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Two-Dimensional System Identification Using
Amplitude Estimation

Hongbin Li, Member, IEEE, Wei Sun, Petre Stoica, Fellow, IEEE, and Jian Li, Senior Member, IEEE

Abstract—In [1], we introduced an amplitude estimation based
scheme for one-dimensional (1-D) system identification that
overcomes several drawbacks (e.g., computational complexity,
local convergence, and statistical inefficiency when spectrally
colored noise is present) suffered by the conventional output
error method (OEM). Along the same line, we herein propose a
two-dimensional (2-D) system identification scheme that makes
use of 2-D amplitude estimation. In particular, we consider the
recently introduced 2-D Amplitude and Phase EStimation (APES)
amplitude estimator, which has been shown to yield superior
performance over its competitors. To benchmark the proposed
scheme, we also derive the Cramér–Rao bound (CRB) for the 2-D
system identification problem.

Index Terms—Cramér–Rao bound, 2-D amplitude estimation,
2-D system identification.

I. INTRODUCTION

CONSIDER the following two-dimensional (2-D) linear
discrete-time system

(1)

where denotes the probing signal and the
(possiblyspectrally colored) measurement noise. The rational
system transfer function is given by [2], [3]

(2)

where, without loss of generality, , ,
and are the unit-delay operators. Let

and
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.
Assume the system orders, , , and are known (determined
using some model selection methods in, e.g., [3], [4]). The
problem of interest is to estimate and from the system
outputs .

II. TWO-DIMENSIONAL SYSTEM IDENTIFICATION

A standard technique to solve the above problem is the output
error method (OEM) [2], [3], [5] that minimizes

(3)

The above minimization is usually performed by someiterative
nonlinearoptimization scheme, a process that is computation-
ally intensiveandsensitiveto the choice of initial values for the
unknown parameters. Moreover, the OEM isstatistically ineffi-
cientwhen is spectrally colored [2], [3], [5].

Next, we introduce aclosed-form2-D system identification
scheme that relies on amplitude estimation and is computation-
ally simplerand yet statistically moreaccuratethan the OEM
when is colored. The proposed scheme utilizes an input
signal composed of probing 2-D sinusoids

where we assume and de-
notes the number of unknown parameters in (2). Let

. For sufficiently large and such
that the transient response in the output may be ignored, (1) with
the sinusoidal input can be approximated as

(4)

from which we can estimate in anunstructured
manner by using the 2-D amplitude estimation technique dis-
cussed in Section III. Once the estimates of are
obtained, we select the largest ones (in magnitude) out of the

amplitude estimates and denote them by .
Given these amplitude estimates, we can determineand by
setting , or, equivalently,

(5)
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In contrast to thenonlinearOEM criterion (3), we have obtained
in (5) a set of linear equations with unknowns, which can
be solvedin closed-form, yielding estimates of the system pa-
rameters and .

As shown for the one-dimensional (1-D) case in [1], the
proposed 2-D system identification scheme isasymptotically
(large-sample) statistically efficient, irrespective of the color
of , as long as the 2-D amplitude estimates are
asymptotically efficient. This conclusion also follows precisely
from the extended invariance principle (EXIP) in [6].

III. T WO-DIMENSIONAL AMPLITUDE ESTIMATION

In [1], we have introduced/studied a variety of 1-D ampli-
tude estimators, which are all asymptotically statistically effi-
cient (thusasymptotically equivalent) but with quitedifferent
finite-sample properties. The 2-D extensions of the estimators
can be shown to have similar behaviors to those of their 1-D
counterparts. Among the various choices, we consider the 2-D
Amplitude and Phase EStimation (APES) amplitude estimator
[7], which surpasses their rivals in several aspects (see [1] for
details) and is described next.

Let be the matrix formed from . We break
into overlapping submatrices: ,

; , ;
, where and

(see [8] for how to choose and ). Let ,
where stacks the columns of the argument on top of one
another [9], and be the normalized 2-D DFT (discrete Fourier
transform) of at frequencies , i.e.,

The 2-D APES amplitude estimator is given by [7], [8]

(6)

where and
are thesteering

vectors, denotes the

sample covariance matrix, and and denotes the
transpose, conjugate transpose, and matrix Kronecker product
[9], respectively.

IV. CRB FOR 2-D SYSTEM IDENTIFICATION

Next, we derive the Cramér–Rao bound (CRB) for the 2-D
system identification problem, which is not available in the
literature. Let and ;
let and be similarly defined from . Let

collect the real and imaginary parts of all un-
known parameters: , where

,
, and

and are similarly formed from and ,
respectively. Let

It is easy to verify that

where , and
where

Let , and be matrices formed from ,
, and , respectively. Let ,

, and . Then, we have

where .
Under the assumption that the measurement noiseis circularly
Gaussian with zero mean and covariance matrix, the CRB is
given by (e.g., [10, App. B]

To calculate , we first note that

furthermore, we have
and

. Hence,

(7)

Let and denote the th element of and
, respectively. Equation (7) implies that is obtained

from through linear regression:

(8)

Consequently, we have
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Fig. 1. (a) ARMSE and (b) number of flops versusN = N whenM =M =

5 and an AR observation noise is present.

where with each element obtained in the same
manner as in (8). It follows that the CRB can be written as

(9)

Noting that has the form: , where consists
of the first columns of , we can readily verify that the CRB
corresponding to the complex vector, ,
is given by

(10)

The evaluation of the CRB (9) and (10) requires initial values
of for , , and
for , , which are set to zero in
our simulations in Section V.

V. NUMERICAL RESULTS

Consider a system described by

and

. The noise is generated by a 2-D autoregres-
sive (AR) process: ,
where is a complex white Gaussian noise with
zero-mean and variance 0.01. The probing signal consists
of a sum of unit-amplitude sinusoids at frequen-
cies: ( 0.45, 0.48), ( 0.3167, 0.3467), (0.1833, 0.2133),
( 0.05, 0.08), (0.05, 0.08), (0.1833, 0.2133), (0.3167,

0.3467), and (0.45, 0.48). The performance criteria are
the averaged root mean squared errors (ARMSE) of the
parameter estimates and the number of MATLAB flops as-
sociated with each method. The ARMSE foris defined as
ARMSE RMSE ;
the ARMSE for is similarly defined. Fig. 1(a) depicts the
ARMSE performance of OEM as well as the proposed approach
used with the 2-D APES amplitude estimator; also shown is
the CRB derived in Section IV. Fig. 1(b) shows the number of
flops required by each method. It is seen that the proposed 2-D
system identification scheme not only yields more accurate
parameter estimates, but also is computationally more efficient
than the iterative OEM method.
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