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Abstract

A Markov-like weighted least squares (WLS) estimator is presented herein for harmonic sinusoidal parameter
estimation. The estimator involves two distinct steps whereby it "rst obtains a set of initial parameter estimates that
neglect the harmonic structure by some standard sinusoidal parameter estimation technique, and then the initial
parameter estimates are re"ned via a WLS "t. Numerical results suggest that the proposed estimator achieves similar
performance to the optimal nonlinear least-squares method for a moderate or large number of data samples and/or
signal-to-noise ratio (SNR), but at a signi"cantly reduced computational complexity. Furthermore, the former is
observed to have a lower threshold SNR than the latter. ( 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Es wird ein mit dem Markov-SchaK tzer verwandtes gewichtetes Kleinste-Quadrate Verfahren zur SchaK tzung der
Parameter von harmonischen sinusfoK rmigen Signalen vorgestellt. Das Verfahren besteht aus zwei Schritten. ZunaK chst
werden AnfangsschaK tzungen mit Hilfe von StandardschaK tzern zur Bestimmung der Parameter von Sinussignalen
gewonnen, wobei die harmonische Signalstruktur au{er Acht gelassen wird. Anschlie{end werden die AnfangsschaK tzun-
gen durch eine gewichtete Kleinste-Quadrate Anpasung verbessert. Numerische Untersuchungen verdeutlichen, da{ der
vorgeschlagene SchaK tzer bei erheblich reduziertem Rechenaufwand aK hnlich gute Ergebnisse erzielt wie das optimale
nichtlineare Kleinste-Quadrate Verfahren wenn die Zahl der Abtastwerte und/oder das SNR moderat bis gros{ ist.
Au{erdem wird beobachtet, da{ der vorgeschlagene SchaK tzer ein niedrigeres Schwellen-SNR bestizt als letzerer. ( 2000
Elsevier Science B.V. All rights reserved.

Re2 sume2

L'estimateur des moindres carreH s pondeH reH s de type Markov (WLS) est preH senteH ici pout l'estimation de paramètres
sinusomKdaux harmoniques. L'estimateur implique deux eH tapes distinctes par lesquelles il obtient tout d'abord un ensemble
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d'estimeH es des paramètres initiaux qui neH gligent la structure harmonique par une technique d'estimation de paramètres
sinusomKdaux standard, et ensuite les estimeH es des paramètres initiaux sont ra$neH s via un ajustement WLS. Les reH sultats
numeH riques suggèrent que 1'estimateur proposeH atteint des performances similaires à celles de la meH thode des moindres
carreH s non lineH aires optimale pour un nombre d'eH chantillons de donneH es et/ou un rapport signal sur bruit (SNR) modeH reH s
ou larges, mais pour une complexiteH de calcul signi"cativement reH duite. De plus, on observe que le premier a un seuil de
SNR plus bas que le dernier. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider the noise-corrupted measurements of
a harmonic signal

y(n)"
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where u
0

is the fundamental frequency with
0(Du

0
D(p/K, a

k
'0 and /

k
3[0,2p) denote the

amplitude and phase, respectively, of the kth har-
monic component, and v(n) is the complex white
Gaussian noise with zero-mean and variance p2.
Let y"[y(0)2y(N!1)]T, where ( ) )T denotes the
transpose, and *3CNC1 be similarly formed from
Mv(n)NN~1

n/0
. Then, (1) can be compactly rewritten as

y"A(u
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)3CNCK denotes the Vandermonde
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a
K
e+(K]T. It is assumed that the number of har-

monic components, K, is known. (The estimation of
K was discussed in, e.g., [12,13,15].) The problem of
interest is to estimate u

0
and Ma

k
,/

k
NK
k/1

from the
observations My(n)NN~1

n/0
.

The above problem occurs in speech and musical
signal processing, angular speed determination of
rotating targets illuminated by a radar, passive
detection and location of helicopters and boats,
among others. While a rich literature exists dealing
with the standard (i.e., non-harmonic) sinusoidal
parameter estimation problem, starting from the
early work of Whittle [16], to Hannan [1,2],
and more recently by Schmidt and others (see

[3,5}11] and references therein), the study on har-
monic sinusoidal parameter estimation is relatively
less emphasized. Speci"cally, Nehorai and Porat
introduced an adaptive comb "ltering technique for
harmonic signal enhancement [4]. The method
typically requires a relatively large number of ob-
servations to ensure its convergence. Quinn and
Thomson considered a generalized least-squares
approach to harmonic parameter estimation [14],
which uses periodogram averaging to estimate the
spectrum of the observation noise and, therefore,
can be applied to colored noise applications. The
generalized least-squares criterion in [14] is a non-
linear function of u

0
. Hence, a one-dimensional

(1D) search is required, similar to the nonlinear
least-squares (NLS) algorithm to be discussed next.
Zeytinogy lu and Wong investigated the detection
of harmonic signals [17]. It was shown therein
that the knowledge of the harmonic structure
and the fundamental frequency can be incor-
porated to signi"cantly improve the detection
performance.

Perhaps the reason why the attention to har-
monic parameter estimation has been somewhat
de"cient may be that the NLS estimate of u

0
,

which coincides with the optimal maximum likeli-
hood (ML) estimate when v(n) is white Gaussian,
can be obtained by using a seemingly simple 1D
search of the NLS cost function. Speci"cally, the
NLS estimates of the unknown parameters are de-
termined by (see, e.g., [7])
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Fig. 1. An example of the NLS cost function versus frequency.

where I
N

is the N]N identity matrix. Unfortunate-
ly, the NLS cost function in (3) is usually multi-
modal with many local minima. An example of
the NLS cost function is shown in Fig. 1 where
K"5, N"32, p2"0.1, u

0
"2p]0.08, a

k
"1

and /
k
"p/4, ∀k. Hence, the minimization of the

NLS cost function requires the use of a very "ne
searching algorithm and may be computationally
prohibitive.

In this paper, we present a new method for the
parameter estimation of harmonic sinusoidal sig-
nals. The proposed method makes use of some
initial parameter estimates obtained by, for
example, the MUSIC algorithm [10] which ignores
the harmonic structure. Then, the estimates are
re"ned by using a Markov-like weighted least
squares (WLS) technique. We show using numer-
ical examples that the method is computationally
much more e$cient than the NLS method, and yet
it performs similarly to the latter and is very close
to the CrameH r}Rao bound (CRB), the best per-
formance bound of any unbiased estimators, for
moderate or large N and/or signal-to-noise ratio
(SNR).

2. The Markov-like WLS estimator

The Markov-like WLS estimator "rst ignores
the harmonic structure and uses some standard
sinusoidal parameter estimator, such as MUSIC
[10], to obtain the initial estimates, u8

k
of u

k
"ku

0
,

for k"1,2, K. The initial estimates, Ma8
k
,/I
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NK
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, can be obtained via least squares [from
(4) with ku
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replaced by u8

k
]. Next, let
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Apparently, there exists a matrix S@3Z3KC(2K`1)

that has full column rank so that

h@"S@g@. (5)

The MUSIC estimate hI @ of h@ is not statistically
e$cient. However, for su$ciently large N and M,
where M is length of the data subvectors used in
MUSIC [10], its performance is close to the CRB
corresponding to h@ [6]. Hence, a Markov-like

WLS estimate g( @ of g@ can be obtained as

g( @"argmin
g{

DDhI @!S@g@DD2W{
, (6)

where the weighting matrix W @"CRB~1(hI @), with
CRB(hI @)3R3KC3K being the CRB matrix that does
not assume the knowledge of the harmonic struc-
ture and is evaluated at hI @. For large N, W @ can be
well approximated by [9]

W @KC
W @

1
0

}

0 W @
K
D , (7)

where
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p2C
N 0 0

0 2Na8 2
k

N2a8 2
k

0 N2a8 2
k

2
3
N3a8 2

k
D , k"1,2,2, K. (8)

The fact that W @
k

is block diagonal implies that the
amplitude estimates in g( @ and hI @ are equivalent, i.e.,
applying WLS does not lead to re"ned estimates of
Ma

k
NK
k/1

. Hence, the cost function in (6) can be
simpli"ed by excluding the amplitude parameters.

Let h3R2KC1 and g3R(K`1)C1 be similarly de-
"ned to h@ and g@, respectively, except that the
amplitude parameters Ma

k
NK
k/1

have been removed.
Then there exists a matrix S3Z2KC(K`1) with full
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column rank so that

h"Sg. (9)

Let hI be the corresponding initial estimate of h.
Similarly to (6), the Markov-like WLS estimate g( of
g is given by

g("arg min
g

DDhI !SgDD2W, (10)

where W3R2KC2K is block diagonal with the diag-
onal blocks obtained from (8) by deleting the "rst
row and column of each W @

k
.

The solution to (10) is easily obtained by exploit-
ing the fact that W is block-diagonal. Speci"cally,
the cost function in (10) can be rewritten as
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Di!erentiating the above equation with respect to
(w.r.t.) /

k
and equating the result to zero, we obtain
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Substituting the above equation in (11) and observ-
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Di!erentiating the above cost function w.r.t.
u

0
yields the WLS estimate of u

0
:
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Using the above u(
0

to replace u
0

in (13), we obtain
the WLS estimates of /

k
. Hence (13) and (15) pro-

vide closed-form expressions for the WLS estimates
of the phase and frequency parameters. Observe
that u(

0
in (15) is a weighted linear regression over

Mu8
k
NK
k/1

and does not depend on /I
k
. If all a

k
are

known a priori to be equal, then u(
0

is a simple
linear regression (average) over Mu8

k
NK
k/1

.
It should be noted that a new set of phase esti-

mates, which are di!erent from those in (13) (with
u

0
replaced by u(

0
), can be obtained from (4) by

using u(
0

in (15). We have observed that the so-
obtained phase estimates are generally more accu-
rate and should be preferred, especially when the
SNR is relatively low.

3. CrameH r}Rao bound

An asymptotic (for large N) CRB for the case of
real-valued harmonic sinusoidal signals was de-
rived in [4]. In the following, we derive the exact
CRB for the parameter estimation problem posed
for the complex data model in (1).

Let w"[u
0
,a

1
,2,a

K
,/

1
,2,/

K
]T *" [u

0
,aT,/T]T

3R(2K`1)C1. Observe that w is a permutation of g@.
We rewrite (2) as

y"B(u
0
,/)a#*O x(w)#*, (16)

where B(u
0
,/)3CNCK with its kth column de"ned

by b
k
"e+(ka

k
. By using the Slepian}Bangs formula

(see, e.g., [1]), the CRB matrix for the problem
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Fig. 2. RMSEs of the estimates of u
0

and the associated CRB
versus the SNR. (a) N"32 and M"15. (b) N"256 and
M"50.

under study is given by

CRB~1(w)"
2

p2
ReC

LxH(w)

Lw
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LwT D , (17)

where ( ) )H denotes the Hermitian transpose. Next,
we evaluate the partial derivatives in (17) as follows:
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with the kth column of D3CNCK given by

d
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It follows that
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where we have omitted the dependence of B on
u

0
and / for notational simplicity.

4. Numerical results

We compare the performance of our proposed
estimator and the optimal NLS method, which are
referred to as the WLS and NLS estimators, respec-
tively. We also compare the performance of the
estimators with the CRB. For both estimators, we
use MUSIC to obtain the initial parameter esti-
mates. Speci"cally, we take the smallest frequency
estimate (and ignore the others) obtained by
MUSIC as the initial estimate of u

0
. The NLS cost

function is minimized by using a gradient-type

nonlinear optimization routine, fminu, provided in
MATLAB. The signal consists of K"5 harmonic
components corrupted by a zero-mean complex
white Gaussian noise, with u

0
"2p]0.08, a

k
"1

and /
k
"p/4, ∀k. The SNR for the kth harmonic

component is de"ned as 10 log
10

a2
k
/p2(dB). All re-

sults shown below are based on 200 independent
trials.

The "rst example considers the e!ect of SNR on
the parameter estimation accuracy. Fig. 2(a) shows
the root mean squared errors (RMSEs) of the esti-
mates of u

0
, along with the CRB, as a function of

the SNR for the "rst harmonic component when
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Fig. 3. RMSEs of the estimates of u
0

and the associated CRB
versus N. (a) SNR"5 dB. (b) SNR"30 dB.

N"32 and M"15 (M is the length of the data
subvectors used in MUSIC). The curves corre-
sponding to the amplitude and phase estimation
are similar to those for the frequency estimation
and thus are not shown here. The performance of
MUSIC is included in the plot to show the merit of
incorporating the knowledge of the harmonic
structure. It is seen that, for SNR*0 dB, the per-
formance of WLS is very close to the CRB. For
small SNRs, the poor initial condition provided by
MUSIC may cause NLS to converge to some local
minima, as seen in the "gure when SNR"!10
and 0 dB, or even not to converge at all, which is
the case when SNR"!15 and !5 dB in this
example. It is also noted that WLS has a lower
threshold SNR than NLS. Fig. 2(b) shows the
counterpart results when N"256 and M"50. It
is observed that WLS and NLS behave similarly as
in the previous "gure except that the threshold
SNR is decreased for both algorithms.

Next, we examine the e!ect of the data length, N,
on the performance of the methods under study.
The SNR for the "rst harmonic is "xed at some
value and N is varied from 12 to 200. For each
value of N, M is chosen as N/2 rounded up to the
nearest integer. The other parameters are the same
as in the previous example. Fig. 3(a) shows the
RMSEs of the estimates of u

0
as well as the CRB

when SNR"5 dB. We observe that even for rela-
tively large N (such as when N"146 in this
example), the NLS algorithm may converge to
some local minimum (due to poor initial estimates),
whereas the WLS method is very close to the CRB
for N'20. Fig. 3(b) shows the results when the
SNR is increased to 30 dB. In this case WLS and
NLS are seen to perform similarly to one another
for N'20, with the latter being slightly better than
the former. The performance of WLS can be slight-
ly improved by using MODE [5] instead of
MUSIC to provide the initial parameter estimates
when the SNR is moderate or high. This is because
MODE usually yields more accurate initial esti-
mates than MUSIC in such a case.

Fig. 4 shows the numbers of MATLAB #ops
required by the WLS and NLS algorithms in the
estimation of u

0
in the previous example. The

number of #ops involved in the estimation of the
amplitude and phase parameters is not counted

since both WLS and NLS use (4) (and hence
amount to the same number of #ops) to obtain
estimates for these parameters. Neither do we
count the number of #ops involved in the MUSIC
algorithm for the same reason. Since NLS is iter-
ative and the associated number of #ops may vary
from trial to trial, the numbers shown in Fig. 4 for
NLS are the averages over 200 trials. It is seen from
this "gure that WLS is computationally much
simpler than NLS. Also observe that whereas the
complexity of WLS is not a!ected by N, NLS in
general becomes more involved as N increases,
which is explained by the fact the NLS cost func-
tion becomes more and more erratic as N increases
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Fig. 4. MATLAB #ops versus N.

[8]. We see that the number of #ops involved in the
NLS estimator may increase when N becomes too
small. This is due to the poor initial estimates which
makes the NLS estimator more di$cult to con-
verge.

5. Conclusions

We have presented a Markov-like WLS es-
timator for harmonic sinusoidal parameter estima-
tion. We have shown through numerical examples
that the proposed estimator performs similarly to
the optimal NLS method when the SNR and/or
N are moderate or high, but the former is computa-
tionally signi"cantly simpler than the latter.

The proposed WLS estimator may also be ex-
tended to estimate the parameters of superimposed
harmonic sinusoidal signals in which we have sev-
eral harmonic signals present in the observed data.
The extension would be straightforward if the har-
monic signals are well-separated, i.e., the funda-
mental frequency of any harmonic signal is not
close to any multiples of the other fundamental
frequencies. Without this condition, it would be
di$cult to identify the fundamental frequencies as-
sociated with each harmonic signal from the initial
frequency estimates. The reason for considering the
WLS estimator for superimposed harmonic
sinusoidal parameter estimation is that the NLS
method in this case will need a search over an

¸-dimensional parameter space, where ¸ is the
number of harmonic signals, whereas the WLS
estimator will still have a closed-form solution. As
a result, the computational advantage of the WLS
estimator over the NLS method will be even more
striking. However, how to obtain a set of reliable
initial estimates of the fundamental frequencies
when the harmonic signals are not well-separated
remains a future topic of research.
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