectors, respectively. A time-series-based, Kelly-like test
can also be obtained in a similar fashion.

Finally, it is noted that the above NS-PAMF and NS-NPAMF
detectors reduce to the PAMF and NPAMF detectors, respec-
tively, which are briefly discussed in Section IV-A-1), when
L, = L, that is, the sliding window reaches the maximum value
and includes the entire spectral bands. In that case, the NS-AR
model in (11) reduces to the standard stationary AR model.

C. ML Estimation of NS-AR Coefficients

Parameter estimation plays a critical role for the proposed
parametric detectors. In this section, we present an ML esti-
mator to estimate the NS-AR coefficients in (11) using training
pixels 1, ...,z . Our ML estimator is an extension of that in
[24] for fixed AR models to NS-AR processes.

Consider the vector of AR coefficients of model order
M:a; = [a;(1),...,a;(M)]". According to the statistical
assumptions made in Section II and the NS-AR model (11),
the /th set of subvectors 1 ;,...,zn,; formed from the N
training pixels are i.i.d. multivariate Gaussian whose joint
probability density function (pdf) is parameterized by the
NS-AR coefﬁ01ents a; and variance o7. Then, the ML esti-
mates of a; and o} are obtained by maximizing the joint pdf
p(z11,...,%N1;a1,07). Exact maximization of the joint pdf
with respect to the unknown parameters turns out to be highly
involved computationally [27]. Instead, we seek to optimize a
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conditional pdf, which produces an asymptotic ML estimate of
the parameters for large date size [24]. Specifically, let

ool + M —1)]*
San(l+ Ly = 1"

(16)
7)

which collect the first M and, respectively, the last L — M sam-
ples of x,, ;. Thus, we have z,, ; = [a:S?T,zELZ?T] . Our asymp-
totic ML estimator seeks to maximize the joint conditional pdf
p(zﬁ), . ::;53)[ 511)7 . z%)l, a;,0}) with respect to a; and
o?. We will write the conditional pdf as p(zl(2) |:zl(1); a;,0}) for
brevity.

To find an explicit form of the above conditional pdf, we ob-
serve from (11) that

-I-Zaz

l-{-LS—l,

Wy 1(k) =z, (k Yo (k —m),

k=11+1,..., n=1

....,N. (18)

Since {wy,;} are i.i.d. Gaussian with zero mean and variance
o?, we have (e.g., [24])

p(zEQ)’ (1)’ az,UZ) (2m02)~N(La=M)/2

N I4+L,—1 M 2
X ex ——Z Z Z U 1 Zn (k — m)
n=1 k=I+M m=1

(19)

Maximizing the above conditional pdf is equivalent to mini-
mizing the negative log likelihood function

V(a,0?) 2 _lnp (1:1(2) ‘zl(l) ;al,olZ) ) (20)
Define an (Ls — M) x M matrix
To(l+ M —1) T (1)
Tn(l+ Ls — 2) Tn(l+ Ls— M —1)
2D

Then, V (a;, 0?) can be more compactly expressed as

V(aj,0f)= C1 + = N(L — M) Ino}
N ) 2
+ﬁ;‘zn,, + Xpaal| @2
wheres

1

C1 2 ZN(L, — M) In(27). (23)

N}

SWe keep the constant term C; which depends on M for model order selec-
tion in Section IV-D.
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Taking the derivative of V (a;, o) with respect to o7 and set-
ting it to zero yield

(24)

nlalH .

N
. 1
ot (@) = N(L, — M) 2 ‘
s n=1
Substituting 67(a;) back into (22) reduces the cost function to

1
V(a,67) = Ci + Co + gN(L, = M)né(ar)  (25)

where

1
Cy = EN(LS - M). (26)
Therefore, the ML estimate of a; is obtained by minimizing
52 (ay), the variance of the NS-AR modeling residual. The so-
lution is obtained by least-squares fitting

N
- (ZXZ,IXWI) ( n lz ) )
n=1

= ,L—Ls. (27)
The matrix within the first pair of brackets is assumed non-
singular. A necessary condition for nonsingularity is that the
number of training pixels IV is such that

M

N> —
~ Ls—-M

(28)

This is because the above matrix inverse can be expressed as
(X X;)~!, where

(29)

is a tall matrix when the above condition is satisfied. On the
other hand, when N > (M)/(L, — M), X} X, is full rank
almost surely due to the random nature of the HSI data.

Finally, substituting the ML estimate (27) back into (24)
yields the minimum variance of the residual

1
A2 (2) pL (2) 30
UT N, - M)t TxT 30)
where 151(2) = [zfl)T, . ,zs\%?IT]T and P}Q is the projection

matrix onto the null space of X

-1
Px, =T1-X,(X[X)) X[ (1)

where I is an identity matrix.

D. NS-AR Model Order Selection

In this section, we develop information-criterion-based
model order selection techniques to determine the NS-AR
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model order M in (11). Although in principle it is possible to
select a different M for each subvector x,, ;,1 = 0,..., L — Ly,
by a separate fitting of M to the information crlterlon, this is a
tedious process. In the following, we use a fixed M for all {.

Model order selection for parametric models is a classical
topic and has been investigated by various researchers for var-
ious models (e.g., [24] and [28] and references therein). We ex-
amine herein the model order selection problem for the NS-AR
model in (11) for the HSI application, which appears not to have
been addressed elsewhere. Specifically, we consider a general-
ized Akaike information criterion (GAIC), which chooses the
model order M that minimizes

L—L,

M) (32)

=0

where V;(M) is the minimum cost associated with the /th set of
subvectors Z1 7, ...,z n,, and y(M) is a penalty term that pe-
nalizes increasing model order [28]. Specifically, the minimum
cost is derived in Section IV-C (cf. (25))

Vi(M) = Co(M) + Co(M) + S N(L, ~ M) 67 (M) (33)

where C1 (M), C2(M), and 67 (M) are given by (23), (26), and
(30), respectively, and the dependence on M is made explicit.
On the other hand, the penalty term typically takes the form [28]

Y(M) =a(M +1)In(NL;) (34)

or

(M) = a(M + 1) In[In(NL,)] (35)
where M + 1 is the total number of unknowns for each set of
subvectors {&,, ;}2_;, N L; is the number of data samples con-
tained in {z,;})_;, and @ > 2 is a parameter of user choice.
Note that the above GAIC reduces to the standard AIC [29]
when the (L — Ls + 1)-term summation in (32) vanishes and
v(M) = 2(M + 1). It is known that AIC is not a consistent
model order estimator [24]. Choosing a penalty term propor-
tional to In(N L) or In[ln(NLy)] is an effective way of ob-
taining consistent order estimates [28].

E. Training Screening

One assumption made in Section II is that the N training
pixels z1, ...,z N are target free. This assumption is reason-
able in homogeneous environments where targets are rare or
sparsely populated, but usually violated in heterogeneous or
dense-target environments. In the latter case, the performance
of all training-based detectors, including those covariance-ma-
trix-based detectors discussed in Section III, degrade consid-
erably. Training screening to eliminate “bad” training data in
such cases has been examined in a number of recent studies for
radar target detection (e.g., [30]-[32] and references therein). In
this section, we discuss screening of heterogeneous HSI training
data. Rather than treating it as an independent process, we cast
training screening within the proposed NS-AR framework.
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For covariance-matrix-based detectors in Section III, one
screening approach according to statistical ranking and selec-
tion theory is to compute the following metric from the training
set [30]:

T,=2'R, ., n=1,...,N. (36)
Then, the metric is used to partition the training set
s £ {z1,...,zy} into two disjoint sets S; and Sy (see
[30] for details), of which the former contains the refined
training data while the latter contains outliers that are dis-
carded.

The above training screening approach relies on an estimate
of a full-rank sample covariance matrix Rb. To circumvent this,
we note that z{RElzn = ||&,||?, where & = R;l 2zn, ie.,
the “whitened” version of z,,. The whitening operation can be
equivalently implemented in a time-series fashion by an MA
whitening filter without the need to estimate R, This alternative
screening approach is proposed in [32] and referred to as the
innovation power sorting (IPS) method, since the output of the
MA whitening filter is often called the innovation of the input
(e.g., [33D.

The IPS can be extended and cast within the NS-AR frame-
work. Specifically, we first use the ML estimator in Section
IV-C to estimate the NS-AR parameters {a;(m), 57} from
the original training set S. Next, we form a shift-varying MA
whitening filter from these parameter estimates and, similarly
to (13), whiten the training set as follows:

Fn(l) = Uil waD)+ >, (m)an(l - m) |,

l=L,—1,....,L—1; n=1,...,N. (37)
Finally, we compute the following metric
L-1
T,= Y (), n=1,...,N (38)
I=L,—1

which is used to replace (36) for the partition of S into S; and
So.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results to illustrate
the performance of our proposed techniques. For comparison,
we consider the covariance matrix-based ACE test (7), the
AR-model-based NPAMF detector (see Section IV-A-1)), our
NS-AR-model-based NS-NPAMF detector (15), and a mod-
ified version called NS-LP-NPAMF that is briefly explained
below. We do not compare with the AMF (5) or Kelly (6) tests
which were found to perform similarly to the ACE test in our
experiments. Meanwhile, the ACE, NPAMF, NS-NPAMF, and
LS-NS-NPAMF are all normalized tests whose test statistics
range between 0 and 1, which makes comparison more conve-
nient.

The modification made in the NS-LP-NPAMF detector is
due to an observation that HSI spectral data exhibit small
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Fig. 3. HSI image of the Washington DC Mall with L = 191 spectral bands.
Three test regions are highlighted in yellow.
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oscillations. As an example, Fig. 2 depicts the original HSI data
of a randomly chosen pixel from the HSI data set described
below. Such oscillations along the spectral dimension do not
contribute much to detection, meanwhile making parameter
estimates more noisy. It was found that passing the HSI data
through a lowpass (LP) filter to first remove those oscillations
before applying the proposed NS-AR modeling, estimation,
and detection techniques is helpful. Our NS-NPAMF detector



LI AND MICHELS: PARAMETRIC ADAPTIVE SIGNAL DETECTION FOR HSI

! . ||
09 B}

0.7 — —
0.6 -
0.5 -

ACE

0.4 -
0.3 -1
0.2 -

0.1 -

0.25 0.5 0.75 1

Target Fill Factor
(a)

0.7

0.6

0.5

NS-NPAMF

0.4

0.3

0.2

N

0.1 ’_I
0
0.25 0.5 0.75 1

Target Fill Factor
(©)

2711

08 - -
0.7 - -
06 - -

0.5 -

NPAMF

0.4 -
0.3 -
0.2 -
0.1 -

0.25 0.5 0.75 1

Target Fill Factor
(b

0.8 - -
0.7 - -
0.6 -
05 -

04 —

NS-LP-NPAMF

03 -

0.75 1
Target Fill Factor

@

Fig. 5. Testregion 1: target-background separation versus target fill factor, where the dark bars correspond to the range of test statistics under H, while the light
bars show the counterpart under Hy. (a) ACE. (b) NPAMF. (c) NS-NPAMF. (d) NS-LP-NPAMF.

(15) with such a modification is called NS-LP-NPAMF. For
lowpass filtering, we use a simple moving-average filter with
impulse response given by a Kaiser window, whose length is
equal to the sliding window size L, and the shape parameter is
3. It should be noted that LP filtering is applied to all signals
involved in detection, including the training pixels, test pixel,
and target signature.

The HSI data employed in our studies is provided on the CD
that accompanies [1]. Fig. 3 is a color infrared (IR) image from
a portion of the data set, which shows a view of an airborne
hyperspectral data flightline over the Washington DC area. The
sensor system used in this case measured the spectral response
in 210 spectral bands in the 0.4 to 2.4 pum region of the visible
and IR spectrum. Bands in the 0.9- and 1.4-um region where the
atmosphere is opaque have been omitted from the data, leaving
L = 191 spectral bands. Additional information on the data
set can be found in [1]. The image shown in Fig. 3 was made
using bands 60, 27, and 17 for the red, green, and blue colors,
respectively. Three test regions are highlighted in Fig. 3. Test
region 1 is relatively homogeneous and formed by grass, test
region 2 is less homogeneous with tree and road, and test re-

gion 3 corresponds to a heterogeneous environment. To simu-
late the H; condition, we superimpose a target signal to the test
pixel. The target signal corresponds to the spectral signature of
a man-made object (taken from a pixel in Fig. 3) and is scaled
according to particular target fill factors [2]. Each test data set
is first demeaned using an approach as described in [34].

A. Model Order Selection

We first use the GAIC developed in Section IV-D to deter-
mine the model order M of the NS-AR model. Fig. 4 depicts
W (M) in (32) as a function of M for L = 10 and N = 8, and
the result is obtained by averaging over the pixels in test region
1. Results obtained with the other two test regions are similar.
It is seen that W (M) decreases quickly as M increases from 1
to 3, reaches its minimum and remains relatively flat between 3
and 5, then increases slightly from 5 to 8, and finally drops dras-
tically for M = 9. The pattern of decrease followed by increase
of W (M) is standard for most model selection techniques [24].
To understand why W (M) drops again at M = 9, we note that
(28) is violated with M = 9. As a result, X; in (29) does not
have full column rank, and there are numerous solutions for the
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NS-AR coefficients {a;(m)} that lead to zero residual in the
NS-AR model. In the following, we choose M = 5.

B. Detection in Homogeneous Environments

To illustrate detection performance in homogeneous environ-
ments, the figure of merit employed here is the separation of
test statistics under Hy and H, which is also used in [2]. For all
methods, we use N = 8 training pixels, which corresponds to a
3x 3 region without counting the center pixel (i.e., test pixel), for
sample covariance matrix or parameter estimation. The sample
covariance matrix R, is rank deficient in this case. As suggested
in [2], we use the approximation Rb_ ! ~1-U,U T, where
U, is formed by the principle eigenvectors of Ry, for the ACE
detector. The subvector length (i.e., sliding window length) is
L, = 10 for NS-NPAMF and NS-LP-NPAMF.

First, consider test region 1. Fig. 5(a)—(d) depicts the test
statistic separation of the four detectors, respectively, as a func-
tion of the target fill factor. We note that NPAMF is the worst of
all detectors, which corroborates our earlier observation that sta-
tionary AR modeling is not suitable for HSI data. However, both
NS-NPAMF and NS-LP-NPAMF outperform the ACE test, with

NS-LP-NPAMF being slightly better than NS-NPAMF. Specif-
ically, we see that the former achieves full target-background
separation when the fill factor is 0.25, while the latter does not.

Fig. 6(a)—(d) depicts the counterpart results when the detec-
tors are applied to test region 2, which is less homogeneous than
test region 1. It is seen that all four detectors experience some
degradation relative to the previous results. However, the pro-
posed NS-NPAMF and NS-LP-NPAMF detectors, especially
the latter, still significantly outperform the others.

C. Detection in Heterogeneous Environments

We now consider detection in heterogeneous environments.
To this end, we embed 5 targets at randomly chosen locations
in test region 3. We run the ACE and NS-LP-NPAMF detec-
tors throughout the test region pixel by pixel, with and without
training screening. If training screening is not applied, we use
the N = 8 pixels surrounding the test pixel for training. Oth-
erwise, we first compute metric (36) for the ACE detector and,
respectively, metric (38) for the NS-LP-NPAMF detector using
all pixels within the test region, and then the metrics are used
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Fig. 7. Test statistics of ACE and NS-LP-NPAMF of test pixels in the test region 3 with five embedded targets. (a) ACE without training screening. (b)
NS-LP-NPAMF without training screening. (¢) ACE with training screening. (d) NS-LP-NPAMF with training screening.

to select N = 8 new training pixels to refine the parameter/co-
variance matrix estimate. Fig. 7(a)—(d) depicts the test statis-
tics of the two detectors, with and without training screening,
versus the index of the pixels within the test region. The dotted
lines in these plots indicate the indices/locations of the em-
bedded targets. By comparing the results, it is seen that training
screening helps both detectors. It is also seen that the proposed
NS-LP-NPAMF detector outperforms the ACE detector with or
without training screening.

Finally, we consider a dense-target scenario by embedding
not only five targets but also outliers in test region 1. In partic-
ular, about 20% of the pixels at random locations in the region
are embedded with outliers that have a different spectral signa-
ture from that of the target. Fig. 8(a)—(d) shows the test statis-
tics of the ACE and NS-LP-NPAMEF detectors with and without
training screening. It is seen that the NS-LP-NPAMF detector
overall achieves a better performance than the other.

VI. CONCLUSION

In this paper, we have exploited parametric modeling of HSI
data and investigated its application for subpixel target detec-

tion in HSI systems. We have shown that HSI data are non-
stationary in the spectral dimension, which makes parametric
adaptive modeling and detection more challenging than earlier
studies for stationary data. To deal with nonstationarity, we have
proposed a sliding-window-based NS-AR model tailored for
HSI data. We have developed parametric adaptive detectors by
exploiting the NS-AR model and addressed a range of issues, in-
cluding model order selection, training screening, parameter es-
timation, time-series-based signal whitening, and detection. We
have examined the performance of the proposed detectors and
compared with covariance-matrix-based techniques using real
HSI data. It has been shown that the proposed parametric detec-
tors are more efficient in training data usage and outperform the
covariance-matrix-based methods when training is limited.
Our approach implicitly assumes that HSI data is spectrally
correlated. In most cases, HSI sensors oversample the spectral
signal [35], which brings in spectral correlation in HSI data. The
covariance-matrix-based detectors, however, can be applied in
the absence of spectral correlation (as in earlier multispectral
systems with a few spectral bands [17]). While the covariance-
matrix-based AMF, ACE and GLRT detectors have a CFAR
behavior, it is unclear whether the proposed detectors retain
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outliers. (a) ACE without training screening. (b) NS-LP-NPAMF without training screening. (c) ACE with training screening. (d) NS-LP-NPAMF with training
screening.

the same property. This remains an issue to be examined in the
future. Other research along the proposed direction includes an-
alytical study of the proposed detectors and exploration of alter-
native nonstationary parametric models for HSI target detection.
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