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Computationally Efficient Maximum Likelihood
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Abstract—By invoking the extended invariance principle
(EXIP), we present herein a computationally efficient method
that provides asymptotic (for large samples) maximum likelihood
(AML) estimation for structured covariance matrices and will
be referred to as the AML algorithm. A closed-form formula for
estimating Hermitian Toeplitz covariance matrices that makes
AML computationally simpler than most existing Hermitian
Toeplitz matrix estimation algorithms is derived. Although the
AML covariance matrix estimator can be used in a variety of
applications, we focus on array processing in this paper. Our
simulation study shows that AML enhances the performances
of angle estimation algorithms, such as MUSIC, by making
them very close to the corresponding Craḿer–Rao bound (CRB)
for uncorrelated signals. Numerical comparisons with several
structured and unstructured covariance matrix estimators are
also presented.

I. INTRODUCTION

T HE COVARIANCE matrix of a stationary signal is Her-
mitian and Toeplitz. However, the conventional sample

covariance matrix obtained from a finite number of obser-
vations seldom has this structure. Estimating structured co-
variance matrices is of particular interest in a variety of
applications, including array processing and time series anal-
ysis. For example, many well-known algorithms in array
processing are based on an estimate of the covariance matrix,
and using these algorithms with structured covariance matrix
estimates in lieu of the sample covariance matrix may yield
better angle estimation performance.

The literature on structured covariance matrix estimation
includes [1]–[9] (also see the references therein). An important
technique is the maximum likelihood (ML) approach consid-
ered in [1]–[5], among which [2] appears to be the first to
study the ML method in its full generality. Since theexact
ML estimation of a Hermitian Toeplitz covariance matrix has
no closed-form solution [10], the ML methods proposed in the
previous studies are iterative and computationally involved, yet
they are not guaranteed to yield the global optimal solution.
To avoid this difficulty, other suboptimal approaches have
been considered, a notable example being the iterated Toeplitz
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approximation method (ITAM). ITAM alternatively makes use
of rank approximation and Toeplitzation techniques to ensure
that the covariance matrix estimate has the desired structure
[6]–[8]. However, in spite of the fact that the ITAM estimator
produces a covariance matrix estimate that is, in general,
closer in the Frobenius norm sense to the true covariance
matrix than the sample covariance matrix, it is not guaranteed
that better application-related performances, such as angle
estimation accuracy in array processing, ensue. In fact, we
have found that using the ITAM covariance matrix estimate
with MUSIC [11], [12] (referred to as ITAM-MUSIC) provides
inconsistent (in signal-to-noise ratio or SNR) angle estimates
(see Section V for details). In addition, ITAM is an iterative
algorithm that requires a sequence of eigendecompositions of
intermediate covariance matrix estimates, and therefore, it is
still computationally inefficient. A new covariance estima-
tor was recently introduced in [9] by Fourier inverting the
Capon power spectral density estimates [13]. Although the
Capon covariance estimator was derived primarily for covari-
ance sequence estimation, structured covariance matrices can
be readily constructed from covariance sequence estimates.
Although the Capon covariance sequence estimator usually
gives lower mean squared errors (MSE’s) than the sample
covariance sequence estimator, the former is, in general, not
an optimal method, nor is the structured covariance matrix
estimate obtained therefrom.

In this paper, we present a computationally efficient method
for structured covariance matrix estimation. The method pro-
vides an asymptotic (for large samples) maximum likelihood
(AML) estimate of a structured covariance matrix and will
be referred to as the AML algorithm. AML makes use of the
extended invariance principle (EXIP) for parameter estimation,
which was introduced in [14]. The key idea of EXIP is
first reparameterizing the ML criterion to allow a simple
solution and then refining that solution by using a weighted
least squares (WLS) technique. It turns out that, by invoking
EXIP, the simple solution obtained in the first step of AML
is the unstructured sample covariance matrix, and that the
optimal weighting matrix is the Fisher information matrix
(FIM) corresponding to the unstructured ML criterion. As we
will show, the AML approach yields a closed-form solution to
the Hermitian Toeplitz covariance matrix estimation problem.

The quality of a covariance matrix estimate should be
assessed by studying how it behaves in specific applications.
We consider herein the impact of using structured covariance
matrix estimates on angle estimation in array processing. In
particular, we obtain the angle estimates by using MUSIC
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with the AML covariance matrix estimate, and this approach
is referred to as AML-MUSIC. By exploiting the Toeplitz
structure of the covariance matrix in angle estimation, we
assume implicitly thea priori knowledge that the incident
signals are uncorrelated. With this additional knowledge, the
corresponding Craḿer–Rao bound (CRB), which is referred
to as the structured CRB or S-CRB, should be lower than
the CRB without this knowledge, which is referred to as the
unstructured CRB or U-CRB. Simulation results show that
the performance of AML-MUSIC is very close to the S-CRB
as the number of observations increases, whereas, as is well
known, using MUSIC with the unstructured sample covariance
matrix (which is referred to as the standard MUSIC) can only
approach the U-CRB [15].

A weighted subspace fitting (WSF) algorithm was proposed
in [16] for estimating the arrival angles of uncorrelated signals.
WSF obtains better angle estimates than the standard MUSIC
by exploiting thea priori knowledge of signal correlation as
well, but in a different way. It has been shown in [16] that WSF
asymptotically (for large samples) achieves the S-CRB. Since
the array covariance matrix can be parameterized by the signal
and noise parameters (see, e.g., [17]), the WSF algorithm can
be viewed as a structured covariance matrix estimator by using
the WSF estimates of the signal and noise parameter estimates,
although this was not observed in [16]. Numerical studies
indicate that in terms of angle estimation performance, AML-
MUSIC and WSF yield similar angle estimates for most cases,
except that in some difficult scenarios, such as at relatively low
SNR’s or when the signal arrival angles are closely spaced,
the former tends to outperform the latter slightly. Moreover, in
Section V, we will show that AML-MUSIC is computationally
more efficient than WSF.

An outline of this paper is as follows. Section II presents
the problem formulation and a brief description of the exact
ML approach. The derivation of the AML algorithm for
Hermitian Toeplitz covariance matrix estimation is given in
Section III. Section IV addresses the implementation issues
of AML. Section V contains a numerical study of the AML
estimator as well as comparisons with ITAM, WSF, and the
unstructured sample covariance matrix estimator when applied
to angle estimation. Finally, Section VI concludes this study.

II. PROBLEM FORMULATION

Assume that , denote
independent samples of a circularly symmetric complex

Gaussian stationary random process with zero-mean and Her-
mitian Toeplitz covariance matrix that is a known
function of an unknown parameter vector . The
problem of interest herein is to determine a Hermitian Toeplitz
matrix estimate of from .

The previous situation occurs in many applications includ-
ing array processing, in which denotes the array
output vectors when i) the incoming signals are uncorrelated,
and ii) a uniform linear array (ULA) is employed (see, e.g.,
[11], [15], and [17]). Usually, a Hermitian Toeplitz matrix is
parameterized such that consists of the real and imaginary
parts of the first column (or row) of . However, for the
covariance matrix in the array processing application,
another natural way of parameterizing is by means of
the signal and noise parameters. Letuncorrelated signals
impinge on a ULA of sensors, and assume that the additive
noise is spatially white and independent of the signals. Then,
the spatial covariance matrix has the form [11], [15], [18], [19]

(1)

where denotes the vector
consisting of the arrival angles relative to the array normal
direction, denotes the diagonal signal covariance
matrix, denotes the conjugate transpose,denotes the
noise variance, denotes the identity matrix, and

denotes the array manifold matrix and has
the form of (2), shown at the bottom of the page, with
and denoting the signal wavelength, the spacing between
two adjacent sensors, and the arrival angle of theth signal,
respectively. The parameter vector is then given by

(3)

where denotes the transpose, and is the vector
consisting of the diagonal elements of. The WSF approach
in [16] can be viewed as an estimator of the spatial covariance
matrix by choosing as in (3). In our approach, however, the
general covariance matrix estimation problem is considered,
and hence, is the vector consisting of the real
and imaginary parts of the first column or row of.

The exact ML estimate of is obtained by maximizing
the likelihood function, which is equivalent to

(4)

where , and

tr (5)

with

determinant;
tr trace;

sample covariace matrix:

(6)

...
...

. . .
...

(2)
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If we impose no structure on except for the Hermitian
symmetry (i.e., ), then it is known that the ML
estimate of is given by (see, e.g., [2], [20]), whereas
if we observe the structure of implied by the parameter-
ization of , the ML estimate of is given by .
Asymptotically (in ), will have better accuracy than

. Then, for example, in array processing applications, using
with angle estimators such as MUSIC [11], [12] and

ESPRIT [18] may yield better angle estimation accuracy than
using . However, solving for the ML solution from (4) turns
out to be very complicated because of the nonlinearity of the
cost function. This limits the interest in using the exact ML
structured covariance matrix estimate in practical applications.

III. D ERIVATION OF THE AML ESTIMATOR

By making use of EXIP, an asymptotic ML structured
covariance matrix estimate can be obtained as follows. Let

vec , where vec denotes the operation of
stacking the columns of a matrix on top of one another, and
let denote the vector made from the real
and imaginary parts of the elements ofboth above and on
the main diagonal. Evidently, there is an matrix

such that

(7)

Furthermore, since the mapping fromto is one-to-one,
must be nonsingular. Note thatrepresents a reparameteriza-
tion of the covariance matrix originally parameterized by

. It follows that there exists a mapping from to , i.e.,

(8)

such that

(9)

We can see that is also a one-to-one mapping from
to , which is similar to the mapping in (7). Consequently,
(4) is equivalent to

(10)

which in turn implies that

(11)

Equation (11) is the well-knowninvariance principle(IP) [21].
However, solving (10) instead of (4) yields no computational
advantage at all. To achieve computational simplification, we
make use of EXIP and enlarge the constraint set associated
with (10). Specifically, we consider the unstructured optimiza-
tion problem

(12)

where , which means that the Toeplitz constraint
on is relaxed. We can see that the set is a zero-measure
subset of , which implies that with probability one.

The solution of (12) is, as we have mentioned in Section II,
vec . Since is a consistent estimate of, we have

(13)

This consistency property enables us to obtain an asymptoti-
cally (in ) valid approximation of from , as follows.

Theorem 1: Let be given by (12) or, equivalently,
vec . Then

(14)

is an asymptotically (in ) valid approximation of the ML
estimate , where is a consistent (in ) estimate of the
inverse of the Fisher information matrix (FIM) corresponding
to the unstructured ML criterion given in (12) or, equivalently,
of the covariance matrix of .

Proof: See [14] and [20].
Let vec . Using (7) and the facts that , and

, where cov , we can readily check that
(14) is equivalent to

(15)

It turns out to be more convenient to work with (15) than with
(14) since we thus avoid the transformation fromto .

An expression for , which is needed in (15), is obtained
as follows. Let denote the th column of , and let
denote the -th column of . We have

(16)

and

(17)

where denotes the complex conjugate, denotes
the th element of , and we have used the assumption
that and are independent of one another for

(see Section II). The first term of the last equality of
(17) is easily seen to be equal to . By using
the standard result on calculating the fourth-order moment of
Gaussian random variables (see, e.g., [17]), along with the
zero-mean and circular symmetry assumption of , we
can see that the th element of the second term of (17) is

, which is recognized as the
th element of . Here, denotes

the th element of . It follows that

(18)
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and, consequently

(19)

where denotes the matrix Kronecker product. A natural
consistent (in ) estimate of is given by

(20)

Using (20) in (15), we obtain

(21)

Consider next the function for the case that is
Hermitian Toeplitz. Let

(22)

where denotes the matrix with zero elements
everywhere. Note that . It follows that

...
...

...
...

. . .
. . .

(23)

Let

vec vec vec

vec vec (24)

and

(25)

It follows from (25) that

...
(26)

where

(27)

and

Re Im Re Im

(28)

Using (26) in (21) and minimizing the so-obtained quadratic
function yields the (asymptotic) ML estimate of

Re Re (29)

where is given by (20). To see this, let

(30)

and

(31)

where denotes the Hermitian square root of . Then

Re Re (32)

where we have used the fact that is Hermitian, and
hence

Im (33)

Equation (29) immediately follows from (32).
Next, we note that the Re in (29) can be dropped since

both and can be shown to be real-valued
due to the special structure of [22]. With this observation,
we obtain the final formula of AML for estimating a Hermitian
Toeplitz covariance matrix

(34)

Remark 1: If we relax the Gaussian assumption, then the
estimate given by (4) is no longer the ML estimate. In such a
case, it seems that the use of thecovariance matchingcriterion
(15) [or (14)] makes more sense than using (4). Note, however,
that the circular symmetry assumption should be maintained;
otherwise, the expression for cov is more complicated.

Remark 2: , as given by (34), is not guaranteed to be
positive semidefinite. However, this may occur only if is
close to singular, and is relatively small. If , then
by the consistency of , the matrix must be positive
semidefinite. Our experimental experience suggests that for a
number of data samples as small as, for example, , the
estimated covariance matrix is always positive semidefinite,
even when is nearly singular.

IV. I MPLEMENTATION

For large , directly applying (34) for implementation is
computationally intensive and is not recommended because it
involves multiplications and inversions of matrices of large
dimensions (recall and ).
However, both and have very rich structures that can be
exploited for efficient implementation.

Redefine since dropping in (20) does
not affect our solution. We can compute as

vec vec vec

vec vec (35)

where we have used the matrix Kronecker product result [23]

vec vec (36)
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Hence, we need only to compute Let
denote the elementary matrix with unit

th element and zero elsewhere. We then have

(37)

and

(38)

Note that

(39)

where denotes the column vector that is the th
column of , and denotes the row vector made from
the th row of . Hence, is easily calculated
as a sum of vector outer products

(40)

We next notice that some elements of have the form

vec vec

(41)

The other elements of have similar forms but with
the argument of the first vec changed to and/or the
argument of the second vec changed to .
We can compute (41) as

vec vec

tr

tr

tr

(42)

where denotes the vector with the unitth element
and zero elsewhere, and we have made use of the facts that

vec vec tr (43)

and

(44)

The other elements of can be similarly calculated.
Note that (44) requires no computation since simply
has zero elements everywhere, except that itsth row is the
same as the th row of , which explains how we arrived at
the last equality of (42). Thus, once we have obtained ,
the calculation of requires only a few additions.

Similarly, we decompose into a sum of elementary
matrices

(45)

where

(46)

and

(47)

(Note that in (46) and (47) .)
Consequently, we have

(48)

We can see that computing from
reduces to a few additions. Specifically, to calculate the
premultiplication with or , we use (44), whereas to
calculate the postmultiplication with or , we use

(49)

Again, costs no computation and has zero elements
everywhere, except that its th column is the same as the

th column of .
By using the fact that

vec vec

vec (50)

we can see that the previous techniques used for calculat-
ing can also be used to calculate

vec .
In summary, the AML estimator can be implemented as

follows.

1) Obtain the sample covariance matrix by (6) and its
inverse .

2) Compute and by using (35) and (50),
respectively.

3) Calculate in an elementwise manner by using
(42), and compute similarly.

4) Decompose by using (48) as well
as (44) and (49). In addition, compute
similarly.

5) Finally, calculate by (34), and construct the AML
covariance matrix estimate from .
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(a) (b)

Fig. 1. (a) Average values of�, the normalized Frobenius distance between the estimated covariance matrix and the true one, versus SNR whenN = 256

andM = 5. (b) MSE’s of the estimates of�1 and the corresponding U-CRB and S-CRB versus SNR whenN = 256 andM = 5.

Assume that the data is complex-valued and .
Then, calculating by (6) and by (35) requires
approximately and flops,1 respectively, which
represent the most involved steps in the AML algorithm. Com-
puting the inverse of needs an additional number
of flops of , which is approximately
flops in MATLAB. Computations needed by the remaining
steps of AML are negligible. This gives a rough estimate
of the number of MATLAB flops required by AML to be

. Our simulations show that this
number tends to slightly overestimate the true number of flops
required by AML when is moderate or large.

V. NUMERICAL EXAMPLES

In this section, we provide a numerical study of the AML
covariance matrix estimator. Comparisons are made with sev-
eral typical unstructured and structured covariance matrix
estimators, namely, the sample covariance matrix estimator,
ITAM, and the WSF algorithm. Our primary interest herein is
to compare the performances of using the various covariance
matrix estimators in angle estimation. Whereas the WSF
algorithm is essentially an angle estimator, the other three
estimators are used with the root-MUSIC algorithm [12] for
angle estimation. (Even though they are not shown here, we
find that using ESPRIT with the ITAM or AML covariance
matrices yields similar results as using root-MUSIC.) In what
follows, we also compare covariance matrix estimation in
terms of the Frobenius norms of the differences between the
estimated covariance matrices and the true. (As [16] does
not address the covariance estimation problem, we briefly
explain in Appendix A how to use the WSF algorithm to
estimate the structured covariance matrix.) When a covari-
ance matrix estimator is used in a specific application, the
Frobenius distance may not be an appropriate measure to
assess the quality of that covariance matrix estimator since

1A flop denotes either a floating-point addition or a floating-point multipli-
cation, as adopted by MATLAB.

the Frobenius norm measure ignores the fine structures, such
as the eigenstructure, of the covariance matrix, which may be
of particular interest in that application.

The results shown below are all based on 500 independent
realizations.

A. Performance versus SNR

Consider the problem of estimating the arrival angles
and of two uncorrelated signals with equal power

impinging on a ULA of sensors separated by a half
wavelength. Let , and define the SNR for theth
incoming signal as

SNR (51)

where denotes the th element of the in (3), which is the
variance of the th signal. Let

(52)

where denotes any of the four covariance matrix estimates,
and denotes the matrix Frobenius norm. The average val-
ues of versus SNR for the four covariance matrix estimators
are shown in Fig. 1(a). In terms of the Frobenius distance to
the true covariance matrix , the three structured covariance
matrix estimators yield better covariance matrix estimates than
the unstructured sample covariance matrix. In addition, the
ITAM covariance matrix is worse than both the AML and the
WSF covariance matrices when the SNR is moderately high,
whereas the latter two appear to perform similarly.

By the Carath́eodory parameterization, any positive
semidefinite Hermitian Toeplitz matrix can be expressed as
in (1) with [17], thereby reducing the covariance
matrix estimation problem to that of estimating theequivalent
parameter vector in (3), which is a methodology adopted
by WSF when used for covariance matrix estimation. Note
that WSF uses unknowns, whereas AML has
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unknowns. If , then, according to theparsimony
principle [20], WSF is likely to provide more accurate
covariance matrix estimates than AML because the former
uses fewer number of unknowns than the latter. Yet, WSF
has its own problems, which may affect its performance. For
example, WSF assumes the knowledge of the exact number of
incoming “signals” , whereas AML does not. In scenarios
where the “SNR” is low or some “signals” are close to one
another, an accurate estimate ofis usually difficult to obtain.
In such cases, it may be desirable to use AML instead of WSF
because using incorrect value of in general degrades WSF
significantly. Another reason (perhaps, the more important
one) to prefer AML over WSF is AML’s computational
simplicity, as illustrated later.

Next, we investigate the angle estimation problem. Fig. 1(b)
shows the mean-squared errors (MSE’s) of the various angle
estimates of and the corresponding U-CRB and S-CRB
versus SNR. We note the following.

• The standard MUSIC approaches the U-CRB as the SNR
increases, which is a well-known fact [15], [19].

• AML-MUSIC and WSF are asymptotically very close to
the S-CRB (this happens for SNR dB in the present
case), with AML-MUSIC having a lower threshold SNR
than WSF.

• The difference between the U-CRB and the S-CRB is
small for high SNR’s.

• ITAM-MUSIC never attains the S-CRB and performs
worse than the standard MUSIC when the SNR increases.

The ITAM estimator was originally proposed as an algo-
rithm that can be used to enhance the performance of such
algorithms as MUSIC and ESPRIT when the SNR is relatively
low [7]. As also indicated by Fig. 1(b), ITAM’s performance
is indeed quite good at low SNR values. However, ITAM is
not an optimal method, and therefore, there is no surprise that
ITAM-MUSIC never achieves the S-CRB. On the other hand,
the inconsistency (in SNR) of ITAM appears surprising at
first sight. To explain it briefly, note that as the SNR goes
to infinity, we have

(53)

where is the sample signal covariance matrix that isnot
diagonal for finite . In spite of the fact that is not Toeplitz
in this case, thesignal and noise subspacescan be obtained
exactlyfrom when the SNR goes to infinity. For a subspace-
based algorithm like root-MUSIC, perfect angle estimates can
be obtained if exact subspace estimation is available. However,
ITAM attempts to find a Toeplitz matrix that is as close to
as possible but makes no effort to ensure appropriate subspace
approximation. As a result, the subspaces ofare distorted by
the sequences of approximations introduced by ITAM. Hence,
ITAM-MUSIC is inconsistent in SNR.

It is interesting to note that, even though AML assumes
a Toeplitz structure as ITAM, it does not suffer from the
inconsistency problem of ITAM. In Appendix B, we show
that using the AML criterion (21) in array processing when
the SNR is high is equivalent to seeking a Toeplitz matrix that

is the closest to the range space of . Consequently, the
AML covariance matrix estimate provides consistent (in SNR)
subspace estimates, and AML-MUSIC in turn yields consistent
angle estimates as the SNR increases.

B. Performance versus Snapshot Number

In this example, we study the effect of the snapshot number
on the performance of the various covariance matrix and

angle estimators. The parameters are the same as in the
previous example, except that we fix SNR dB and vary

from 10 to 1000. Fig. 2(a) and (b), respectively, shows
the average values ofand the MSE’s of the estimates of
versus . As we can see from Fig. 2(b), the standard MUSIC
approaches the U-CRB for sufficiently large, whereas AML-
MUSIC has similar performance as WSF and is very close to
the S-CRB when for the present case. In addition, we
note that AML has the lowest threshold in this example.
On the other hand, ITAM-MUSIC cannot achieve the S-CRB
(or even the U-CRB) for all values considered. Increasing

does not help ITAM-MUSIC much, even though the ITAM
covariance matrices are always closer to the truein the
Frobenius norm sense than the sample covariance matrices,
as shown in Fig. 2(a). Fig. 2(a) also shows that as in the
previous example, AML and WSF perform quite similarly for
covariance estimation, and both are asymptotic methods and
provide better estimates than the sample covariance matrix
when is large enough.

In the next two examples, we will no longer show the
covariance matrix estimation results in the form of the-error
since we found that little additional insight can be gained from
them.

C. Performance versus Angle Separation

The parameters used for this example are the same as in the
first example, except that SNR is fixed at SNR dB, and
the signals are from and , with varying
from 1 to 10 . Fig. 3 shows the MSE’s of the estimates of

versus . It can be seen for the present case that when
, AML-MUSIC and WSF approaches the S-CRB, and

the standard MUSIC approaches the U-CRB. Again, AML-
MUSIC has the lowest threshold , whereas ITAM-MUSIC
gives the worst angle estimates for most considered.

D. Performance versus Sensor Number

Next, we study the impact of varying the sensor number
on angle estimation. We fix SNR dB, , and vary

from 3 to 10. All the other parameters are the same as in the
first example. The MSE’s of versus are shown in Fig. 4.
Like in the previous examples, AML-MUSIC and WSF have
similar performances and are very close to the S-CRB, the
standard MUSIC approaches the U-CRB, and ITAM-MUSIC
is the worst for most of the sensor number choices.

E. Computational Complexities

The previous examples have shown that in terms of an-
gle estimation, AML-MUSIC and WSF in general perform
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(a) (b)

Fig. 2. (a) Average values of�, the normalized Frobenius distance between the estimated covariance matrix and the true one, versusN when SNR= 10

dB andM = 5. (b) MSE’s of the estimates of�1 and the corresponding U-CRB and S-CRB versusN when SNR= 10 dB andM = 5.

Fig. 3. MSE’s of the estimates of�1 and the corresponding U-CRB and
S-CRB versus�� when SNR= 10 dB andM = 5.

Fig. 4. MSE’s of the estimates of�1 and the corresponding U-CRB and
S-CRB versusM when SNR= 10 dB andN = 256.

Fig. 5. Flop ratio� versusM when SNR= 10 dB andN = 256.

similarly, except that in some difficult scenarios, such as at
low SNR’s or when the arrival angles of some signals are
closely spaced, AML-MUSIC is slightly better than WSF. We
shall emphasize here that AML and WSF are quite different
algorithms in that AML is derived specifically for covariance
matrix estimation, whereas WSF is primarily for angle (or
frequency) estimation. In the following example, we show
that using AML in angle estimation introduces very modest
additional computations. Define as the ratio of the number
of MATLAB flops needed by ITAM-MUSIC, AML-MUSIC,
or WSF to that by the standard MUSIC. The parameters
are the same as in the previous example, except thatis
varied from 3 to 40. Fig. 5 shows the curves ofversus

. It is seen that AML-MUSIC is computationally the most
efficient algorithm. It should be mentioned that for WSF,
we used a MATLAB code provided by one of the authors
of [16]. The code was provided without any computational
optimality claim, and hence, faster implementation of WSF
may be possible.
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VI. CONCLUSION

We have presented an asymptotic maximum likelihood
method, referred to as AML, for structured covariance matrix
estimation. A closed-form formula for Toeplitz covariance
matrix estimation has been derived that facilitates compu-
tationally efficient implementation of the AML algorithm.
We have shown that using the AML covariance matrix es-
timate with MUSIC improves the angle estimation accuracy
of MUSIC. Comparisons with other typical covariance matrix
estimators have also been made, and the superiority of AML
has been established by examining how the covariance matrix
estimators influence the angle estimation accuracy.

We have also shown that the Frobenius distance is, in
general, not an appropriate measure to assess the quality of
covariance matrix estimates in applications where the fine
structure of the estimated covariance matrix plays an important
role. For subspace-based algorithms, such as MUSIC, the per-
formance is critically dependent on the accuracy of subspace
approximation. The ITAM estimator cannot provide consistent
(in SNR) estimates of the relevant subspaces, and hence,
ITAM-MUSIC is an inconsistent angle estimator, despite the
fact that the ITAM covariance matrix estimate is, in general,
better than the sample covariance matrix in terms of the
Frobenius distance.

Finally, we shall stress that even though we only consid-
ered Hermitian Toeplitz matrix estimation in this paper, it is
straightforward to extend the proposed technique to estimate
any other matrix that has a linear structure.

APPENDIX A
USING WSF FOR COVARIANCE ESTIMATION

After the WSF estimate of is obtained, we need to find
the estimates of the signal and noise power, i.e.,and , in
order to get a structured covariance matrix estimate by using
(1). In this appendix, we describe a method that provides the
asymptotic ML estimates of and , again by exploiting the
covariance matchingcriterion.

Let . We first rewrite (1) as

vec vec vec

(54)

Observe that

vec (55)

where is the selection matrix that has the form

(56)

Here, denotes the elementary matrix with unit
th element and zero elsewhere. By substituting (55) into

(54), we have

vec (57)

Next, we invoke the covariance matching criterion

(58)

According to EXIP, is an asymptotic ML estimate of. To
solve the above WLS problem, we use the WSF estimate of

to replace the in . The solution is then obtained as [see
(30)–(34)]

(59)

APPENDIX B
ANALYSIS OF AML AT HIGH SNR

In this appendix, we show that the AML estimate of the
spatial covariance matrix provides accurate estimate of the
signal subspace of at high SNR. Let the eigendecomposition
of be

(60)

where is the diagonal matrix containing the largest
eigenvalues, with the columns of being the associated
eigenvectors, and is the diagonal matrix containing the
remaining eigenvalues with the columns of being the
corresponding eigenvectors. Since, for sufficiently small,
we have

(61)

it follows that

(62)

Hence, we can rewrite the cost function in (21) at high SNR as

vec vec

tr

tr (63)

where we have used the fact that [23]

tr vec vec (64)

The second term in (63) is of the order and, hence, is
the dominant one. To minimize the criterion function in (63),
the AML estimation of must minimize this term (as

). However, this is only possible if the null space
of is close to , which implies that the range space
of is close to that of , which, in turn, approaches
the range space of (the so-called signal subspace) as

.
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