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Filterbank-Based Blind Code Synchronization for
DS-CDMA Systems in Multipath Fading Channels

Hongbin Li, Member, IEEE,and Rensheng Wang

Abstract—We present a filterbank approach to blind code syn-
chronization for asynchronous direct-sequence (DS) code-division
multiple-access (CDMA) systems. The key idea of the proposed
scheme is to first pass the received signal through a bank of filters,
which are designed to enhance signals of interest and suppress
interference/noise, and then to derive the code timing from the
filtered data. The only required knowledge by the proposed
filterbank scheme is the spreading code of the desired user. It can
be used in various environments, including frequency-nonselective
and frequency-selective, time-invariant, and time-varying fading
channels. It can deal with colored channel noise and unmodeled
interference, such as inter-cell interference (ICI) and narrowband
interference. It has relatively low complexity and can be readily
implemented using standard adaptive algorithms. We show that
under mild conditions, the proposed scheme yields statistically
consistent [in signal-to-noise ratio (SNR)] code timing estimates,
irrespective of the strength of the interference and with only a
finite number of data samples. We also derive an unconditional
Cramér–Rao bound (UCRB), which serves as a lower bound
for all unbiased blind code synchronization schemes. Numerical
results indicate that the proposed scheme compares favorably
with a popular subspace-based method in terms of user capacity,
near–far resistance, and robustness to time-varying fading and
unmodeled interference.

Index Terms—Code division multiple access, code synchroniza-
tion, Cramér-Rao bound (CRB), interference suppression, param-
eter estimation.

I. INTRODUCTION

Code division multiple access (CDMA) is a major air in-
terface candidate for future wireless mobile networks [1].

In CDMA systems, all transmissions occupy the same time and
frequency band. Thus, interference suppression is of paramount
importance to the design of CDMA receivers. A variety of mul-
tiuser receivers resistant to multiple access interference (MAI)
have been proposed (e.g., [2] and references therein). Their per-
formance, however, relies on the availability of accurate esti-
mates of some of the channel parameters, such as the gain,
phase, and, particularly,code timingassociated with the desired
transmission.

Code synchronization, which parallels the research on
multiuser detection for CDMA systems, has been receiving
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increasing interest recently. A variety of code synchroniza-
tion techniques have been proposed so far, starting from the
classical correlator-based schemes, which are optimum in a
single-user environment but highly sensitive to MAI, to the
more recently proposed schemes that show improved resistance
to MAI and can support a larger number of active transmissions
within a cell. These schemes rely on eitherexplicit trainingor
someinherent structureof the transmitted signal. In the latter
case, the need for training may be eliminated, resulting in the
so-calledblind methods.

One interesting training-assisted code synchronization
scheme is the minimum mean-squared error (MMSE) timing
estimator [3]–[5]. The MMSE scheme was observed to outper-
form substantially the correlator-based methods, particularly
in a near–far environment. The MMSE scheme requires little
side information of the transmission, and its computational
requirement is moderate. However, the number of active
transmissions that can be supported by the MMSE scheme is
relatively small [6]. Another training-assisted scheme is the
large sample maximum likelihood (LSML) algorithm [7] (also
see [8]). It models the MAI and channel noise as a colored
Gaussian random process with an unknown covariance matrix.
An estimate of the covariance matrix is used to prewhiten
the received signal. The LSML algorithm achieves a larger
capacity and better accuracy than the MMSE algorithm [7].
When used for multiuser synchronization, it has to estimate
the covariance matrix and perform prewhitening for each user
separately. Thus, the associated computational complexity is
relatively high. A decoupled multiuser acquisition (DEMA)
algorithm was recently proposed in [6]. It estimates the delays
for all users simultaneously, resulting in not only a significantly
reduced computational complexity but also in an improved
capacity and accuracy than LSML [6].

Although the above training-assisted schemes perform quite
well in stationary or slow-fading channels, their performance
degrades considerably as the channel fading rate increases [6].
Moreover, in order to track channel variations, training sym-
bols have to be retransmitted periodically, leading to throughput
reductions. Blind schemes, on the other hand, do not suffer
from such drawbacks. A well-known blind code synchroniza-
tion scheme is the subspace-based method proposed in [9] and
independently in [10]. The subspace method resembles the mul-
tiple signal classification (MUSIC) algorithm originally con-
sidered for direction-of-arrival (DOA) estimation in array pro-
cessing [11]. It relies on the ability to decompose the obser-
vation space into orthogonal complements, which are referred
to as the signal and noise subspaces. Whenunknown/unmod-
eledinterference (e.g., inter-cell interference (ICI) and narrow-
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band interference in cellular overlay systems [12]) is present,
or if the channel noise iscolored with unknown correlation,
subspace decomposition becomes questionable, as is the sub-
space-based code timing estimate (see Section V). In order to
correctly separate the signal subspace from the noise subspace,
the subspace method also needs to know the number of trans-
missions, which may be estimated by some model detection
methods (e.g., [13]). It is, however, not unusual for model de-
tection methods to underestimate or overestimate the number of
transmissions by a small quantity [14]. Such a model mismatch,
as we will see in Section V, may degrade the performance of
the subspace method substantially. The subspace synchroniza-
tion scheme was extended to the multipath fading case in [15].
A modified subspace algorithm was proposed in [16] to extend
the observation interval to span several symbol durations, and
an enhanced estimation accuracy was reported.

In this paper, we propose an alternative blind code synchro-
nization scheme. The idea here is as follows: The received
CDMA signal is known to be “noisy” due to the presence
of MAI and possibly other sources of interference; hence,
instead of directly using the raw data for timing estimation,
we first pass the data through a bank of filters (or filterbank),
which are designed to enhance the useful signals and suppress
the interference/noise, and then derive the code timing from
the filtered data. The resulting blind code synchronization
scheme, orfilterbank scheme, requires only the knowledge of
the spreading code of the desired user, making it ideal for a
decentralized implementation. The filterbank scheme can be
used in frequency-flat and frequency-selective, time-invariant,
and time-varying fading channels; it can cope effectively with
colored channel noise and unknown/unmodeled interference.
The filterbank scheme has a relatively low complexity and can
be readily implemented using standard adaptive algorithms.
Hence, it is appealing not only for code acquisition but for code
tracking as well. We remark that the filterbank-based code-syn-
chronization scheme proposed here is related to several recent
studies on filterbank applications to adaptive filters [17].

The rest of the paper is organized as follows. In Section II,
we introduce the general data model for CDMA systems in
time-varying multipath fading channels and formulate the
problem of interest. The filterbank-based blind code synchro-
nization scheme is presented in Section III. Several attributes
of the proposed scheme, including its statistical consistent
property, and an unconditional Cramér-Rao bound (UCRB)
for the estimation problem are discussed in Section IV; we
also discuss there the relation of the proposed scheme with
several existing ones, e.g., [18] and [19]. Section V contains the
numerical studies. Finally, we draw conclusions in Section VI.

A. Notation

Vectors (matrices) are denoted by boldface lower (upper) case
letters; all vectors are column vectors; superscripts, ,
and denote the transpose, conjugate, and conjugate trans-
pose, respectively; is the identity matrix; is a
vector or matrix with all zero elements; denotes the statis-
tical expectation; denotes the vector 2-norm [20]; tr takes
the trace of a matrix argument;denotes the matrix Kronecker

product [21]; diag is a diagonal or block diagonal matrix;
denotes a circularly symmetric complex Gaussian

random vector with mean and covariance matrix ; finally,
(respectively, ) denotes theth (resp. th) element of

vector (resp., matrix ).

II. DATA MODEL AND PROBLEM FORMULATION

Consider a baseband asynchronous-user DS-CDMA
system. The transmitted signal for useris given by

where is the number of symbols considered for code acquisi-
tion, and and denote the th symbol and spreading
waveform, respectively, for user. Here, denotes
the symbol interval, with and being the chip interval and
spreading gain, respectively.

The signal passes through a basebandfrequency-selec-
tive, time-varyingchannel whose impulse response is modeled
as [22]

(1)

where denotes the Dirac delta function, and ,
respectively, denote the (complex-valued) time-varying fading
coefficient and the propagation delay associated with pathof
user , and denotes the total number of paths of user. The
received signal is then given by

(2)

where denotes the channel noise. In the following, we as-
sume that the fading process is wide-sense stationary
and varies slowly relative to the symbol rate so that

for .1

The receiver front-end is a chip-matched filter (CMF) whose
output is sampled every s, where is an
integer referred to as theoversampling factor. Similar to
previous studies (e.g., [3]–[10], [15]–[19]), we assume in the
sequel rectangular chip waveforms, although generalizations
to other chip waveforms are conceptually straightforward.
For rectangular chip waveforms, the CMF reduces to an
integrate-and-dump filter (IDF) (see, e.g., [9]).

We first form vectors composed of sam-
ples of the IDF output within one symbol period, i.e.,

. Define

the spreading vector ,
, where . Due

to asynchronous transmissions, two adjacent symbols in each
path contribute to . That is, the contribution to from

1The assumption is mainly for arriving at a tractable data model. In testing
the proposed scheme, we relax this assumption and allow� (t) to vary con-
tinuously within a symbol interval; see Section V.
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[cf. (2)] has the following form [5]–[10],
[18]:

(3)

where . As we will see later, it is con-
venient to express as a multiple of the sampling interval

(4)

where is an integer, and
is a fractional number. In (4), we also implicitly assumed that

[cf. (14)]. The vectors and in (3)
consist of linear combinations of theacyclic left and right shift
of user ’s spreading code [10], [18]:

(5)

(6)

where

(7)

(8)

To simplify the notation, let

(9)

(10)

It follows from (3) that the vector can be expressed as

(11)

where consists of noise samples,
, and

(12)

(13)

The problem of interest to this paper is to estimate the delay
parameters { }. To avoid ambiguity, we assume that the path
delays of the same user aredistinct; furthermore, we assume that
the delay spread is within one symbol interval such that (also see
[10])

(14)

Without loss of generality, let us assume that the first user is of
interest. The problem is to estimate the path delays
from the receiver output only (i.e., without any

knowledge of the transmitted symbols). In light of the decompo-
sition of in (4), the problem is equivalently to estimate

.

III. FILTERBANK-BASED BLIND CODE SYNCHRONIZATION

Assuming that the first user is of interest, we rewrite (11) as

(15)

where lumps together the MAI and channel noise:
. Due to the presence of

, the observed signal is “noisy,” particularly when
some user transmissions are significantly stronger than that of
the desired user (i.e., in a near-far scenario). Hence, instead
of directly using the raw data, we propose to first pass
through a bank of filters (or filterbank), which are designed to
enhance the useful signals and suppress the interference/noise
and then derive the delay estimates from the filtered data. The
proposed scheme is detailed next.

We first design a bank of finite-duration impulse response
(FIR) filters,2 denoted by , for data prefiltering.
While alternative design schemes may exist, we choose
based on the following idea: If is effective in canceling the
interference/noise, the average power of the filterbank output
should be small; meanwhile, to avoid the trivial solution

and to prevent signal cancellation, we should enforce certain
constraints on such that it will pass the desired signals with
little distortion. Hence, the design criterion may be chosen as
follows:

tr

subject to (16)

where denotes the sample covariance matrix

(17)

and the constraint ensures that each filter
(i.e., one column of ) will pass only one signal component
[corresponding to one column of ] undistorted with
unit-gain, while completely eliminating intersymbol inter-
ference (ISI) caused by the other columns of . Using
the Lagrange multiplier, the solution to the above constrained
quadratic minimization problem is given by (see also, e.g., [23,
p. 283])

(18)

where the dependence on of was made explicit. Substi-
tuting (18) into (16), the minimized average power of the filter-
bank output is given by

tr (19)

2We consider FIR filters for implementation simplicity.
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Note that the average power of the filterbank output depends on
the unknown delay . An intuitive estimate of would be
the one that maximizes over all possible delays since,
if coincides with the true delay , the filterbank incurs
no signal cancellation and maximizes the signal strength at the
filterbank output. However, this is rather involved due to the
nonlinear nature of . By the Schwarz inequality, we note
that (dropping the dependence onfor notational brevity)

tr tr

tr tr

with equality holds if and only if is proportional to
an identity matrix. It follows that is lower bounded by

tr

Instead of maximizing , we can maximize its lower
bound to seek computational simplicity. It turns out that doing
so leads to an estimate that is stillstatistically consistentin
signal-to-noise ratio (SNR). In particular, we show in Sec-
tion IV-B that the resulting estimate converges to the true
in the absence of channel noise.

Hence, we choose , which maximizes the lower bound on
or, equivalently, which minimizes the following:

tr

(20)

where

(21)

Since the terms of the cost function in the second line of
(20) have identical form and the delay parameters are distinct
[see (14)], it follows that the delay estimates , which
minimizes the cost function, arethe smallest local minima
of over the duration . As we show next, the

smallest minima of can be easily obtained in aclosed-
form, noniterativefashion, utilizing only a sequence of simple
first-order polynomial rooting.

Decompose the dummy variableinto a multiple of :
. Define shifting matrices

One can easily see that the acyclic left and right shift of the
spreading codes, given in (7) and (8), respectively, can be ex-
pressed as

(22)

It follows from (5), (6), and (22) that

(23)

where

(24)

(25)

(26)

In light of (23), the cost function in (21) can be equivalently
expressed as

(27)

where . Since
is Hermitian, we have . It follows that

(28)

Next, we observe that is a 2 2 symmetric matrix,
which can be expressed as

(29)

Substituting (26) and (29) into (28) yields (we sometimes drop
the dependence onfor notational simplicity)

(30)

which is a second-order polynomial of. For a specific value
of , may be a local minimum of

over the open interval ( ) if , and is
a root of the derivative

Rooting the above first-order polynomial yields

if (31)

Thus, we can form a setof candidates (for the delay estimates)
that contain allstationary points, i.e., for every

in { } and the corresponding , as given in (31).
Note that may not be differentiable at the boundary points

for . Hence, should contain
these points that may achieve local minima of as well. The

smallest minimaare then determined by evaluating at
every candidate in followed by a ranking. To facilitate the
evaluation of over the set , we may use the following
equivalent expression that is simpler than (30):

if

if .

To summarize, the proposed code synchronization scheme
consists of the following steps.

1) Compute the sample covariance matrix by (17) and
its inverse (assuming such that the is in-
vertible).



164 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 1, JANUARY 2003

2) Form the cost function as in (21). Compute the
delay estimates as the smallest minima over
the interval by the approach described above.

Several remarks regarding the above implementation are nec-
essary. First, we note that the only significant matrix manip-
ulation of the proposed scheme is the forming of . A di-
rect, batch-mode computation would require about op-
erations. When implemented recursively using a standard RLS
algorithm, the complexity can be reduced to (cf. Sec-
tion IV-A). Even linear complexity RLS algorithms exist; see,
for example, [24]. In forming the cost function (27), it should
be noted that and are shifting matrices. As a result,

and will be computed by shifting the spreading
code and not by direct matrix-vector multiplications. In ad-
dition, the 2 2 matrix can be obtained by exploiting the
fact that and consist of only 1 and 0, and hence,
no multiplications are necessary.

IV. DISCUSSIONS

We remark that the only required knowledge by the proposed
filterbank-based blind code synchronization scheme is the
spreading code of the desired user. Therefore, it is good for
a decentralized implementation. It does not need to know the
number of active users, which is, however, indispensable to the
subspace-based blind code synchronization scheme [9], [10]
such that the signal subspace can be correctly separated from
the noise subspace (also see Section V). Even the knowledge
of the number of paths of the desired user is not critical to our
scheme since an over- or under-determination ofdoes not
affect the delay estimates of the correctly detected paths. This
is simply because the cost function in (21) is independent
of the parameter . Of course, an over-determination of
will result in delay estimates for spurious paths, while an
under-determination of will pick out only the strongest
paths, missing the wicker ones.

In the sequel, we discuss a few additional properties for the
proposed scheme and derive an unconditional Cramér-Rao
bound (UCRB) for the blind estimation problem. We also relate
the proposed scheme to some previous work on blind code
synchronization.

A. Adaptive Implementations

The proposed scheme can be readily recursively implemented
by using the matrix inversion lemma, thus making it appealing
for not onlycode acquisitionbutcode trackingas well. Specifi-
cally, we can use the standard recursive least-squares (RLS) like
iteration with forgetting factor [24]:

where denotes the sample covariance matrix based on
the observed data up to and including . Alternatively, we
can also use a sliding window of length symbol durations:

In this case, can be recursively computed as (by ap-
plying the matrix inversion lemma twice)

Either one of the above adaptive implementations will lead
to a complexity of the proposed scheme similar to that of the
MMSE timing estimator with the RLS adaptation [5]. On the
other hand, the subspace-based scheme [9], [10] requires an
eigendecomposition of the covariance matrix, which
is computationally demanding. Although subspace tracking is
also possible, it in, in general, more involved than the proposed
scheme.

B. Statistical Consistency

The proposed filterbank scheme has another desired property:
The delay estimates converge to the true delay parameters as
the SNR increases, i.e., they arestatistically consistent. This
holds true, irrespective of the strength of the MAI (hence, the
proposed scheme isnear–far resistant) and forfinite number of
data samples. Specifically, we have the following result.

Proposition 1: Let

(32)

(33)

where , and denotes the
total number of paths of all users. Assume the following.

A1) The noise samples are zero-mean and indepen-
dently and identically distributed (i.i.d.) such that

, where
denotes the Kronecker delta function, and

denotes the noise variance.
A2) has full column rank for all possible delays [i.e.,

is unambiguous].
A3) The matrix has full

rank.
Then, the delay estimates given by (20) are statistically consis-
tent (in SNR).

Proof: See Appendix A.
We note that Assumption A1 is rather standard. Assump-

tion A2 is needed to prevent ambiguity in the blind estima-
tion problem under study. It requires that such that

is a tall matrix; furthermore, the spreading codes and their



LI AND WANG: FILTERBANK-BASED BLIND CODE SYNCHRONIZATION 165

shifts are required to be linearly independent of each other. As-
sumption A3 corresponds to the so-called “persistence-of-exci-
tation” condition usually assumed in blind estimation problem
(see [25]). It can be met as a results of, e.g., independent symbol
emission and independent channel fading.

C. Intercell and Narrowband Interference Suppression

Since the proposed code synchronization scheme does not
model the interference/noise term in (15) exactly,
may containcolored noise and interference other than MAI,
such asintercell interferenceand narrowband interference
[12]. The overall interference/noise can be suppressed by the
filterbank . On the other hand, the subspace-based code
synchronization scheme [9], [10] assumes anexactparametric
data model; it is sensitive to the presence of colored noise
andunmodeledinterference. The behavior of the two schemes
under model mismatch is further investigated in Section V by
computer simulations.

D. Unconditional Cramér–Rao Bound

The Cramér–Rao bound (CRB) conditioned on the trans-
mitted data symbols and channel fading for the code timing
estimation problem was derived and compared with the sub-
space-based timing estimator in [15]. Since blind algorithms
assume no knowledge of the information symbols and channel
fading, they are not expected to achieved theconditional CRB.3

Here, we consider the CRB that is not conditioned on the
information symbols nor the channel fading (hence, the name
unconditional CRB, or UCRB). The UCRB is averaged over
the unknown information symbols and channel fading and
provides a lower bound for unbiased blind estimators.

To present the UCRB, the unknown parameters
implicit in the estimation problem are first sum-
marized. Let and

, where
, , which is the average received

power associated with theth path of user . Let

where denotes the autocorrelation of the noise samples:
. Since { } is assumed stationary,

is Hermitian and Toeplitz and, thus, can be parameterized
by its first column or, equivalently, , which is formed from
the real and imaginary parts of the first column. We next form
consisting of all the unknown parameters:

where we recall . With the above definitions, the
UCRB for can be derived by using the Slepian–Bangs formula
(e.g., [23]). In particular, we show in Appendix B that the UCRB
matrix is given elementwise by

tr (34)

3It would be more appropriate to compare training-assisted schemes with the
conditional CRB.

where , and the partial derivatives with
respect to individual parameters are given by (38)–(40).

E. Relation to Previous Work

There are several previous studies related to the proposed fil-
terbank approach. In particular, a minimum-variance criterion
similar to (21) was considered in [19] for code synchronization
in the downlink of CDMA systems. Unlike the strict derivation
we presented in Section III, the discussion in [19] was made
on a somewhat heuristic basis. For example, the timing uncer-
tainty therein wasdiscretizedor hypothesizedto form a finite
set; furthermore, the path delay was assumed to be within that
set. The cost function was then evaluated at each element of that
set, and the one yielding the maximum of the cost function over
the set was taken as the delay estimate. Apparently, the accu-
racy of this method is affected by how fine the time discretiza-
tion is performed. Since the time-discretization induced error is
independent of the SNR, the error will not vanish as the SNR
increases. Hence, the so-obtained delay estimate is, in general,
statistically inconsistent, which is in contrast to theconsistent
estimate produced by our scheme.

Perhaps [18] was the first to utilize the minimum-variance
criterion for code synchronization in frequency-nonselective,
time-invariant channels. To facilitate joint symbol demodula-
tion, it was suggested therein to process data vectors formed
from samples within two symbol intervals (as opposed to one
symbol interval in our scheme). This leads to a higher compu-
tational complexity and a slower convergence rate of the syn-
chronization algorithm. Time discretization was also employed
therein for delay estimation. Additionally, as noted by the au-
thor, the algorithm involves a user parameter that is usually dif-
ficult to choose in practice.

The proposed filterbank-based scheme overcomes the diffi-
culties of the above-mentioned methods. We will also stress that
time-varying channel fading has beenexplicitly incorporated in
our data model. As a result, the proposed scheme can cope with
very fast channel fading, as also confirmed by the simulation
results in Section V.

Finally, we remark that the filterbank approach is quite gen-
eral. Indeed, different choices of the filterbank will, in general,
lead to different synchronization schemes. The synchronization
accuracy, however, will be mainly determined by how well the
filterbank performs interference suppression. This suggests that
other code synchronization schemes via alternative filterbank
design with better interference cancellation ability may exist,
and they have yet to be discovered.

V. NUMERICAL SIMULATIONS

We consider a -user asynchronous DS-CDMA system
using a unit-energy binary phase shift keying (BPSK) con-
stellation. Each user is assigned an Gold code
consisting of 1 and 1. To model both small- and large-scale
fading, we decompose the fading coefficient into two parts
and generate them separately: , where

models the small-scale Rayleigh fading,
whereas follows a log normal distribution to emulate the
large-scale path loss and shadowing [26]. In the sequel, we
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consider near–far environments without enforcing stringent
power control, where the total (from all paths) average power
for the desired user is scaled so that ,
whereas the power for the interfering users follows a
log normal distribution with a mean power dB higher than
that of the desired user. The near–far ratio (NFR) is defined as

(in decibels).
We consider both time-invariant and time-varying channels.

In the former case, and are generated according to the
above-stated distributions, fixed for one experiment, but varied
independently from trial to trial. In the time-varying case,
are functions of time, generated according to the Jakes’ model
[27] (also see discussions in Section V-B).

The average SNR for the desired user is defined as (recall that
)

SNR (35)

where is the power spectral density (PSD) of the noise/in-
terference sample [cf. (2)]: .
For bandlimited white Gaussian noise, (35) reduces to
SNR , where denotes the variance of . The
primary performance measure is theprobability of correct
acquisition, which is defined as the probability of the event
that the delay estimate is within a half chip of the true delay.
Another performance measure is the root mean squared error
(RMSE), which is normalized by , of the delay estimate
given correct acquisition. All results shown below are based
on 400 Monte Carlo trials, where (delay), (small-scale
fading), (large-scale fading) for , (symbols),
and channel noise are varied independently from trial to trial.

A. Colored Noise and Intercell Interference

We first consider the case when is colored, generated by
a first-order autoregressive (AR) noise:

, where is a zero-mean white Gaussian process. The
channel is assumed frequency-flat and time-invariant during ac-
quisition. Fig. 1 shows the probability of correct acquisition of
the proposed filterbank scheme and the subspace-based method
[9], [10] as a function of the SNR when , , and
NFR dB. Both the chip-rate sampling ( ) and over-
sampling ( ) are considered. We see that in the presence
of colored channel noise, the filterbank scheme outperforms the
subspace method, especially when SNR is moderate or low (less
than 20 dB).

The subspace method is known to be suboptimal in colored
noise. It is natural to compare the two methods in channels with
white noise. Fig. 2 depicts the performance in such a situation
where all other simulation parameters remain unchanged, ex-
cept that is now awhitenoise. It is seen that the subspace
method ( ) outperforms the proposed method ( ) for
low SNR; however, when oversampling is utilized, the proposed
scheme ( ) yields almost identical performance to that of
the subspace method ( ).

In Fig. 2, we also simulate a scenario involving intercell in-
terference (ICI) by letting two out of transmissions be
originated from some neighboring cells. We assume that the

Fig. 1. Probability of acquisition versus SNR whenK = 8,M = 150, and
NFR= 10 dB in frequency-flat time-invariant channels withcolorednoise.

Fig. 2. Probability of acquisition versus SNR whenK = 8,M = 150, and
NFR= 10 dB in frequency-flat time-invariant channels withwhitenoise.

subspace method, being unaware of the presence of ICI, uses
for synchronization (due to, e.g., a mis-estimation of the

number of transmissions). We see that the subspace method de-
grades significantly in the presence of ICI. Meanwhile, the per-
formance of the proposed scheme is independent of the trans-
mission number (as long as the overall interference level re-
mains the same) and, thus, is not affected by the ICI.

B. Fading Rate

Next, we examine the effect of channel variations on the pro-
posed and subspace methods. To this end, frequency-flat time-
varying Rayleigh fading channels are simulated. The channel
fading [cf. (1)] is modeled as a zero-mean Gaussian sta-
tionary process with the classical U-shape PSD and unit power
[27]. It is parameterized by thenormalized Doppler rate ,
where is the maximum Doppler rate and the symbol in-
terval. In our simulations, the fading process is generated by
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Fig. 3. (left) Probability of acquisition and (right) RMSE versus the
normalized Doppler ratef T whenK = 8, M = 150, SNR= 20 dB, and
NFR= 10 dB in frequency-flat channels.

the Jakes’ model [27] and updated continuously everys,
where is the sampling interval. As a result, the
fading does not remain unchanged within a symbol interval, as
assumed in Section II. Fig. 3 depicts (left) the probability of
correct acquisition and (right) RMSE of the proposed and sub-
space methods as a function of , when , ,
SNR dB, NFR dB, and the channel noise is white.
The result shows that the proposed scheme is extremely ro-
bust to time-varying fading, yielding no acquisition failure for
all fading rates, whereas the subspace method degrades consid-
erably as the fading rate increases. We also note that the sub-
space method produces slightly better RMSE when the channel
is close to being stationary (i.e., small ).

A comparison of Figs. 2 and 3 reveals that the pro-
posed scheme actually achieves improved performance in
time-varying channels than in time-invariant channels. The
improvement comes from additionaltime diversityimplicit in
time-varying channels. To see this, we first remark that the
performance of the proposed (as well as the subspace) scheme
is primarily determined by theeffectiveSNR for the desired
user. Recall that , the (small-scale) fading coefficient
associated with pathof user 1, is a Gaussian random variable
that is fixed in one experiment but varied independently from
trial to trial in the time-invariant case. The magnitude of ,
which determines the effective SNR for user 1, has a Rayleigh
distribution and, therefore, is less than 0.5 with probability
0.2212.4 That is, the effective SNR of the desired user is at
least 6 dB smaller than the nominal average SNR for about
22.12% of the total (which is 400 in our simulations) trials
in the time-invariant case. As one can expect, the probability
of correct acquisition in these fading-impaired trials would
be significantly lower than in the others, which degrades the
overall performance. On the other hand, in the time-varying
case with sufficiently fast fading rate, the channel is rarely

4The cumulative distribution function ofj j isF (j j) = 1� e
[22, p. 45].

Fig. 4. (left) Probability of acquisition and (right) RMSE versus NFR when
K = 8,M = 150, and SNR= 20 dB in frequency-flat time-varying channels
with f T = 0:08.

locked at a deep fade throughout one trial. For example, at
, we have observed that the “down” time is

typically less than 30% of the transmission time. Thus, channel
variations provide the remarkable time diversity that may be
exploited to improve performance. We note, however, that
while the proposed scheme is able to benefit from channel
fading, most training-assisted synchronization schemes suffer
from it. As shown in [6], a relatively small Doppler rate (e.g.,

) breaks down most well-known training-based
schemes.

C. Near–Far Resistance

To test the performance of the proposed and subspace
schemes in near-far environments, we consider a scenario
where , , SNR dB, and the underlying
channel is frequency-flat time-varying with .
Fig. 4 depicts (left) the probability of correct acquisition and
(right) RMSE when the NFR is varied from 0 to 30 dB. It is
seen that performance of the proposed scheme is relatively
insensitive to the NFR, whereas the subspace method degrades
significantly as the NFR increases. We note that with power
control and thus small NFR, the subspace method may yield
slightly better RMSE.

D. User Capacity

We next examine the user capacity of the proposed and
subspace schemes in time-varying, frequency-flat, and fre-
quency-selective channels. For frequency-selective channels,
we assume that each user transmission undergoes two inde-
pendent paths with equal (average) power before reaching the
receiver. We declare correct acquisition in the multipath case
whenever the delay estimate of the path of interest is within a
half chip to the true delay, regardless of the delay estimate of the
other path. Nevertheless, we have noticed similar performance
for both paths, in terms of both the probability of acquisition
and RMSE, primarily because each path carries similar average
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(a)

(b)

Fig. 5. Probability of acquisition versusK, the number of users whenM =

150 and SNR= 20 dB in (left) frequency-flat and (right) frequency-selective,
time-varying channels withf T = 0:08. (a) NFR= 0 dB. (b) NFR= 10 dB.

power. Accordingly, instead of showing the results for each
path separately, we only show the average of the probability
of acquisition (or RMSE) of the two paths. During our sim-
ulations, we have also observed that the proposed as well as
the subspace methods occasionally produce two path delay
estimates that are very close to one another, with a difference
typically less than 0.1 . Since such a relative delay is not
resolvable in practice unless additional bandwidth is available,
whenever this occurs, we discard one of the two estimates and
use the next candidate in, which we recall is formed by all
candidates, or the local minima of the cost function for the
proposed scheme [see the discussions following (31)].

We first consider the scenario when , SNR dB,
and NFR dB. Fig. 5(a) depicts the results for (left) fre-
quency-flat and (right) frequency-selective channels. We see
that in both cases, the proposed scheme surpasses the subspace

Fig. 6. RMSE and UCRB versus SNR whenK = 4,M = 150, and NFR=
10 dB in frequency-selective time-varying channels withf T = 0:08.

method with a larger capacity. The subspace method has a lim-
ited capacity in multipath channels due to the so-called inter-
ference dimension problem. In particular, assuming that each
of the users undergoes paths, the maximum number of
users that can be supported by the subspace method must satisfy

in order to ensure nontrivial noise subspace
(see also [7]). For and , this implies that the sub-
space can support up to users in single-path channels
and users in two-path channels, respectively, as also
confirmed in Fig. 5(a). On the other hand, the proposed scheme
is not limited by the above interference dimension problem and
has a larger user capacity than the subspace method.

We note, however, that the user capacity of the proposed
scheme is affected by the overall interference level. Fig. 5(b)
depicts the results of the two methods in a more difficult sce-
nario with simulation parameters similar to those in Fig. 5(a),
except that NFR dB (for all interfering users). In the
current case, the proposed method is seen to have a similar
user capacity to that of the subspace method. We also see
that for small-to-medium values of , the performance of the
subspace scheme fluctuates quit a bit, whereas the proposed
scheme maintains an ideal performance with a probability of
acquisition equal to one.

E. UCRB

The last example compares the RMSE of the timing estimates
with the UCRB in (34). Fig. 6 depicts the RMSE and UCRB
when , , and NFR dB in frequency-se-
lective (two-path), time-varying channels with .
Since the UCRB is a function of the delay parameters, these pa-
rameters are fixed through the 400 Monte Carlo trials, whereas
the other parameters are varied independently from trail to trial,
like the previous examples. It is seen that the proposed scheme
approaches the UCRB as the SNR increases. On the other hand,
the subspace method is far away from the UCRB, with an irre-
ducible estimation error suggesting that it may be statistically
inconsistent.
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VI. CONCLUSIONS

We proposed a filterbank-based blind code synchronization
scheme for asynchronous DS-CDMA systems. The proposed
scheme requires only the spreading code of the desired user. It
can be efficiently recursively implemented for both code acqui-
sition and code tracking. The proposed scheme yields statisti-
cally consistent delay estimates under mild conditions. It is ver-
satile since it is applicable to diverse fading environments such
as single-path and multipath, time-invariant, and time-varying
channels. Furthermore, it can deal with colored channel noise
and interference of various origins, including MAI, ISI, ICI,
and narrowband interference. We also derived a UCRB, which
serves as a lower bound for all unbiased blind code synchroniza-
tion algorithms.

The filterbank scheme is rather general in the sense that dif-
ferent choices of the filterbank lead to different code synchro-
nizer. Although other code synchronization schemes based on
alternative filterbank designs have yet to be discovered, it cer-
tainly remains an interesting topic that merits future investiga-
tion.

We focused on rectangular chip waveforms throughout
this paper. To consider bandlimited chip waveforms (e.g,
square-root raised-cosine pulses), we can first apply Fourier
transform on the received signal and then perform a deconvo-
lution in the frequency domain (see, e.g., [28] and [29]). After
the chip-pulse deconvolution, it is conceivable that a similar
filterbank approach can be devised for code timing estimation
(which reduces to frequency estimation in this case) in the
frequency domain. We are exploring such a direction and will
report our finding in the near future.

APPENDIX A
PROOF OFPROPOSITION1

We first rewrite (11) as

As the SNR increases, one can see that the limiting form of the
sample covariance matrix is given by

The above expression, along with Assumptions A1–A3, sug-
gests that the eigendecomposition of the limiting sample covari-
ance matrix can be expressed as

where is a diagonal matrix made from the 2
nontrivial eigenvalues, contains the associated
eigenvectors, and contains the eigen-
vectors corresponding to the zero-eigenvalue with multiplicity

. We note that span span , whereas the
left null space of is spanned by (e.g., [30]).

At finite SNR, can be expressed by the eigendecompo-
sition of :

where , , , and are known to converge uniformly to
, , , and , respectively, as [31]. Hence

It follows that the cost function in (20) can be written as

tr

tr

We note that the minimum is achieved if .
The uniqueness of this estimate follows from Assumption A2.

APPENDIX B
UNCONDITIONAL CRAMÉR–RAO BOUND

Using the definitions (32) and (33), we rewrite (11) as fol-
lows:

We note that [cf. (9) and (10)]

diag

where , , which is the
average received power associated with theth path of user

, and the fading processes are assumed sta-
tionary, zero-mean, independent of one another (with respect
to different or ), as well as independent of the information
symbols { }; the information symbols are assumed to
be i.i.d. and drawn from some unit-energy constellation, i.e.,

. With these
assumptions, we can see that

diag

Although the assumptions made in the above are rather stan-
dard, we need a few additional ones in order to arrive at a simple
but useful expression for the UCRB. In particular, we assume
that the vectors are Gaussian with zero-mean and
covariance matrix ; fur-
thermore, the noise vectors are assumed to to be
independent of and follow a Gaussian distribu-
tion with zero-mean and covariance matrix

. We will point out that and for
different and may be correlated with each other, due to
asynchronous transmissions. However, we ignore the correla-
tion to make our derivation tractable. The exact distribution of
{ } is, in general, too complex to obtain. On the other hand,
the CRB based on a Gaussian assumption is the lower bound for
the covariance matrices of a large class of estimation methods,
regardless of the data distribution [23, p. 293]. As such, it makes
sense to compare with the CRB based on a Gaussian assump-
tion.
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Let . With the aforemen-
tioned assumptions, we have , where

(36)

According to the Slepian–Bangs formula, the UCRB matrix
is given elementwise by (e.g., [23])

UCRB tr (37)

Using (36), it is trivial to show that (37) can be simplified as
(34).

We next calculate the partial differentiation w.r.t. each un-
known parameter. First, consider the partial differentiation w.r.t.
the delay parameters contained in:

(38)

where the second equality follows from (23), ,
, and are similarly defined as in (24)–(26),

respectively, and

Next, consider the partial differentiation w.r.t. the power param-
eters contained in :

(39)

Finally, the partial differentiation w.r.t. the noise autocorrelation
parameters contained in is given by

(40)

where

Substituting (38) –(40) in (34), the UCRB can be readily calcu-
lated.
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