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Abstract

In a companion paper [1], we studied amplitude estimation of one-dimensional (1-D) sinusoidal signals

from measurements corrupted by possibly colored observation noise. We herein extend the results for two-

dimensional (2-D) amplitude estimation, which is of interest in various applications, including medical

imaging, synthetic aperture radar (SAR), seismology, and many others. In particular, we investigate 2-

D sinusoidal amplitude estimation under the general frameworks of least-squares (LS), weighted-least-

squares (WLS), and MAtched-FIlterbank (MAFI) estimation. A variety of 2-D amplitude estimators are

presented, which do not model the observation noise exactly but are all asymptotically (for large samples)

statistically efficient. The performances of these estimators in finite samples are compared numerically

with one another as well as with the Cramér-Rao bound (CRB), the lower variance bound for any unbiased

estimators. Making use of amplitude estimation techniques, we introduce a new scheme for 2-D system

identification, which has a closed-form expression. The proposed 2-D system identification scheme is shown

to be computationally simpler and statistically more accurate than the conventional output error method

(OEM), when the observation noise is colored. The CRB for the 2-D system identification problem is also

investigated in this paper. Close-to-CRB performances are observed for the proposed system identification

scheme for both white and colored noise with moderate numbers of data samples.
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1 Introduction

The need to estimate the complex amplitudes of sinusoidal signals in a noisy environment is encountered

in many signal processing applications [2], [3]. In radars, for example, the complex amplitude of the

demodulated signal, also referred to as the target range signature, is often used for radar target detection and

recognition (see, e.g., [4] and references therein).

A null filtering technique making use of a statistically optimal null filter (SONF) was recently pro-

posed in [5] for amplitude estimation of arbitrary waveforms. The SONF combines instantaneous matched

filtering with least-squares (LS) estimation, and can be used for joint and separate estimation of the am-

plitudes of multiple waveforms. It turns out that the joint and separate amplitude estimators via SONF

for sinusoidal signals coincide with two LS-based amplitude estimators, referred to as LSE(1, 0, 1) and

LSE(1, 0,K), respectively, in [1] [also see Sections 3.1.1 and 3.1.2 of this paper for the two-dimensional

(2-D) versions]. When the observation noise is spectrally white and the signal-to-noise ratio (SNR) is

known, minimum-mean-squared-error (MMSE) amplitude estimation via the SONF is possible; the MMSE

estimates, however, are biased.

LS-based amplitude estimators, in effect, have been most widely used due to their conceptual and com-

putational simplicity. LS amplitude estimates are also known to be optimum when the observation noise

follows a white Gaussian distribution. Despite their populartiy, LS amplitude estimates are far from being

satisfactory when the observation noise is colored and, particularly, when the size of the observed data is

relatively small [1]. In view of this, we investigated alternative techniques for amplitude estimation, includ-

ing weighted-least-squares (WLS) and MAtched-FIlterbank (MAFI) approaches in [1]. It was shown that

WLS and MAFI based techniques lead to statistically more accurate amplitude estimates than the LS esti-

mates when the observation noise is colored; meanwhile, when the observation noise is white, in which case

the LS approach is optimal, WLS and MAFI based amplitude estimators still attain close-to-optimal perfor-

mances. All such properties make WLS and MAFI amplitude estimators very desirable, especially when the

observation noise is colored, or when no a priori information about the spectrum of the observation noise is

available.

Our study in [1], however, was limited to one-dimensional (1-D) signals. As many applications, includ-
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ing synthetic aperture radar (SAR) imaging, medical imaging, seismic signal processing, etc., are concerned

with 2-D amplitude estimation, it would be of substantial interest to extend the results in [1] to 2-D sce-

narios. In this paper, we explore such an extension. As will be seen in the sequel, non-trivial efforts are

required to extend the WLS and MAFI techniques to amplitude estimation of 2-D sinusoidal signals. Aside

from 2-D amplitude estimation, we also investigate a 2-D system identification problem. By utilizing 2-D

amplitude estimation techniques, we propose a new approach leading to a simple closed-form solution to

the 2-D system identification problem.

The rest of the paper is organized as follows. In Section 2, we formulate the problem of interest. In

Section 3, we investigate various ways for 2-D amplitude estimation. Specifically, in Section 3.1, we discuss

the LS approaches to 2-D amplitude estimation. That section also contains a statistical analysis of LS based

amplitude estimators. In Section 3.2, we introduce several WLS based 2-D amplitude estimators. These

amplitude estimators are then linked to the classical Capon [6] and recently proposed APES (Amplitude

and Phase EStimation) [4], [7] spectral estimators, both obtaining spectral estimates from adaptively filtered

outputs of the observed data. The connection between parameter estimation and adaptive filtering brings

up a more general class of MAFI based amplitude estimators, a topic discussed in Section 3.3. The MAFI

concept was originally proposed in [8] and [9] for spectral analysis. Here, we extend the idea to 2-D

amplitude estimation. Numerical examples which compare the performances of all these 2-D amplitude

estimators are presented in Section 4. As an application example, we describe in Section 5 how to use 2-D

amplitude estimation techniques to solve the 2-D system identification problem. The proposed solution has

a closed-form and is computationally simpler and statistically more accurate than the conventional output

error method (OEM) when the observation is colored. Finally, the paper is concluded in Section 6.

2 Problem Formulation

Consider the noise-corrupted observation of K 2-D complex-valued sinusoids

x(n, n̄) =
K∑

k=1

αke
j2π(fkn+f̄kn̄) + v(n, n̄), n = 0, · · · , N − 1; n̄ = 0, · · · , N̄ − 1, (1)

where {αk}K
k=1 is the complex amplitude of the k-th 2-D complex sinusoid at the 2-D frequency pair

(fk,f̄k), and v(n, n̄) is the 2-D complex-valued additive observation noise assumed to be stationary with

zero-mean and unknown finite power spectral density (PSD) φ(f, f̄). We assume that the frequency pairs,

{fk, f̄k}K
k=1, are known and distinct from one another. The problem of interest is to estimate the 2-D

amplitudes {αk}K
k=1 from the observations {x(n, n̄)}.
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In order to write (1) more compactly, we need a few definitions. Let

X
�
=




x(0, 0) · · · x(0, N̄ − 1)

x(1, 0) · · · x(1, N̄ − 1)
...

...
...

x(N − 1, 0) · · · x(N − 1, N̄ − 1)



, (2)

and let V be built from {v(n, n̄)} in the same manner as X is from {x(n, n̄)}. Using matrix notations, (1)

can be expressed as

X = AΛĀT + V, (3)

where (·)T denotes the matrix transpose, and

A
�
=

[
a(f1) · · · a(fK)

]
, Ā

�
=

[
ā(f̄1) · · · ā(f̄K)

]
, Λ

�
= diag

{
α1 · · · αK

}
,

with the k-th column of A and, respectively, of Ā given by

a(fk) =
[
1 · · · ej(N−1)2πfk

]T
, ā(f̄k) =

[
1 · · · ej(N̄−1)2πf̄k

]T
. (4)

Alternatively, we can work with vectors instead of matrices. Let x
�
= vec{X} and v

�
= vec{V}, where

vec{·} stacks the columns of the matrix argument over one another [10]. We vectorize both sides of (3),

which yields

x = (Ā � A)α + v
�
= Ψα + v, (5)

where α
�
=

[
α1 · · · αK

]T
and � denotes the matrix Khatri-Rao product [11], a column-wise Kronecker

product. That is, Ψ can be expressed as

Ψ =
[
ā(f̄1) ⊗ a(f1) . . . ā(f̄K) ⊗ a(fK)

]
, (6)

where ⊗ denotes the Kronecker product [10].

We will henceforth mainly use (5) instead of (3) for estimation and analysis. Accordingly, the problem

of interest is equivalent to determining the amplitude vector α from the data vector x when the PSD, φ(f, f̄),

of v is unknown.

3 2-D Amplitude Estimators

In this section, we discuss a variety of 2-D amplitude estimators which can be categorized as least-squares

(LS), weighted-least-squares (WLS), and MAtched-FIlterbank (MAFI) based 2-D amplitude estimators.

4



They can also be classified depending on whether they consider one sinusoid at a time or all sinusoids si-

multaneously, or whether pre-filtering is employed for amplitude estimation. Furthermore, some estimators

split the data matrix into submatrices to artificially create multiple “snapshots”, whereas the others do not.

In order to discriminate these different amplitude estimators, we use the following naming convention. For

example, LSE(1, 0, 1) denotes the LS estimator that uses a single data snapshot (hence it does not split

the data matrix into overlapping submatrices), employs no pre-filtering, and estimates one amplitude at a

time. Likewise, MAFI(LL̄,K,K) denotes the MAFI estimator that splits the data into LL̄ submatrices [cf.

(15) and (16)], utilizes a bank of K pre-filters, and estimates K amplitudes simultaneously. The remaining

amplitude estimators are similarly designated.

3.1 Least-Squares Amplitude Estimators

Among all the amplitude estimators to be discussed in this paper, the LS estimators are most straightforward.

We consider two LS estimators, namely LSE(1, 0,K) and LSE(1, 0, 1). As both estimators do not take the

correlation of the noise into account, they produce unsatisfactory results when the observation noise is

colored.

3.1.1 LSE(1, 0,K)

From (5), the LS estimate of α is

α̂ = (ΨHΨ)−1ΨHx, (7)

where (·)H denotes the conjugate transpose. It is readily verified that α̂ is unbiased, i.e., E{α̂} = α, where

E{·} denotes statistical expectation. The mean squared error (MSE) of α̂ is given by

MSE{α̂} = (ΨHΨ)−1ΨHΓΨ(ΨHΨ)−1, (8)

where Γ
�
= E{vvH} is the covariance matrix of the noise. Note that the matrix Γ is Hermitian and block

Toeplitz.

Under the mild assumption that v(n, n̄) is circularly symmetric Gaussian, the Cramér-Rao bound (CRB)

for α̂ can be straightforwardly obtained by using, for example, the Slepian-Bangs formula (see, e.g., [12]):

CRB(α) = (ΨHΓ−1Ψ)−1. (9)

We can verify that MSE{α̂} = CRB{α} when the observation noise is white, i.e., Γ ∼ INN̄ , where

INN̄ is the NN̄ × NN̄ identity matrix, and NN̄ ≥ K. That is, with white noise, LSE(1, 0,K) is statis-

tically optimal. In general, when the observation noise is colored, we have MSE{α̂} > CRB{α}, that is,

LSE(1, 0,K) is statistically inefficient with colored noise.
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Despite its aforementioned statistical inefficiency for finite data samples, LSE(1, 0,K) is asymptotically

(for large samples) statistically efficient, as summarized in the following result.

Theorem 1 Under the conditions that the observed data can be described as in (1), and that the observation

noise v(n, n̄) is stationary with zero-mean and finite PSD φ(f, f̄), LSE(1, 0,K) is asymptotically (for large

N and N̄ ) statistically efficient, and the asymptotic MSE of α̂ is given by

lim
N,N̄→∞

NN̄MSE{α̂} = lim
N,N̄→∞

NN̄CRB{α} = diag
{
φ(f1, f̄1) · · · φ(fK , f̄K)

}
. (10)

Proof: See Appendix A. �

3.1.2 LSE(1, 0, 1)

If we use LS to estimate one sinusoid at a time, and treat the rest (K−1) sinusoids in (1) as noise, we obtain

another LS amplitude estimator, namely LSE(1, 0, 1):

α̂k =
1

NN̄

N−1∑
n=0

N̄−1∑
n̄=0

x(n, n̄)e−j2π(fkn+f̄kn̄), k = 1, · · · ,K, (11)

which is recognized as the normalized 2-D discrete Fourier transform (DFT) of x(n, n̄) at frequency (fk, f̄k).

Apparently, LSE(1, 0, 1) is computationally much simpler than LSE(1, 0,K). Another advantage enjoyed

by LSE(1, 0, 1) (and by other one-at-a-time type of estimators to be discussed in the sequel) is that the

exact knowledge of the 2-D frequencies of the sinusoids is not necessary. One can estimate both {αk}K
k=1

and {fk, f̄k}K
k=1 by estimating one amplitude at a time for varying frequency over the frequency bands of

interest and, then, identifying the peaks in the so-obtained spectrum [2], [3], [12]. This gives one-at-a-time

estimators an extra flexibility when compared to their all-at-once counterparts. Note, however, that these

advantages are obtained at the cost of degraded performance when some of the sinusoids are closely spaced

to one another, as will be seen in Section 4.

An analysis of LSE(1, 0, 1) proceeds as follows. Without loss of generality, we consider (11) for k = 1.

Let ã1
�
= ā(f̄1) ⊗ a(f1). The LSE(1, 0, 1) estimate of α1 can be written as

α̂1 =
(
ãH

1 ã1

)−1
ãH

1 x. (12)

Let β
�
=

[
α2 . . . αK

]T
and Ξ be obtained from Ψ by removing the first column of Ψ [cf. (6)], that is,

Ψ =
[
ã1 Ξ

]
. Taking the expectation of both sides of (12) yields

E{α̂1} =
(
ãH

1 ã1

)−1
ãH

1 Ψα = α1 +
1

NN̄
ãH

1 Ξβ,
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which shows that LSE(1, 0, 1) is a biased estimator. Yet, it is asymptotically unbiased as N → ∞ or

N̄ → ∞. The MSE of α̂1 is

MSE{α̂1} =
(
ãH

1 ã1

)−1
ãH

1

(
ΞββHΞH + Γ

)
ã1

(
ãH

1 ã1

)−1
. (13)

Similar to LSE(1, 0,K), LSE(1, 0, 1) is statistically inefficient for colored noise, but is asymptotically sta-

tistically efficient:

Corollary 1 Under the same conditions as stated in Theorem 1, LSE(1, 0, 1) is asymptotically statistically

efficient, and the asymptotic MSE of α̂1 is given by

lim
N,N̄→∞

NN̄MSE{α̂1} = lim
N,N̄→∞

NN̄CRB{α1} = φ(f1, f̄1). (14)

Proof: Corollary 1 is easily proved by using (50) and the fact that limN,N̄→∞(NN̄)−1/2ãH
1 Ξ = 0 [cf.

(48)]. �

Although the results in Theorem 1 and Corollary 1 indicate that LSE(1, 0,K) and LSE(1, 0, 1) are

asymptotically equivalent, they behave quite differently in finite samples. For most cases of interest,

LSE(1, 0,K) is in general a better estimator than LSE(1, 0, 1). Yet, the latter is usually preferred when

we have a relatively large number of data samples, due to its computational simplicity.

3.2 Weighted-Least-Squares Amplitude Estimators

The LS estimators completely ignore the correlation of noise samples and, hence, are suboptimal in general.

One way to take the noise correlation into consideration and, thus, to improve the estimation accuracy is to

partition the observation matrix into overlapping submatrices. Doing so makes it possible to estimate the

noise correlation which can be used to obtain a Markov-like weighted-least-squares (WLS) based estimator

[13]. In the sequel, we discuss various ways to estimate the noise correlation, which result in several WLS

amplitude estimators.

Let

Xl,l̄ =




x(l, l̄) · · · x(l, l̄ + M̄ − 1)

x(l + 1, l̄) · · · x(l + 1, l̄ + M̄ − 1)
...

...
...

x(l + M − 1, l̄) · · · x(l + M − 1, l̄ + M̄ − 1)



,

l = 0, · · · , L− 1; l̄ = 0, · · · , L̄− 1,

(15)

where

L
�
= N −M + 1, L̄

�
= N̄ − M̄ + 1. (16)
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Let Vl,l̄ ∈ CM×M̄ be similarly formed from {v(n, n̄)}. The choices of M and M̄ are discussed in Section

4.2. Similar to (3), Xl,l̄ can be expressed as

Xl,l̄ = AMΛl,l̄Ā
T
M̄ + Vl,l̄, (17)

where

AM
�
=

[
aM (f1) · · · aM (fK)

]
, ĀM̄

�
=

[
āM̄ (f̄1) · · · āM̄ (f̄K)

]
,

aM (fk)
�
=

[
1 · · · ej(M−1)2πfk

]T
, āM̄ (f̄k)

�
=

[
1 · · · ej(M̄−1)2πf̄k

]T
,

Λl,l̄
�
= Λdiag

{
ej2π(f1l+f̄1 l̄) · · · ej2π(fK l+f̄K l̄)

} �
= ΛΩl,l̄.

Let xl,l̄ = vec{Xl,l̄} and vl,l̄ = vec{Vl,l̄}. Vectorizing both sides of (17) yields

xl,l̄ = (ĀM̄ ⊗ AM )vec{Λl,l̄} + vl,l̄
�
= ΨMM̄Ωl,l̄α + vl,l̄. (18)

where [cf. (6)]

ΨMM̄
�
=

[
āM̄ (f̄1) ⊗ aM (f1) . . . āM̄ (f̄K) ⊗ aM (fK)

]
.

3.2.1 WLSE(LL̄, 0,K)

The WLS (Markov-like) estimate of α in (18) is given by [13]

α̂ =
( L−1∑

l=0

L̄−1∑
l̄=0

ΩH
l,l̄Ψ

H
MM̄Q̂−1ΨMM̄Ωl,l̄

)−1( L−1∑
l=0

L̄−1∑
l̄=0

ΩH
l,l̄Ψ

H
MM̄Q̂−1xl,l̄

)
, (19)

where Q̂ is an estimate of Q
�
= E{vl,l̄v

H
l,l̄
}.

An estimate of Q may be obtained as follows. Assume that the initial phases of the sinusoids are

independently, identically and uniformly distributed over [−π, π), and are independent of the noise in (18).

Then we have

R
�
= E{xl,l̄x

H
l,l̄} = ΨMM̄PΨH

MM̄ + Q, (20)

where P = diag
{
|α2

1| · · · |α2
K |

}
. A straightforward estimate of Q is then obtained as

Q̂ = R̂ − ΨMM̄ P̂ΨH
MM̄ , (21)

where P̂ is some initial estimate of P, and R̂ is the sample covariance matrix of {xl,l̄}, i.e.,

R̂
�
=

1
LL̄

L−1∑
l=0

L̄−1∑
l̄=0

xl,l̄x
H
l,l̄. (22)
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In order to eliminate the need for an initial estimate P̂, we observe that

R̂Q̂−1ΨMM̄ = ΨMM̄

(
P̂ΨH

MM̄Q̂−1ΨMM̄ + IK

)
.

For sufficiently large N, N̄,M , and M̄ , ΨH
MM̄

Q̂−1ΨMM̄ is approximately a diagonal matrix [cf. (52)] and,

hence, so is Σ
�
= P̂ΨH

MM̄
Q̂−1ΨMM̄ + IK . Therefore,

Q̂−1ΨMM̄Ωl,l̄ = R̂−1ΨMM̄ΣΩl,l̄ ≈ R̂−1ΨMM̄Ωl,l̄Σ. (23)

It follows from (19) and (23) that

α̂ =
( L−1∑

l=0

L̄−1∑
l̄=0

ΩH
l,l̄Ψ

H
MM̄R̂−1ΨMM̄Ωl,l̄

)−1( L−1∑
l=0

L̄−1∑
l̄=0

ΩH
l,l̄Ψ

H
MM̄R̂−1xl,l̄

)
. (24)

The amplitude estimator (24) is an extension of the 2-D Capon spectral estimator (see, e.g., [4], [9]) to

multiple sinusoids.

An alternative estimate of Q, other than (21), can be obtained as described next. Let

ãMM̄ (fk, f̄k)
�
= āM̄ (f̄k) ⊗ aM (fk).

Then (18) can be expressed as

xl,l̄ =
K∑

k=1

αkãMM̄ (fk, f̄k)ej2π(fkl+f̄k l̄) + vl,l̄, l = 0, · · · , L− 1; l̄ = 0, · · · , L̄− 1. (25)

The unstructured LS estimate of αkãMM̄ (fk, f̄k) from (25) is given by

̂αkãMM̄ (fk, f̄k) =
1
LL̄

L−1∑
l=0

L̄−1∑
l̄=0

xl,l̄e
−j2π(fkl+f̄k l̄) �

= ξk, (26)

which is the normalized 2-D DFT of the vector sequence {xl,l̄}. Note that

ΨMM̄PΨH
MM̄ =

K∑
k=1

[
αkãMM̄ (fk, f̄k)

] [
αkãMM̄ (fk, f̄k)

]H
. (27)

It follows from (20) and (27) that a new estimate of Q, which is different from (21), can be obtained as

Q̂ = R̂ −
K∑

k=1

[
̂αkãMM̄ (fk, f̄k)

][
̂αkãMM̄ (fk, f̄k)

]H
= R̂ −

K∑
k=1

ξkξ
H
k . (28)

The WLSE(LL̄, 0,K) that uses (19) with Q̂ given in (28) does not require any initial amplitude estimates.

It is an extension of the 2-D APES algorithm [4], [9] to multiple sinusoids with known frequencies.
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3.2.2 WLSE(LL̄, 0, 1)

If we apply the WLS technique as in the previous section but restrict it to estimate one sinusoid at a time, then

the WLSE(LL̄, 0,K) amplitude estimator reduces to WLSE(LL̄, 0, 1). In particular, the WLSE(LL̄, 0, 1)

estimator that corresponds to using (19) with Q̂ given by (21) reduces to

α̂k =
ãH

MM̄
(fk, f̄k)R̂−1ξk

ãH
M,M̄

(fk, f̄k)R̂
−1

ãM,M̄ (fk, f̄k)
, k = 1, · · · ,K. (29)

On the other hand, the WLSE(LL̄, 0, 1) estimator that corresponds to using (19) with Q̂ as in (28) is given

by

α̂k =
ãH

MM̄
(fk, f̄k)

(
R̂ − ξkξ

H
k

)−1
ξk

ãH
M,M̄

(fk, f̄k)
(
R̂ − ξkξ

H
k

)−1
ãM,M̄ (fk, f̄k)

, k = 1, · · · ,K. (30)

It should be stressed that, unlike (24), (29) is exactly equivalent to using (21) with (19). The amplitude

estimators (29) and (30) have the same form as the 2-D Capon and APES spectral estimators [4], [9]. It was

shown in [9] that both estimators are asymptotically efficient, but with quite different finite-sample proper-

ties. In particular, (29) is biased downward, whereas (30) is unbiased within a second-order approximation.

3.3 Matched-Filterbank Amplitude Estimator

The essence of the MAtched-FIlterbank (MAFI) approach to amplitude estimation is to design a bank of

frequency-selective FIR (finite impulse response) filters whose center frequencies correspond to the 2-D

frequencies of the sinusoids. The observed data is passed through the FIR filters, and the amplitude estimates

are then obtained from the filtered and, hopefully, signal enhanced data. The role of the FIR filters is to

suppress the interference and noise from adjacent frequencies, in an effort to maximize the SNR at the

frequencies of interest.

Let HH ∈ CK×MM̄ be such that each row of HH corresponds to an MM̄ -tap FIR filter. It was shown

in [1] that choosing more than K FIR filters will not improve the SNR at the filterbank output, but choosing

less than K FIR filters will certainly decrease the SNR. Therefore, we consider a bank of K FIR filters,

each centered to the 2-D frequencies of one sinusoid of interest. Applying HH to both sides of (18), we

obtain the filterbank output as

yl,l̄
�
= HHxl,l̄ = HHΨMM̄Ωl,l̄α + HHvl,l̄. (31)

The FIR filters HH are designed to maximize the SNR at the filterbank output:

SNR
�
= tr

{
(HHQ̂H)−1HH(ΨMM̄ P̂ΨH

MM̄ )H
}
,
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that is,

H = arg max
H∈CMM̄×K

tr
{

(HHQ̂H)−1HH(ΨMM̄ P̂ΨH
MM̄ )H

}
, (32)

where tr{·} denotes the trace of a matrix. The solution to (32) is not unique [1]. One that has a simple

closed-form is given by [1]

H = Q̂−1ΨMM̄ (ΨH
MM̄Q̂−1ΨMM̄ )−1. (33)

It is easily verified that the above H satisfies

HHΨMM̄ = IK ,

which implies that each FIR filter (row) in HH passes the sinusoid of interest undistorted (with unit gain)

and completely eliminates the other sinusoids. Therefore, (31) can be written as

yl,l̄ = Ωl,l̄α + HHvl,l̄. (34)

Observe that the covariance matrix of the noise term, HHvl,l̄, in (34) is given by

HHQ̂H = (ΨH
MM̄Q̂−1ΨMM̄ )−1 �

= Θ.

Applying the WLS (Markov-like) technique to (34), we obtain the MAFI amplitude estimate

α̂ =
( L−1∑

l=0

L̄−1∑
l̄=0

ΩH
l,l̄Θ

−1Ωl,l̄

)−1( L−1∑
l=0

L̄−1∑
l̄=0

ΩH
l,l̄Θ

−1yl,l̄

)

=
( L−1∑

l=0

L̄−1∑
l̄=0

ΩH
l,l̄Ψ

H
MM̄Q̂−1ΨMM̄Ωl,l̄

)−1

×
( L−1∑

l=0

L̄−1∑
l̄=0

ΩH
l,l̄

[
ΨH

MM̄Q̂−1ΨMM̄

][
ΨH

MM̄Q̂−1ΨMM̄

]−1ΨH
MM̄Q̂−1xl,l̄

)

=
( L−1∑

l=0

L̄−1∑
l̄=0

ΩH
l,l̄Ψ

H
MM̄Q̂−1ΨMM̄Ωl,l̄

)−1( L−1∑
l=0

L̄−1∑
l̄=0

ΩH
l,l̄Ψ

H
MM̄Q̂−1xl,l̄

)
,

(35)

where in the second equality, we used the fact that yl,l̄ = HHxl,l̄ [cf. (31)] with H given by (33). Hence,

we have MAFI(LL̄,K,K) = WLSE(LL̄, 0,K). Similar to the 1-D case in [1], the MAFI(LL̄,K,K)

approach is more general since it includes WLSE(LL̄, 0,K) as a special case and other MAFI estimators

which do not have a WLS interpretation exist. Next, we derive such a MAFI estimator.

Let yl,l̄(k) and νl,l̄(k) be the k-th element of yl,l̄ and HHvl,l̄, respectively. Then (34) can be written as

yl,l̄(k) = αke
j2π(fkl+f̄k l̄) + νl,l̄(k), k = 1, . . . ,K. (36)
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Applying LS to the above equation gives the MAFI(LL̄,K, 1) estimator:

α̂k =
1
LL̄

L−1∑
l=0

L̄−1∑
l̄=0

yl,l̄(k)e−j2π(fkl+f̄k l̄), k = 1, · · · ,K. (37)

Unlike the other one-at-a-time estimators, the above MAFI(LL̄,K, 1) estimator requires knowledge of the

number and frequencies of the sinusoids, owing to the need to design the filterbank.

4 Numerical Examples

In this section, we evaluate the amplitude estimators discussed in the previous section. Since all estimators

are asymptotically efficient and, thus, asymptotically equivalent, we only consider cases when N and N̄ are

relatively small. The following acronyms are used to distinguish the different estimators:

• LSE1: LSE(1, 0, 1) using (11);

• LSEK: LSE(1, 0,K) using (7);

• Capon1: WLSE(LL̄, 0, 1) using (29);

• APES1: WLSE(LL̄, 0, 1) using (30);

• CaponK: WLSE(LL̄, 0,K) using (24);

• APESK: WLSE(LL̄, 0,K) using (19) along with (28);

• MAFI1: MAFI(LL̄,K, 1) using (37) along with (28).

The data consists of K = 3 2-D complex sinusoids contaminated by a zero-mean complex Gaussian noise.

The frequencies of the sinusoids are (0.45, 0.35), (0.235, 0.135), and (0.2, 0.1), respectively, whereby the

second and third sinusoids are close to each other but the first one is away from the other two. The ampli-

tudes of the three sinusoids are α1 = ejπ/4, α2 = ejπ/3, and α3 = ejπ/4, respectively. All performances

are evaluated based on 200 independent Monte Carlo realizations.

4.1 Performance versus SNR

We begin by considering the case when the noise is colored. Specifically, the colored noise is generated by

a 2-D autoregressive (AR) process:

v(n, n̄) = 0.99v(n− 1, n̄− 1) + e(n, n̄), n = 0, · · · , N − 1; n̄ = 0, · · · , N̄ − 1, (38)
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where e(n, n̄) is a complex-valued white Gaussian noise with zero-mean and variance σ2. The power

spectral density (PSD) of the data is shown in Figure 1 where σ2 = 0.01. The SNR of the k-th sinusoid is

defined as [2]

SNRk = 10 log10

|αk|2
φ(fk, f̄k)

.

In this example, we have 16 × 16 data samples, that is, N = N̄ = 16. For the WLS and MAFI estimators,

we choose M = M̄ = 4.

Figure 2(a) shows the mean squared errors (MSE) of the seven estimators for α1, along with the CRB

given in (9), as the SNR changes. We see that APES1, APESK, and MAFI1 are close to the CRB, while

both LS estimators are away from the CRB. CaponK is away from the CRB at high SNRs, which is due to a

bias introduced in the approximation of (23) [1]. Capon1 is also biased for finite samples [9], which causes

it to deviate from the CRB at high SNRs.

The performances of the above estimators are somewhat different when some sinusoids are close to the

one of interest, as in the case shown in Figure 2(b), which gives the MSEs and CRBs corresponding to α3.

In particular, LSE1, Capon1, and APES1, which all estimate one sinusoid at a time, degrade considerably.

Unlike LSE1 and Capon1, APES1 still appears to be consistent in that its MSE continuously decreases as

the SNR increases. The performance of APESK becomes quite sensitive for certain SNRs, as also observed

in the 1-D scenarios [1]. In the current case, MAFI1 appears to be the best estimator.

As shown in Section 3.1, when the noise is white and NN̄ ≥ K, LSEK achieves the CRB and, thus, is

optimal. It is interesting to know how the other suboptimal estimators perform in such a case. We consider

an example similar to the previous one except that v(n, n̄) is now a zero-mean complex white Gaussian

noise. The results are shown in Figures 3(a) and 3(b). For α1, all estimators perform quite well and are

close to the CRB for most SNRs. When the SNR is high, however, the bias of LSE1, Capon1, and CaponK

dominates their MSE, which causes their performance deviation away from the CRB. For α3, all suboptimal

estimators are observed to degrade to various extents. Yet, the difference between MAFI1 and LSEK is still

relatively small.

Summary of 2-D Amplitude Estimators: APES1 is in general preferred when no sinusoids are closely

spaced, or when the closely spaced sinusoids are of no interest to the study. In such a case, APES1 is

preferred over APESK or MAFI1 since it is computationally simpler and, moreover, it does not require the

knowledge of the sinusoidal frequencies. On the other hand, MAFI1 should be preferred when estimating

closely spaced sinusoids. Capon1 is generally not recommended due to its bias. LSEK may be used when

it is known a priori that the observation noise is white. Finally, LSE1 may be preferred when the number of

data samples is large, in which case all estimators are similar to one another but LSE1 is computationally
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most efficient.

4.2 Effect of M and M̄ on the Performances

We now study the effect of the filter size parameters M and M̄ on the WLS and MAFI estimators, whose

performance depends on these parameters. The test data is generated as described in the previous section,

with the observation noise being colored and N = N̄ = 32. Without loss of generality, we choose M = M̄ .

The SNR is fixed at 20 dB as M and M̄ vary from 2 to 16. It should be noted from (22) that we need

MM̄ ≤ LL̄ in order to ensure that the sample covariance R̂ has full rank.

The performance of the estimators in terms of MSE and the corresponding CRB versus M = M̄ for α1

and α3 is shown in Figures 4(a) and 4(b), respectively. When no sinusoids are close to the one of interest,

as in the case shown in Figure 4(a) for α1, only Capon1 and CaponK are rather sensitive to the choice of M

and M̄ ; the performance of the other WLS and MAFI estimators remains relatively unaffected for a wide

range of M and M̄ . However, when some sinusoids are close to the one of interest, as in the case shown in

Figure 4(b) for α3, APESK and MAFI1 become more sensitive to the choice of M and M̄ , whereas APES1

still keeps its insensitivity to the different choices of M and M̄ . Hence, choosing the right filter size for

APES1 is easier than for the other WLS and MAFI estimators.

5 Application to System Identification

In this section, we use the 2-D amplitude estimation techniques to solve a problem of 2-D system identifi-

cation. Consider the following 2-D linear discrete-time system

x(n, n̄) = H(z−1, z̄−1)u(n, n̄) + v(n, n̄), n = 0, · · · , N − 1; n̄ = 0, · · · , N̄ − 1, (39)

where the input, also called the “probing signal”, is a summation of K 2-D complex-valued sinusoids:

u(n, n̄) =
K∑

k=1

γke
j2π(fkn+f̄kn̄), (40)

v(n, n̄) is the measurement noise, and the system transfer function H(z−1, z̄−1) is given by

H(z−1, z̄−1) =
B(z−1, z̄−1)
A(z−1, z̄−1)

=

∑r−1
i=0

∑s−1
j=0 bi,jz

−iz̄−j

∑p−1
i=0

∑q−1
j=0 ai,jz−iz̄−j

, (41)

where, without loss of generality, a0,0 = 1, b0,0 = 0, and (z−1, z̄−1) are the unit-delay operators: z−1z̄−1u(n, n̄) =

u(n − 1, n̄ − 1) [13]. We assume that the system orders r, s, p, and q are known, and that the number of
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sinusoids, K, is no less than the number of unknown parameters, i.e., K ≥ (pq − 1) + (rs− 1). Let

a
�
=

[
a0,1 · · · a0,q−1 · · · ap−1,0 · · · ap−1,q−1

]T
,

b
�
=

[
b0,1 · · · b0,s−1 · · · br−1,0 · · · br−1,s−1

]T
.

The 2-D system identification problem of interest is to estimate the system parameters a and b from the

system outputs {x(n, n̄)}.

5.1 System Identification Using Amplitude Estimation

A standard approach to solving the above 2-D system identification problem is the output error method

(OEM), which minimizes the following cost function [13]:

COEM(a, b) =
N−1∑
n=0

N̄−1∑
n̄=0

∣∣x(n, n̄) −H(z−1, z̄−1)u(n, n̄)
∣∣2 . (42)

The OEM cost function can be minimized by using standard iterative nonlinear search schemes, which are

usually computationally intensive and can at best converge to a local minima of the OEM cost function.

In order to avoid the aforementioned drawback of OEM, we introduce a new 2-D system identification

algorithm by making use of amplitude estimation techniques. This algorithm has a 1-D counterpart, origi-

nally proposed in [1] for 1-D system identification. Following the same argument as in the 1-D case, the new

2-D system identification algorithm presented in the sequel is asymptotically (for large sample) statistically

efficient [1]. We sketch the derivation of this algorithm next. For more motivation and discussions of this

technique, we refer the reader to [1].

Let

αk(a, b)
�
= γkH(e−j2πfk , e−j2πf̄k). (43)

For sufficiently large N and N̄ such that the transient response in the output can be ignored, (39) and (40)

can be approximately expressed as

x(n, n̄) =
K∑

k=1

αk(a, b)ej2π(fkn+f̄kn̄) + v(n, n̄), n = 0, · · · , N − 1; n̄ = 0, · · · , N̄ − 1. (44)

From the above equation, we can estimate {αk(a, b)}K
k=1, in an unstructured manner, by using any ampli-

tude estimator discussed in Section 3. Once the unstructured estimates of {αk(a, b)}K
k=1 are obtained, we

select the (pq − 1) + (rs − 1) largest ones (in magnitude) out of the K amplitude estimates, and denote

them by α̂k, k = 1, . . . , (pq − 1) + (rs − 1). Given these amplitude estimates, it is possible to choose a

and b such that

α̂k = αk(a, b), k = 1, · · · , (pq − 1) + (rs− 1).
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Equivalently, the above equation can be rewritten as

α̂kA(e−j2πfk , e−j2πf̄k) = γkB(e−j2πfk , e−j2πf̄k), k = 1, · · · , (pq − 1) + (rs− 1), (45)

which is a set of (pq − 1) + (rs − 1) linear equations with (pq − 1) + (rs − 1) unknowns. Solving these

equations gives an estimate of the system parameters a and b.

5.2 Numerical Results

We compare the performances of the OEM and the proposed 2-D system identification scheme. The OEM

can be implemented by using any standard iterative nonlinear search algorithm. Here, we use lsqnonlin

provided in MATLAB. The initial values of a and b, which are required by lsqnonlin, are obtained by

the LS approach [13, pp. 60–67]. In our simulations, we noticed that better performance can be achieved if

a and b are estimated separately by using lsqnonlin. That is, we search for the minimizing a in the first

step while fixing the value for b; next, we minimize the OEM cost function with respect to b while fixing a

to its most recently updated value. We iterate the two steps until practical convergence is attained.

Our new proposed scheme is non-iterative and in fact it has a closed-form. It can be implemented in

various ways, depending on which amplitude estimator is used. In the following, we consider the LSEK,

APES1, and MAFI1 amplitude estimators. Abusing the notations a little bit, we refer to the resulting system

identification algorithms as LSEK, APES1, and MAFI1, respectively.

We first consider an example when the measurement noise, v(n, n̄), is white. The system transfer

function is described by

A(z−1, z̄−1) = 1 − j0.7z̄−1 + (−0.529 − j0.7281)z−1 + (−0.5097 + j0.3703)z−1z̄−1,

B(z−1, z̄−1) = (0.2163 − j0.6657)z̄−1 + (−0.2472 − j0.7608)z−1 + (−0.56)z−1z̄−1.

The probing signal consists of K = 8 2-D sinusoids at frequencies: (−0.45, 0.48), (−0.3167, 0.3467),

(−0.1833, 0.2133), (−0.05, 0.08), (0.05, −0.08), (0.1833, −0.2133), (0.3167, −0.3467), and (0.45,

−0.48). The noise v(n, n̄) is complex Gaussian with zero-mean and variance σ2 = 0.01. The performance

criteria considered here are the averaged root mean squared errors (ARMSE) of the parameter estimates and

the number of MATLAB flops associated with each method. The ARMSE for the a parameters is defined

as

ARMSE{â} =
1

pq − 1

∑
i,j,(i,j) 
=(0,0)

RMSE{âi,j}.

The ARMSE for the b parameters is similarly defined.

16



Figure 5 illustrates the performance of LSEK, APES1, MAFI1, and OEM, when N = N̄ varies from 15

to 40, and M = M̄ = 5 for APES1 and MAFI1. In particular, Figures 5(a) and 5(b) show the ARMSE of the

a and, respectively, b parameters, as well as the CRB that is derived in Appendix B. Figure 5(c) shows the

number of flops required by each method. When the noise is white Gaussian, OEM is asymptotically optimal

[13] and, therefore, it should outperform the proposed methods, as seen in Figures 5(a) and 5(b). However,

the performance difference between OEM and the proposed methods, especially APES1 and MAFI1, is

small. Figure 5(c) indicates that APES1 is slightly less involved than OEM. However, the differences in

computational complexity are minor in this case. They will be more significant when the system becomes

more complex or when the noise is colored, as will be seen in the next example.

Although LSEK is computationally the simplest, Figures 5(a) and 5(b) show that even with white noise,

LSEK for system identification is considerably worse than APES1 and MAFI1. This may seem counter-

intuitive since LSEK should obtain the best amplitude estimates when the observation noise is white (cf.

Section 3.1.1). The poor performance of LSEK is due to the transient response of the 2-D system. In

particular, (44) is no longer a good approximation of the observations for relatively small N and N̄ . Fig-

ures 6(a) and 6(b) show the power spectral density (PSD) estimate and, respectively, the contour plot of

the PSD estimate of x(n, n̄). The PSD estimate is obtained by the 2-D Capon PSD estimator [12], with

N = N̄ = 25 and M = M̄ = 8. The system poles at z = 0.9ej2π(0.15) and z̄ = 0.7ej2π(0.25) generate

substantial transient response in the system output, which manifests itself as a “ridge” along f = 0.15 and

f̄ = 0.25, respectively. These ridges interfere with the 2-D sinusoids and lead to the degradation of LSEK.

Next, we consider an example that involves colored measurement noise. The system is given by

A(z−1, z̄−1) = 1 − j0.8z̄−1 − (0.529 + j0.7281)z−1 + (−0.5825 + j0.4232)z−1z̄−1,

B(z−1, z̄−1) = (0.2014 − j0.7846)z̄−1 − (0.2194 + j0.6753)z−1 + (−0.574 + j0.0361)z−1z̄−1.

The probing signal is the same as in the previous example. The noise is generated by an AR process as

in (38), with e(n, n̄) being complex white Gaussian with zero-mean and variance σ2 = 0.01. The results

are shown in Figures 7(a) to 7(c). We see that in the current case, APES1 and MAFI1 not only obtain

statistically more accurate parameter estimates than OEM does, but they are also computationally simpler

than the latter.

6 Conclusions

In this paper, we have presented a number of amplitude estimators for 2-D sinusoidal signals in the presence

of colored noise. Although all these amplitude estimators are asymptotically statistically efficient, they
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have rather different finite-sample properties. The performances of these estimators in finite samples have

been compared with one another and with the CRB. General guidelines for the selection and use of these

estimators have been provided. As an application example, we have presented a new approach to 2-D

system identification by making use of amplitude estimation techniques. It has been shown that when

the measurement noise is colored, the new approach in general obtains better parameter estimates and is

computationally simpler than the widely-used OEM algorithm.

Appendix A: Proof of Theorem 1

The MSE of α̂ is given by (8), which is repeated below for easy reference:

MSE{α̂} = (ΨHΨ)−1ΨHΓΨ(ΨHΨ)−1. (46)

In view of (6), we have

ΨHΨ =




(āH
1 ā1)(aH

1 a1) . . . (āH
1 āK)(aH

1 aK)
...

...
...

(āH
K ā1)(aH

Ka1) . . . (āH
K āK)(aH

KaK)


 = (ĀHĀ) � (AHA), (47)

where � denotes the elementwise Hadamard product [14] and, for notational simplicity, ak and āk stand for

a(fk) and ā(f̄k) [defined in (4)], respectively. Since limN→∞ 1
N (AHA) = IK and limN̄→∞

1
N̄

(ĀHĀ) =

IK [15], it follows that

lim
N,N̄→∞

1
NN̄

(ΨHΨ) = IK . (48)

In order to determine the asymptotic form of ΨHΓΨ, we write it as

ΨHΓΨ =




(ā1 ⊗ a1)HΓ(ā1 ⊗ a1) . . . (ā1 ⊗ a1)HΓ(āK ⊗ aK)
...

...
...

(āK ⊗ aK)HΓ(ā1 ⊗ a1) . . . (āK ⊗ aK)HΓ(āK ⊗ aK)


 . (49)

Since Γ = E{vvH}, the kl-th element of ΨHΓΨ can be expressed as

(āk ⊗ ak)HΓ(āl ⊗ al)

=(āk ⊗ ak)HE{vvH}(āl ⊗ al)

=E
{[

(āk ⊗ ak)Hv
] [

vH(āl ⊗ al)
]}

=E
{
V (fk, f̄k)V ∗(fl, f̄l)

}
,

where V (fk, f̄k) is the 2-D discrete Fourier transform (DFT) of the noise v(n, n̄) at the frequency pair

(fk, f̄k), i.e.,

V (fk, f̄k) =
N−1∑
n=0

N̄−1∑
n̄=0

v(n, n̄)e−j2π(fkn+f̄kn̄).
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Hence, we have

lim
N,N̄→∞

1
NN̄

ΨHΓΨ

= lim
N,N̄→∞

1
NN̄

E







|V (f1, f̄1)|2 . . . V (f1, f̄1)V ∗(fK , f̄K)
...

...
...

V (fK , f̄K)V ∗(f1, f̄1) . . . |V (fK , f̄K)|2







= diag
{
φ(f1, f̄1) . . . φ(fK , f̄K)

}
.

(50)

where the last equality follows from the general definition of power spectral density (PSD) (see, e.g., [12])

and the fact that limN,N̄→∞
1

NN̄
E{V (fk, f̄k)V ∗(fl, f̄l)} = 0, for k �= l [15]. Therefore, the asymptotic

MSE of α̂ is [see (46), (48), and (50)]

lim
N,N̄→∞

NN̄MSE{α̂} = diag
{
φ(f1, f̄1) . . . φ(fK , f̄K)

}
. (51)

The Cramér-Rao bound (CRB) is given by (9). Similar to (50), it can be shown that [16]

lim
N,N̄→∞

1
NN̄

ΨHΓ−1Ψ = diag
{
φ−1(f1, f̄1) . . . φ−1(fK , f̄K)

}
. (52)

It follows from (9) and (52) that

lim
N,N̄→∞

NN̄CRB{α} = diag
{
φ(f1, f̄1) . . . φ(fK , f̄K)

}
,

which coincides with (51) and concludes the proof.

Appendix B: Cramér-Rao Bound For The System Identification Problem

For the linear discrete-time system described by (39) and (41), we define θ from the real and imaginary

parts of the system coefficients:

θ
�
=

[
aT

R bT
R aT

I bT
I

]T
∈ R2[(pq−1)+(rs−1)]×1,

where we have

aR
�
=

[
�{a0,1} · · · �{a0,q−1} · · · �{ap−1,0} · · · �{ap−1,q−1}

]T
∈ R(pq−1)×1,

bR
�
=

[
�{b0,1} · · · �{b0,s−1} · · · �{br−1,0} · · · �{br−1,s−1}

]T
∈ R(rs−1)×1,

aI
�
=

[
�{a0,1} · · · �{a0,q−1} · · · �{ap−1,0} · · · �{ap−1,q−1}

]T
∈ R(pq−1)×1,

bI
�
=

[
�{b0,1} · · · �{b0,s−1} · · · �{br−1,0} · · · �{br−1,s−1}

]T
∈ R(rs−1)×1.

(53)
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Let w(n, n̄)
�
= H(z−1, z̄−1)u(n, n̄). It is straightforward to verify that

w(n, n̄) = φT
n,n̄θ, n = 0, . . . , N − 1; n̄ = 1, . . . , N̄ − 1,

where φn,n̄ ∈ C2[(pq−1)+(rs−1)]×1 is given by

φn,n̄ =
[
−w(n, n̄− 1) · · · −w(n, n̄− q + 1) · · · −w(n− p + 1, n̄) · · · −w(n− p + 1, n̄− q + 1)

u(n, n̄− 1) · · · u(n, n̄− s + 1) · · · u(n− r + 1, n̄) · · · u(n− r + 1, n̄− s + 1)

−jw(n, n̄− 1) · · · −jw(n, n̄− q + 1) · · · −jw(n− p + 1, n̄) · · · −jw(n− p + 1, n̄− q + 1)

ju(n, n̄− 1) · · · ju(n, n̄− s + 1) · · · ju(n− r + 1, n̄) · · · ju(n− r + 1, n̄− s + 1)
]T

.

(54)

Let X ∈ CN×N̄ , W ∈ CN×N̄ , and V ∈ CN×N̄ be matrices formed from {x(n, n̄)}, {w(n, n̄)}, and

{v(n, n̄)}, respectively, in the same manner as in (2). Let x
�
= vec{X}, w

�
= vec{W}, and v

�
= vec{V}.

Then

x = w + v = Φθ + v,

where Φ ∈ CNN̄×2[(pq−1)+(rs−1)] is given by

Φ =
[
φ0,0 φ1,0 · · · φN−1,N̄−1

]T
.

Under the assumption that the measurement noise v is circularly Gaussian with covariance matrix Γ, the

Cramér-Rao bound (CRB) for the system identification problem can be obtained by using the Slepian-Bangs

formula [12]:

CRB−1(θ) = 2�
(
∂Hw

∂θ
Γ−1 ∂w

∂θT

)
.

Next, we show how to obtain ∂w
∂θT . Let aRi,j

�
= Re {ai,j}, aIi,j

�
= Im {ai,j}, and let bRi,j and bIi,j be

similarly defined from bi,j . It is straightforward to verify that

∂w(n, n̄)
∂aRi,j

= − B(z−1, z̄−1)
A2(z−1, z̄−1)

u(n− i, n̄− j) = − 1
A(z−1, z̄−1)

w(n− i, n̄− j),

∂w(n, n̄)
∂bRi,j

=
1

A(z−1, z̄−1)
u(n− i, n̄− j).

Similarly, we have

∂w(n, n̄)
∂aIi,j

= −j
1

A(z−1, z̄−1)
w(n− i, n̄− j),

∂w(n, n̄)
∂bIi,j

= j
1

A(z−1, z̄−1)
u(n− i, n̄− j).
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It then follows from the definition of φn,n̄ in (54) that

∂w(n, n̄)
∂θT

=
1

A(z−1, z̄−1)
φT

n,n̄
�
= ζT

n,n̄. (55)

Let ζn,n̄(i) and φn,n̄(i) denote the i-th element of ζn,n̄ and φn,n̄, respectively. Equation (55) implies that

ζn,n̄(i) is obtained from φn,n̄(i) through the linear regression:

A(z−1, z̄−1)ζn,n̄(i) = φn,n̄(i), i = 1, · · · , 2 [(pq − 1) + (rs− 1)] . (56)

Consequently, we have
∂w

∂θT
=

1
A(z−1, z̄−1)

Φ
�
= ∆,

where ∆ ∈ CNN̄×2[(pq−1)+(rs−1)] with each element obtained in the same manner as in (56). It follows

that the CRB can be written as

CRB(θ) =
1
2

[� (
∆HΓ−1∆

)]−1
. (57)

Note that ∆ has the form

∆ =
[
∆̃ j∆̃

]
,

where ∆̃ consists of the first (pq − 1) + (rs − 1) columns of ∆. Then, it is readily verified that the CRB

corresponding to the complex vector,

θ̃
�
=

[
aT bT

]T
∈ C[(pq−1)+(rs−1)]×1,

is given by

CRB(θ̃) =
(
∆̃

H
Γ−1∆̃

)−1
. (58)

Observe that the evaluation of the CRB (57) and (58) requires initial values of w(n, n̄) for 1−p ≤ n ≤ −1,

1−q ≤ n̄ ≤ −1, and u(n, n̄) for 1−r ≤ n ≤ −1, 1−s ≤ n̄ ≤ −1, which are set to zero in our simulations

in Section 5.2.
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Figure 1: PSD of the test data consisting of three 2-D sinusoids and a 2-D AR noise.
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Figure 2: Empirical MSE and CRB versus SNR with N = N̄ = 16, M = M̄ = 4, and colored noise. (a)
α1. (b) α3.
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Figure 3: Empirical MSE and CRB versus SNR with N = N̄ = 16, M = M̄ = 4, and white noise. (a) α1.
(b) α3.
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Figure 4: Empirical MSE and CRB versus M = M̄ with N = N̄ = 32 and colored noise. (a) α1. (b) α3.
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Figure 5: Averaged RMSE and the number of flops versus N = N̄ with M = M̄ = 5 and white noise. (a)
a parameters. (b) b parameters. (c) Number of flops.
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Figure 6: 2-D PSD estimate and the associated contour plot of the system output with σ2 = 0.01, N =
N̄ = 25, and white noise. (a) PSD estimate. (b) Contour.
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Figure 7: Averaged RMSE and the number of flops versus N = N̄ with M = M̄ = 5 and colored noise.
(a) a parameters. (b) b parameters. (c) Number of flops.
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