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Two-Dimensional System Identification Using
Amplitude Estimation

Hongbin Li, Member, IEEEWei Sun, Petre Stoi¢c&ellow, IEEE and Jian Lj Senior Member, IEEE

Abstract—in [1], we introduced an amplitude estimation based & := [bg1 -+ bos—1 -~ br_10 - b,,,lys,l]T.
scheme for one-dimensional (1-D) system identification that Assume the system orderss, p, andg are known (determined
overcomes several drawbacks (e.g., computational complexity, using some model selection methods in, e.g., [3], [4]). The

local convergence, and statistical inefficiency when spectrally . - .
colored noise is present) suffered by the conventional output problem of interest is to estimaie and b from the system

error method (OEM). Along the same line, we herein propose a outputs{z(n, )}.
two-dimensional (2-D) system identification scheme that makes
use of 2-D amplitude estimation. In particular, we consider the g
recently introduced 2-D Amplitude and Phase EStimation (APES) Il. TWO-DIMENSIONAL SYSTEM IDENTIFICATION

amplitude estimator, which has been shown to yield superior A standard technique to solve the above problem is the output

performance over its competitors. To benchmark the proposed arror method (OEM) [21. 131, 5] that minimizes
scheme, we also derive the Cramér—Rao bound (CRB) for the 2-D ( ) 121 3], 1]

system identification problem. N—1TN-1
. . . . _ -1 ——1 (2
Index Terms—Cramér—Rao bound, 2-D amplitude estimation, C(a, b)= Z Z lz(n. m)—H (27", 27 u(n. m)|". (3)
2-D system identification. n=0 @=0

The above minimization is usually performed by sdteeative
|. INTRODUCTION nonlinearoptimization scheme, a process that is computation-
ally intensiveandsensitiveto the choice of initial values for the
unknown parameters. Moreover, the OEMiatistically ineffi-
cientwhenuw(n, 7) is spectrally colored [2], [3], [5].
w(n, W) = H (1, 7Y u(n, 7) + v(n, 7), Next, we intr(_)duce &Iosgd-forijD system id.entification.
_ — scheme that relies on amplitude estimation and is computation-
n=0,.. . N-Lm=0..N-1() ally simplerand yet statistically moraccuratethan the OEM
whenu(n, 7) is colored. The proposed scheme utilizes an input
af,ignal composed ak probing 2-D sinusoids

ONSIDER the following two-dimensional (2-D) linear
discrete-time system

where u(n, 7) denotes the probing signal andn, 77) the
(possiblyspectrally coloreli measurement noise. The ration

system transfer function is given by [2], [3] K ' _
i w7 = 3 e
H(zt 771 = 14_177——1 k=1
T_(fs_’lz ) where we assum& > .J and.J := (pg— 1) + (rs — 1) de-
S bz notes the number of unknown parameters in (2) céts, b) :=
._ =0 =0 @ v H (e=927 5k , e I, For sufficiently largeV and N such
p=lq-l i that the transient response in the output may be ignored, (1) with
;) ]20 @i, j% "% the sinusoidal input can be approximated as
K
where, without loss of generalit = 1, b = 0, —\ i Fant T _
and (7% z71) are theg unit-delﬁ; Ooperators?7 OLet = #(n, m) = — r(a, BT L u(n, ),
(0,1 0 a0t v ape o dpo ]t and n=0,.. N-Lm=0..N-1 (4
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In contrast to th@onlinearOEM criterion (3), we have obtained[agr, , -+ agr,, ., -~ ar, ,, .’ € RPa—1x1 pp =
in (5) a set of/ linear equations with/ unknowns, which can [bg, , -+ bg, ., -+ br_, . |7 € R*=Yx! and
be solvedn closed-formyielding estimates of the system paa; and b; are similarly formed from{a;, ;} and {b;, ,},
rametersy andb. respectively. Let

As shown for the one-dimensional (1-D) case in [1], the
proposed 2-D system identification schemeagymptotically w(n, m) == H (27, 27" u(n, n).

(large-sample) statistically efficientrrespective of the color )

of v(n, M), as long as the 2-D amplitude estimafgs,} are tiS easy to verify that
asymptotically efficient. This conclusion also follows precisely _ T B _
from the extended invariance principle (EXIP) in [6]. wn, 7) = ¢ 70, n=0 ... N-Ln=1..N-1

whereg, = [w! _ «f _ jwl_ jul _]T € C¥*! and
[ll. Two-DIMENSIONAL AMPLITUDE ESTIMATION where : ' ' '
In [1], we have introduced/studied a variety of 1-D ampli-
tude estimators, which are all asymptotically statistically effr, == [~wln,n—1) - —wln, n—q+1) -
cient (thusasymptotically equivalehtout with quitedifferent —w(n—p+1,7) - —wln—p+1,T—q+ 1)]T

finite-sample propertiesThe 2-D extensions of the estimators

can be shown to have similar behaviors to those of their 1-Bn. 7= [u(, T=1) --- u(n, T—s+1) ---

counterparts. Among the various choices, we consider the 2-D wln—r+1,7) - uln—r+1, n—s+1)]".
Amplitude and Phase EStimation (APES) amplitude estimator

[7], which surpasses their rivals in several aspects (see [1] {®#t X, W andV be N x N matrices formed fror{xz(n, 7)},

details) and is described next. {w(n, m)}, and {v(n, ®)}, respectively. Letr := vec{X},
LetX be thelV x N matrix formed from{z(n, 7)}. We break w := vec{W}, andv := vec{V'}. Then, we have

X into M x M overlapping submatriceX, ; = {z(k, k),

k=1 ..  +M-1E=1,... 1+M-1},1=0, ..., L—1; T=wtv=20+v

1=0,...,L—1,whereL := N—-M+1landL:= N—M+1 i
¥ L whered = (0,0 P10 - ¢N,17ﬁ71]T e CNNVx2J

(see [8] for how to chooséf andM). Letx, ; := vee{X, 3}, jnqerthe assumption that the measurement naiseircularly

whetrhevecé{ g stacl;s ttr;]e columnls oLt;eDalggFungnt onttolg of ON€aussian with zero mean and covariance mafithe CRB is
another [9], and;,, be the normalize (discrete ou”egwen by (e.g., [10, App. B]

transform) Of{wz,z} at frequencies fx, f1}, i.e.,

_ oHw | Ow
] Lm1I-n o CRB 1(0)_2Re< 0 r 1W)
£ = —— D I U
LL g i To calculatedw/d8" , we first note that
The 2-D APES amplitude estimator is given by [7], [8] dw(n, ) B(z"',z71) o
B = 2/.—1 =—1 U(TL—'L,TL—])
~APES _ QR;, ; A (717 7)
_ 5 H(x -1 S —i, =),
a o] (R-6&l) & AG Lz ey
- _ H /.~ " -1 - — ’ aw(”? ﬁ) _ 1 PO q
[ar(fr) @an(fu)] (R_gkgk ) [ag7(Fr) @ ant(fi)] g, . A(z1, 5—1)“(” — 47— )
k=1,..., K (6) ’
furthermore, we have (Ow(n, m)/day, ;)
whereay(fi) = [1 > ... 2" M=DAT and = j(0w(n, m)/dag, ;) and  (dw(n, m)/dby, ;)
ayp(fr) = [1 &2 ... B2*M=DIT gre thesteering = J (Gw(n, )/9br, ;). Hence,
- T 1 -1
vectors R := (1/LL) 0 i T, l:c - denotes the dw(n, m) 1 r .,
sample covariance matr,nand( O and® denotes the a0t A (=1, 2z n 7w =GCh (7)
transpose, conjugate transpose, and matrix Kronecker product ’
[9], respectively. Let ¢, =(4) and ¢,, 7=(¢) denote theith element of¢, -, and
é,, =, respectively. Equation (7) implies th@{ = (7) is obtalned
IV. CRB FOR 2-D SYSTEM IDENTIFICATION from ¢,, =(¢) through linear regression:

Next, we derive the Cramér—Rao bound (CRB) for the 2-D A, 7 _ . i=1 o] (8
system identification problem, which is not available in the (= ) eu@) = dnm@)s im0 20 (6)

let bg, . and bI be S|m|IarIy defmed frombZ g Let
0 € R27%1 collect the real and |mag|nary parts of all un- Jw 1

— =P =A
known parameterd := [a%, b, af b}]7, wherear := 20T A1,z
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Fig.1. (a) ARMSE and (b) number of flops versis= N whenM = M =

5 and an AR observation noise is present.
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The evaluation of the CRB (9) and (10) requires initial values
ofw(n,n)forl—-p<n<-1,1-¢g<n< -1, andu(n, n)
forl—r<n<-1,1-s<m< -1, which are set to zero in
our simulations in Section V.

V. NUMERICAL RESULTS

Consider a system described by(z7t z 1) =
1 — jo.8z=! — (0.529 + jO.7281)z7t +(—0.5825 +
j0.4232)z71z7! and B(z"%,z7!) = (0.2014 —
j0.7846)z 7t — (0.2194 + ;0.6753)z=1 +(—0.574 +
70.0361)2—1z~L. The noise is generated by a 2-D autoregres-
sive (AR) processi(n, 7) = 0.9%v(n — 1, @ — 1) + ¢(n, 7),
where ¢(n, ) is a complex white Gaussian noise with
zero-mean and variance 0.01. The probing signal consists
of a sum of K = 8 unit-amplitude sinusoids at frequen-
cies: (0.45, 0.48), £0.3167, 0.3467),€0.1833, 0.2133),
(—0.05, 0.08), (0.05,—0.08), (0.1833,—0.2133), (0.3167,
—0.3467), and (0.45:-0.48). The performance criteria are
the averaged root mean squared errors (ARMSE) of the
parameter estimates and the number of MATLAB flops as-
sociated with each method. The ARMSE foiis defined as
ARMSE{a} = (1/(pg — 1)) ZU (i,4)7(0,0) RMSE {ai,; };
the ARMSE forb is similarly defined. Fig. 1(a) depicts the
ARMSE performance of OEM as well as the proposed approach
used with the 2-D APES amplitude estimator; also shown is
the CRB derived in Section IV. Fig. 1(b) shows the number of
flops required by each method. It is seen that the proposed 2-D
system identification scheme not only yields more accurate
parameter estimates, but also is computationally more efficient
than the iterative OEM method.
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