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Filterbank-Based Blind Code Synchronization for
DS-CDMA Systems in Multipath Fading Channels

Hongbin Li, Member, IEEEand Rensheng Wang

Abstract—We present a filterbank approach to blind code syn- increasing interest recently. A variety of code synchroniza-
chronization for asynchronous direct-sequence (DS) code-division tion techniques have been proposed so far, starting from the
multiple-access (CDMA) systems. The key idea of the proposed ¢|assical correlator-based schemes, which are optimum in a
scheme is to first pass the received signal through a bank of filters, . - . ' .
which are designed to enhance signals of interest and suppresssmgle'user environment but highly senS|t|\{e to MAI, to. the
interference/noise, and then to derive the code timing from the More recently proposed schemes that show improved resistance
fitered data. The only required knowledge by the proposed to MAIand can supporta larger number of active transmissions
filterbank scheme is the spreading code of the desired user. It can within a cell. These schemes rely on eitleplicit training or
be used in various environments, including frequency-nonselective someinherent structureof the transmitted signal. In the latter

and frequency-selective, time-invariant, and time-varying fading th d for traini be eliminated Itina in th
channels. It can deal with colored channel noise and unmodeled ©@S€: (€ Need for training may be eliminated, resulting in the

interference, such as inter-cell interference (ICl) and narrowband ~S0-calledblind methods.

interference. It has relatively low complexity and can be readily One interesting training-assisted code synchronization
implemented using standard adaptive algorithms. We show that scheme is the minimum mean-squared error (MMSE) timing
under mild conditions, the proposed scheme yields statistically estimator [3]-[5]. The MMSE scheme was observed to outper-
consistent [in signal-to-noise ratio (SNR)] code timing estimates, form substantially the correlator-based methods, particularl
irrespective of the strength of the interference and with only a . y P - ‘ y
finite number of data samples. We also derive an unconditional N @ near—far environment. The MMSE scheme requires little
Cramér—Rao bound (UCRB), which serves as a lower bound side information of the transmission, and its computational
for all unbiased blind code synchronization schemes. Numerical requirement is moderate. However, the number of active
results indicate that the proposed scheme compares favorably yansmissions that can be supported by the MMSE scheme is
with & popullar subspace-based method in terms of user capacity, relatively small [6]. Another training-assisted scheme is the

near—far resistance, and robustness to time-varying fading and - ne ’
unmodeled interference. large sample maximum likelihood (LSML) algorithm [7] (also

L . . see [8]). It models the MAI and channel noise as a colored
 Index Terms—Code division multiple access, code synchroniza- Gaussian random process with an unknown covariance matrix
tion, Cramér-Rao bound (CRB), interference suppression, param- ) i iy X :
eter estimation. An estimate of the covariance matrix is used to prewhiten
the received signal. The LSML algorithm achieves a larger
capacity and better accuracy than the MMSE algorithm [7].
When used for multiuser synchronization, it has to estimate
ode division multiple access (CDMA) is a major air inthe covariance matrix and perform prewhitening for each user
Cterface candidate for future wireless mobile networks [13eparately. Thus, the associated computational complexity is
In CDMA systems, all transmissions occupy the same time arglatively high. A decoupled multiuser acquisition (DEMA)
frequency band. Thus, interference suppression is of paramoalgiorithm was recently proposed in [6]. It estimates the delays
importance to the design of CDMA receivers. A variety of mulfor all users simultaneously, resulting in not only a significantly
tiuser receivers resistant to multiple access interference (MAgduced computational complexity but also in an improved
have been proposed (e.g., [2] and references therein). Their g@pacity and accuracy than LSML [6].
formance, however, relies on the availability of accurate esti- Although the above training-assisted schemes perform quite
mates of some of the channel parameters, such as the gaf@ll in stationary or slow-fading channels, their performance
phase, and, particularlgpde timingassociated with the desireddegrades considerably as the channel fading rate increases [6].
transmission. Moreover, in order to track channel variations, training sym-
Code synchronization, which parallels the research @ols have to be retransmitted periodically, leading to throughput
multiuser detection for CDMA systems, has been receivirigductions. Blind schemes, on the other hand, do not suffer
from such drawbacks. A well-known blind code synchroniza-
tion scheme is the subspace-based method proposed in [9] and
Manuscript received November 27, 2001; revised August 27, 2002. This wdrkdependently in [10]. The subspace method resembles the mul-
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band interference in cellular overlay systems [12]) is preseproduct [21]; diad-} is a diagonal or block diagonal matrix;
or if the channel noise isolored with unknown correlation, CN (m,R) denotes a circularly symmetric complex Gaussian
subspace decomposition becomes questionable, as is the samidom vector with meam and covariance matriR; finally,
space-based code timing estimate (see Section V). In ordefah (respectively[A]; ;) denotes théth (resp.jth) element of
correctly separate the signal subspace from the noise subspaeetora (resp., matrixA).
the subspace method also needs to know the number of trans-
missions, which may be estimated by some model detection II. DATA MODEL AND PROBLEM FORMULATION
methods (e.g., [13]). It is, however, not unusual for model de- .
tection methods to underestimate or overestimate the numbero(t:onsIder a basgband. asynchronglfs_user DS-CDMA
transmissions by a small quantity [14]. Such a model mismat(ﬁ"Y,Stem' The transmitted signal for udets given by
as we will see in Section V, may degrade the performance of M1
the subspace method substantially. The subsp_ace sync_hroniza- z(t) = Z dy.(m)en(t — mTy)
tion scheme was extended to the multipath fading case in [15].
A modified subspace algorithm was proposed in [16] to extend
the observation interval to span several symbol durations, antiereM is the number of symbols considered for code acquisi-
an enhanced estimation accuracy was reported. tion, anddy,(m) andcy(t) denote thenth symbol and spreading

In this paper, we propose an alternative blind code synchiaveform, respectively, for usér. Here,7; = NI.. denotes
nization scheme. The idea here is as follows: The receivéite symbol interval, witi.. and N being the chip interval and
CDMA signal is known to be “noisy” due to the presencépreading gainrespectively.
of MAI and possibly other sources of interference; hence, The signal () passes through a basebdretjuency-selec-
instead of directly using the raw data for timing estimatiortive, time-varyingchannel whose impulse response is modeled
we first pass the data through a bank of filters (or filterbankgs [22]
which are designed to enhance the useful signals and suppress
the interference/noise, and then derive the code timing from
the filtered data. The resulting blind code synchronization
scheme, ofilterbank schemerequires only the knowledge of
the spreading code of the desired user, making it ideal foiyderes(¢) denotes the Dirac delta functiony, ,(¢) and 7y ;,
decentralized implementation. The filterbank scheme can k&pective')ﬂ denote the (Comp|ex_va|ued) time_varying fad|ng
used in frequency-flat and frequency-selective, time-invariaidpefficient and the propagation delay associated with path

and time-varying fading channels; it can cope effectively witfiserk, andL,, denotes the total number of paths of useThe
colored channel noise and unknown/unmodeled interferenggeeived signal is then given by

The filterbank scheme has a relatively low complexity and can

m=0

hi(r,t) = ana()6(T = i) )

be readily implemented using standard adaptive algorithms. K Ly
Hence, it is appealing not only for code acquisition but for code y(t) = Z Z ak(t)zr(t — 1) + e(t) &)
tracking as well. We remark that the filterbank-based code-syn- k=11=1

chronization scheme proposed here is related to several recent ) )
studies on filterbank applications to adaptive filters [17]. wheree(t) denotes the channel noise. In the following, we as-

The rest of the paper is organized as follows. In Section fume that the fading process(¢) is wide-sense stationary

we introduce the general data model for CDMA systems fi'd varies slowly relative to the symbol rate so thai(t) ~
time-varying multipath fading channels and formulate th&!(m7s)fort € [mT, (m +1)T;)* _

problem of interest. The filterbank-based blind code synchro- | N€ receiver front-end is a chip-matched filter (CMF) whose
nization scheme is presented in Section IIl. Several attribuf@dtPut is sampled every; = T./Q s, whereQ > 1 is an

of the proposed scheme, including its statistical consistdA€9er referred to as theversampling factor Similar to

property, and an unconditional Cramér-Rao bound (UCRBJevious studies (e.g., [3]-[10], [15]-{19]), we assume in the

for the estimation problem are discussed in Section Iv; wPdUe! rectangular chip waveforms, although generalizations

also discuss there the relation of the proposed scheme wihOther chip waveforms are conceptually straightforward.

several existing ones, e.g., [18] and [19]. Section V contains tﬁ@r rectangular chip waveforms, the CMF reduces to an

numerical studies. Finally, we draw conclusions in Section Vf_ntegratg-and-dump filter (IDF) (Sﬁf_’f'g" [oD).
We first form vectors{y(m) composed of sam-

m=0
. ples of the IDF output within one symbol period, i.e.,
A. Notation y(m) = [y(mNQ), ..., y(mNQ + NQ — 1)]". Define
. T
Vectors (matrices) are denoted by boldface lower (upper) cd8€ spreading vectoe, 2 [cx(0), ..., c(NQ — 1)]",
letters; all vectors are column vectors; superscripts, (1)*, k& = 1,...,K, wherecg(n) = 1/T; f(ﬁlm ¢k (t)dt. Due

and(-)¥ denote the transpose, conjugate, and conjugate trattsasynchronous transmissions, two adjacent symbols in each

pose, respectivelyf,, is the M x M identity matrix; 0 is a path contribute tg/(m). That is, the contribution tg(m) from

vector or matrix with all zero element&{-} denotes the statis- | o . _
The assumption is mainly for arriving at a tractable data model. In testing

tical expectationf- || denotes the vector 2-norm [2_0]{@ takes  ihe proposed scheme, we relax this assumption and aliowt) to vary con-
the trace of a matrix argumer®; denotes the matrix Kroneckertinuously within a symbol interval; see Section V.
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ap1(t)zr(t — 1) [cf. (2)] has the following form [5]-[10],
[18]:
akJ(m)dk(m

= Dag(me,1) + ar(m)dp(m)ag(tes)  (3)

whereay, ;(m) 2 a1 (t)|t=m, . AS we will see later, it is con-

venient to express; ; as a multiple of the sampling intervi)

(4)

where0 < pr; < NQ — 1is an integer, an® < pu;; < 1

Tt = (Prg + pa) T

is a fractional number. In (4), we also implicitly assumed that( m) =

Tk, < Ts [cf. (14)]. The vectorsa,(7x;) andag(x,) in (3)
consist of linear combinations of tlaeyclic left and right shift
of userk’s spreading code;, [10], [18]:

ay (1) =(1 = pr )k (pr) + prack(pes +1)  (5)
a(me,1) =(1 = pg)ep(pr,i) + pracr(Peg +1)  (6)
where
i (pr) =[er(NQ = pry), - ce(NQ — 1),
01 (xQ—pen)] @)
hPrt) = [O1xpess (0, .o, cx(NQ = pra— 1] 7. (8)
To simplify the notation, let
bk l(m) éak71(m)dk(m — 1) (9)
bk l(m) é kl(m)dk(m) (10)

It follows from (3) that the vectoy (m) can be expressed as

K L

)=22 [bram

k=1 1=1
+e(m),

K
=" Ax(ri)br(m) +
k=1

m)ay,(7i,1) + b (m)ag(7i,)]

e(m) (11)

where e(m) € CN9*! consists of noise samples,
A T
Tk = [Tk,17 - Tk,Lk.] ,a_nd
Ai(tr) =lak(tr1)s ar(Tk,1), - oy aR(Th,L,,)
ak(Tk,Lk)] (12)
bi(m) = [ 9, B ), - b1 )
Bk,Lk (m)]T (13)
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knowledge of the transmitted symbols). In light of the decompo-
sition of{fru}f:l1 in (4), the problem is equivalently to estimate
{p11, Hl,l}zL:ll-

lll. FILTERBANK-BASED BLIND CODE SYNCHRONIZATION

Assuming that the first user is of interest, we rewrite (11) as

y(m)

m2 lumps together the MAI and channel noise:

w2 Ak(Tr)br(m) + e(m). Due to the presence of

v(m), the observed signal(m) is “noisy,” particularly when
some user transmissions are significantly stronger than that of
the desired user (i.e., in a near-far scenario). Hence, instead
of directly using the raw data, we propose to first pgés:)
through a bank of filters (or filterbank), which are designed to
enhance the useful signals and suppress the interference/noise
and then derive the delay estimates from the filtered data. The
proposed scheme is detailed next.

We first design a bank af; finite-duration impulse response
(FIR) filters 2 denoted byG; € CN®@*2L1 for data prefiltering.
While alternative design schemes may exist, we chd@se
based on the following idea: &, is effective in canceling the
interference/noise, the average power of the filterbank output
should be small; meanwhile, to avoid the trivial solut@n =
0 and to prevent signal cancellation, we should enforce certain
constraints orz; such that it will pass the desired signals with
little distortion. Hence, the design criterion may be chosen as
follows:

= A1(T1)b1(m) + v(m) (15)

where v

M—-1
min

GeCN@x2Ly M Z HGH

tr{GHRyG}

G, =arg

min
GGCNQXQL1

subject oG A (1)) =Tz,

= arg
(16)

whereR,, denotes the sample covariance matrix

1 M-1
R, £ M Z y(m)y*
m=0

and the constrainG’ A;(r,) = Iz, ensures that each filter
(i.e., one column ofz1) will pass only one signal component
[corresponding to one column oA, (7;)] undistorted with
unit-gain, while completely eliminating intersymbol inter-
ference (ISI) caused by the other columnsof(r,). Using

the Lagrange multiplier, the solution to the above constrained
guadratic minimization problem is given by (see also, e.qg., [23,

17)

The problem of interest to this paper is to estimate the delpy 283])
parameters£;}. To avoid ambiguity, we assume that the path
delays of the same user afistinct furthermore, we assume that

the delay spread is within one symbol interval such that (also see
[20) yp Y ( where the dependence eon of G; was made explicit. Substi-

tuting (18) into (16), the minimized average power of the filter-
bank output is given by

tr{[A{f(n)R;lAl(n)} 1} 2 Uy ().

2We consider FIR filters for implementation simplicity.

Gi(m1) = R, A () [A] (11)R; T As(11)] (18)

0< 1 < o <y, <. (14)

Without loss of generality, let us assume that the first user is of
interest. The problem is to estimate the path delays };-',
from the receiver outpufy(m)}2Z} only (i.e., without any

(19)
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Note that the average power of the filterbank output dependswhere
the unknown delay. An intuitive estimater; of 1 would be

the one that maximize®; (1) over all possible delays since, Fi(p) 2[P(p)er, P(p+1)ek] (24)
if 71 coincides with the true delay;, the filterbankG, incurs Fi(p) 2[P(p)ck, P(p+1)c] (25)
no signal cancellation and maximizes the signal strength at the w201y ", (26)

filterbank output. However, this is rather involved due to the
nonlinear nature of/; (71 ). By the Schwarz inequality, we noteln light of (23), the cost function in (21) can be equivalently
that (dropping the dependence pnfor notational brevity) expressed as

¥ (Tor,) =t (AR, A1) VA(AFR, A2 Vi(p,u) =” [FE ()R, "Fi(p) + FY (0)R;F1(p)]
. . AT
<tr [(A{f R;lAl)‘l] tr [A{I R;lAl} 2" Q(p)p (27)
_ . _ s _ _ whereQ(p) 2 FI(p)R;'Fi(p) + FF(p)R'Fy(p). Since
HRp-1 Y Y
Wlth equ_ahty ho!ds ifand only iAy" R, _Al is proportional to Q(p) is Hermitian, we havg” S[2(p)]u = 0. It follows that
an identity matrix. It follows that/, (v1) is lower bounded by
A2 Vi(p, ) = u"R[Q(p)]p. (28)
U > . :
1) 2 tr[AT (7)R; Ay (71)] Next, we observe thal[2(p)] is a 2x 2 symmetric matrix,

o o which can be expressed as
Instead of maximizingl;(71), we can maximize its lower

bound to seek computational simplicity. It turns out that doing RIQ(p)] 2 [M(P) uJez(p)} . (29)
so leads to an estimate that is s8tatistically consistenin ws(p) wa(p)
signal-to-noise ratio (SNR). In particular, we show in Segs _— . . .
tion IV-B that the resulting estimate converges to the trye Eibjggugrfeﬁzc? ;:% r(zrg))tzlj\rt]itgn(alzlgs)irﬁglls:?t)(/\)/ve sometimes drop
in the absence of channel noise.
Hence, we choosg,, which maximizes the lower bound on v, (. /1) = (wy 4+ ws — 2ws)p? + 2(ws — wi)p + w1 (30)

Ui (1) or, equivalently, which minimizes the following:

which is a second-order polynomial pf For a specific value

71 =arg mintr {A{{(n)f{;lAl(n)} p' of p, 7 = (p' + u')T; may be a local minimum o¥; (p, ;1)
m . over the open intervap(T;,p’'T; + T;) if 0 < ' < 1, andy’ is
. - a root of the derivative
=arg <min o Z Vi(71) (20)
ST1,1<-"<T1,Ly s 8V /
=1 % = 2(wy + wo — 2w3)p + 2(ws — wq).

where
. . Rooting the above first-order polynomial yields

Vi(7) £ a{{(T)qulal (1) + 5{{(7)R;151 (7). (21) / /
Since thel; terms of the cost function in the second line of # = w1 (p") + wa(p') = 2ws3(p’)’ =H ’

(20) have identical form and the delay parameters are distinct ) )
[see (14)], it follows that the delay estimatés ;}-*,, which Thus, we can form a s&tof candidates (for the delay estimates)

=1 . . . .
minimizes the cost function, atbe L, smallest local minima tr,“'_"t contain albtationary pointsi.e.,7" = (p'+ u')T; for every
of Vi(r) over the duration € [0,7,). As we show next, the P IN{0;..., NQ—1} and the corresponding', as givenin (31).
Ly smallest minima o¥; () can be easily obtained inciosed- Note thatV; () may not be differentiable at the boundary points

form, noniterativefashion, utilizing only a sequence of simpleZ’ = »'Ti forp’ = 0,..., NQ — 1. Hence,S should contain
first-order polynomial rooting these points that may achieve local minim&pfr) as well. The

Decompose the dummy variahténto a multiple of}: 7 = Lismallest minimare then determined by evaluatibig() at

(p + p)1;. Define NQ x NQ shifting matrices every c_andidate i followed by a ranking. To facilitate _the
evaluation ofV;(7) over the setS, we may use the following
01I = 0 0 equivalent expression that is simpler than (30):
P2 o] Po2[r) o
NQ—p ,
Vi(r') =
One can easily see that the acyclic left and right shift of the w1 (p'), if 7/ = p/'T}
spreading codes, given in (7) and (8), respectively, can be ex- ws(p')—w1 (p') N g N
pressed as o ro)-2eay T @1(®), = ("4 )T
_ To summarize, the proposed code synchronization scheme
l _ r —
cr(p) = P(p)er,  ci(p) = P(p)er. (22)  consists of the following steps.
It follows from (5), (6), and (22) that 1) Compute the sample covariance maiRy by §17) and

its inverse (assuming/ > N such that theR,, is in-
ap(1) = Fr(p)p, ar(r) =Fr(p)p (23) vertible).
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2) Form the cost functiolV; () as in (21). Compute the Wheref{y(m) denotes the sample covariance matrix based on
delay estimate$?; ;}1*, as thel, smallest minima over the observed data up to and includipgn). Alternatively, we
the intervab < 7 < T by the approach described abovecan also use a sliding window of lengttfi symbol durations:

Several remarks regarding the above implementation are nec- R
essary. First, we note that the only significant matrix mani&-{y(m) =Ry(m 1)
ulation of the proposed scheme is the formingRaf!. A di- +M ! [y(m)y™ (m) — y(m — M)y" (m — M)].
rect, batch-mode computation would require abid\it))* op- .
erations. When implemented recursively using a standard RLsthis caseR,, *(m) can be recursively computed as (by ap-
algorithm, the complexity can be reduced(ft¥Q)? (cf. Sec- Plying the matrix inversion lemma twice)
tion IV-A). Even linear complexity RLS algorithms exist; see,

for example, [24]. In forming the cost function (27), it should Rgl(m) ZQI_l(m)
be noted thaP(p) andP(p) are shifting matrices. As a result, Q;l(m)y(m — M)yH (m — M)Q;l(m)
F1(p) andFy(p) will be computed by shifting the spreading +

codec, and not by direct matrix-vector multiplications. In ad- . . A
dition, the 2x 2 matrix€2(p) can be obtained by exploiting the Q, " (m) =R, (m —1)

fact thatF . (p) andF(p) consist of only+1 and 0, and hence, R;l(m — )y(m)yH(m)ﬂgl(m -1)
no multiplications are necessary. M+ yH(m)Rgl(m —1y(m) :

Either one of the above adaptive implementations will lead
IV. DISCUSSIONS to a complexity of the proposed scheme similar to that of the
MMSE timing estimator with the RLS adaptation [5]. On the
We remark that the only required knowledge by the proposegher hand, the subspace-based scheme [9], [10] requires an
filterbank-based blind code synchronization scheme is tegendecomposition of th&Q x N Q covariance matrix, which
spreading code of the desired user. Therefore, it is good fgfcomputationally demanding. Although subspace tracking is
a decentralized implementation. It does not need to know tggo possible, it in, in general, more involved than the proposed
number of active users, which is, however, indispensable to thgheme.
subspace-based blind code synchronization scheme [9], [10]
such that the signal subspace can be correctly separated f@NStatistical Consistency
the noise subspace (also see Section V). Even the knowledg

of the ”“”_‘ber of paths of the desired user1s not critical to Othe delay estimates converge to the true delay parameters as
scheme since an over- or under-determinatiot. ptoes not he SNR increases, i.e., they asttistically consistentThis

affect the delay estimates of the correctly detected paths. Tfi

o : . L Glds true, irrespective of the strength of the MAI (hence, the
is simply because the cost functibh(r) in (21) is |r_1dependent proposed scheme iear—far resistarjtand forfinite number of
of the parameter.;. Of course, an over-determination bf

will result in delay estimates for spurious paths, while a%ata samp!es. S.pecmcally, we have the following result.
Proposition 1: Let

under-determination of.; will pick out only the strongest

The proposed filterbank scheme has another desired property:

paths, missing the wic_:ker ones. N ' AT 2[A(11), ..., Ax(rg)]eCNO2L (32)
In the sequel, we discuss a few additional properties for the AT T T

proposed scheme and derive an unconditional Cramér-Rao b(m) =[by(m), ..., bi(m)] (33)

bound (UCRB) for the blind estimation problem. We also relate A 1T A K

the proposed scheme to some previous work on blind cofBere” = [ri, ....7k] . andL = 37, Ly denotes the

total number of paths of all users. Assume the following.

Al) The noise samples are zero-mean and indepen-
dently and identically distributed (i.i.d.) such that

synchronization.

A. Adaptive Implementations

E{e(mi)efl(m2)} = 02Ingé(mi — ma), where
The proposed scheme can be readily recursively implemented §(m) denotes the Kronecker delta function, angi
by using the matrix inversion lemma, thus making it appealing denotes the noise variance.
for not onlycode acquisitiorbutcode trackingas well. Specifi- ~ A2) A(7) has full column rank for all possible delays [i.e.,
cally, we can use the standard recursive least-squares (RLS) like A (1) is unambiguous].
iteration with forgetting factor € [0, 1] [24]: A3) The matrixR, £ 1/M Ef\,'fz_ol b(m)b¥ (m) has full
rank.

Then, the delay estimates given by (20) are statistically consis-
tent (in SNR).
Proof: See Appendix A. ]
We note that Assumption Al is rather standard. Assump-
R tion A2 is needed to prevent ambiguity in the blind estima-
m)R,'(m—1)  ton problem under study. It requires thst) > 2L such that
+ (1= ﬁ)yH(m)ﬁgl(m — Dy(m) A () is atall matrix; furthermore, the spreading codes and their
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shifts are required to be linearly independent of each other. AghereR,, = E{y(m)y™ (m)}, and the partial derivatives with
sumption A3 corresponds to the so-called “persistence-of-exmspect to individual parameters are given by (38)—(40).
tation” condition usually assumed in blind estimation problem

(see [25]). It can be met as a results of, e.g., independent symiBolRelation to Previous Work

emission and independent channel fading. There are several previous studies related to the proposed fil-

terbank approach. In particular, a minimum-variance criterion

similar to (21) was considered in [19] for code synchronization

Since the proposed code synchronization scheme does aighe downlink of CDMA systems. Unlike the strict derivation
model the interference/noise tewtm) in (15) exactly,v(m) e presented in Section I, the discussion in [19] was made
may containcolored noise and interference other than MAlL, o somewhat heuristic basis. For example, the timing uncer-
such asintercell interferenceand narrowband interference tainty therein wagliscretizedor hypothesizedo form afinite
[12]. The overall interference/noise can be suppressed by 08 frthermore, the path delay was assumed to be within that
filterbank G. On the other hand, the subspace-based cogg The cost function was then evaluated at each element of that
synchronization scheme [9], [10] assumeseaactparametric get and the one yielding the maximum of the cost function over
data model; it is sensitive to the presence of colored noige, set was taken as the delay estimate. Apparently, the accu-
andunmodelednterference. The behavior of the two Schem&s, .y, of this method is affected by how fine the time discretiza-
under model mismatch is further investigated in Section V iy, is performed. Since the time-discretization induced error is
computer simulations. independent of the SNR, the error will not vanish as the SNR
increases. Hence, the so-obtained delay estimate is, in general,
statistically inconsistentwhich is in contrast to theonsistent

The Cramér—Rao bound (CRB) conditioned on the trangstimate produced by our scheme.
mitted data symbols and channel fading for the code timing perhaps [18] was the first to utilize the minimum-variance
estimation problem was derived and compared with the suljterion for code synchronization in frequency-nonselective,
space-based timing estimator in [15]. Since blind algorithmgne-invariant channels. To facilitate joint symbol demodula-
assume no knowledge of the information symbols and changgh it was suggested therein to process data vectors formed
fading, they are not expected to achieveddbeditional CRB  fgm samples within two symbol intervals (as opposed to one

Here, we consider the CRB that is not conditioned on thgmpol interval in our scheme). This leads to a higher compu-
information symbols nor the channel fading (hence, the namgional complexity and a slower convergence rate of the syn-
unconditional CRBor UCRB. The UCRB is averaged overchronization algorithm. Time discretization was also employed
the unknown information symbols and channel fading angerein for delay estimation. Additionally, as noted by the au-
provides a lower bound for unbiased blind estimators. thor, the algorithm involves a user parameter that is usually dif-

To present the UCRB, the unknown parametekgyit to choose in practice.

implicit in the estimation problem ~are first sum- The proposed filterbank-based scheme overcomes the diffi-

C. Intercell and Narrowband Interference Suppression

D. Unconditional Cramér—Rao Bound

. T
marized. Let§, = [T1T7 ) Tﬂ] and 6p = culties of the above-mentioned methods. We will also stress that
[Pii, ooy Pioys ooy Pra, ooy Prop]', whereP,; 2 E  time-varying channel fading has beexplicitly incorporated in
{lag(m)*}, 1 = 1,..., Ly, which is the average receivedour data model. As a result, the proposed scheme can cope with
power associated with thgh path of usek. Let very fast channel fading, as also confirmed by the simulation
N results in Section V.
0. = [re(0), Rirc(D)}, S{re(D)}, - Finally, we remark that the filterbank approach is quite gen-

R{r.(NQ — 1)}, 3{r(NQ = 1)}]" eral. Indeed, different choices of the filterbank will, in general,

. . lead to different synchronization schemes. The synchronization

Where,f"(k) denotes the au_tocorrelatu_)n of the noise _Samplegccuracy, however, will be mainly determined by how well the

E(k.) E E{B.E.")e (nd_ﬁ)}' ﬂnce {3(7:2]} IS assurged staﬂon;ary, filterbank performs interference suppression. This suggests that
e IS Hiermitian and 10€pitz and, thus, can be paramelerizi, .. ., qe synchronization schemes via alternative filterbank

by its first cqlumn or, equwalentlﬁ?, which is formed from design with better interference cancellation ability may exist,
the real and imaginary parts of the first column. We next fcﬂrmand they have yet to be discovered

consisting of all the unknown parameters:
0207, 05, 07" e ROLT2NQ-Dx1 V. NUMERICAL SIMULATIONS

where we recall, 2 X 1. With the above definitions, the Ve consider aK-user asynchronous DS-CDMA system

UCRB for8 can be derived by using the Slepian—Bangs formuliiNg @ unit-energy binary phase shift keying (BPSK) con-

(e.g., [23]). In particular, we show in Appendix B that the UCR@te"a}tiQn' Each user is assigned ah = 31 Gold code
matrix is given elementwise by consisting of 1 and-1. To model both small- and large-scale

fading, we decompose the fading coefficient into two parts
and generate them separately;;(m) = i (m)Px,, where
Yey ~ CN(0,1) models the small-scale Rayleigh fading,
hereasP,; follows a log normal distribution to emulate the

3]t would be more appropriate to compare training-assisted schemes with the .
conditional CRB. arge-scale path loss and shadowing [26]. In the sequel, we

’—1 aR!] R—l aRZ/

[UCRB(0)):; = Mtr |R, "5 R, "ot

} (34)
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consider near—far environments without enforcing stringe ' 1 Q'} B TTIwET ‘%};:*‘ - ” ® ®
power control, where the total (from all paths) average pow i X -l :

for the desired user is scaled so gt £ 7', Py = 1, _09 " x 7 el K .
whereas the power for th® — 1 interfering users follows a 8 S 5

log normal distribution with a mean powét dB higher than Zos}- x A —
that of the desired user. The near—far ratio (NFR) is defined§ / K /,‘EE’ : :

P (in decibels). Bo Rt : : -

We consider both time-invariant and time-varying channel§ ! s
In the former casey;,; and P ; are generated according to thé;_’ 06k
above-stated distributions, fixed for one experiment, but varin_? S

independently from trial to trial. In the ime-varying case, 3, /7

Kol

are functions of time, generated according to the Jakes’ mo%j S : [~ Subspace (Q=1)
[27] (also see discussions in Section V-B). Sl | moesdaen | |

The average SNR for the desired user is defined as (recallt ™ ! O Ao :g::g ((0;2))
h=1) S W T R A R R

. NO 10 -5 0 5 10 15 20 25 30 35
SNRE ———— (35) SNR (dB)
37 Jon Pw)dw

Fig. 1. Probability of acquisition versus SNR whah= 8, M = 150, and
Where</>(w) is the power spectral density (PSD) of the noise/id\'-FRz 10 dB in frequency-flat time-invariant channels withlorednoise.

terference sample [cf. (2)Je(n) = 1/T; f(’;T_l . e(t)dt.

For bandlimited white Gaussian noise, (35; reduces : ! //,,*;;ﬁz??""ﬁ"ﬂ * i
SNR = NQ/o?, whereo? denotes the variance efn). The  0.95- 3 /gfr/:’/ ' -
primary performance measure is tipeobability of correct ¢ /,’//5( ,
acquisition which is defined as the probability of the evenz %9 WOSE ' ’ 7
that the delay estimate is within a half chip of the true delag g ... é B O N R A
Another performance measure is the root mean squared e< ,/o,’/ S
(RMSE), which is normalized by, of the delay estimate 3 0.8/ // -
given correct acquisition. All results shown below are baseg /," P *omooo ¥ R
on 400 Monte Carlo trials, where. ; (delay), i (small-scale 5%7%" /"y -~"" B A
fading), P.; (large-scale fading) fok # 1, d;,(m) (symbols), & o2/ /7 __~-""""7 TV~ |
and channel noise are varied independently from trial to trial.§ ;Y v -3 Subspace (Q=1,without ICI)
90.65”— R ; :; groposed (Q=_1,WIFh/WIthOUt ICl) ||
o A : ubspace (Q=2,without ICI)
A. Colored Noise and Intercell Interference oe*— ,./,/,.’f, B _@ 23%‘2%2%‘1@ﬁ'“$?&’”.“§3°”‘ ICl) |
We first consider the case whefn) is colored generated by /’ : : ~% _Subspace (Q=2with ICI)
afirst-order autoregressive (AR) noiggn) = 0.99¢(n — 1) +  0.55¢ 0 35 25 2 % 3
w(n), wherew(n) is a zero-mean white Gaussian process. Tt SNR (dB)

channel is assumed frequency-flat and time-invariant during ac-

quisition. Fig. 1 shows the probability of correct acquisition ofig- 2. Probability of acquisition versus SNR whah= 8, M = 150, and

the proposed filterbank scheme and the subspace-based mem:ﬁ 10 dB in frequency-flat time-invariant channels witfhite noise.

[9], [10] as a function of the SNR wheli = 8, M = 150, and

NFR = 10 dB. Both the chip-rate sampling)(= 1) and over- Subspace method, being unaware of the presence of ICl, uses

sampling Q = 2) are considered. We see that in the presende = 6 for synchronization (due to, e.g., a mis-estimation of the

of colored channel noise, the filterbank scheme outperforms thigmber of transmissions). We see that the subspace method de-

subspace method, especially when SNR is moderate or low (I§&3des significantly in the presence of ICI. Meanwhile, the per-

than 20 dB). formance of the proposed scheme is independent of the trans-
The subspace method is known to be suboptimal in colorgdssion number (as long as the overall interference level re-

noise. It is natural to compare the two methods in channels witkgins the same) and, thus, is not affected by the ICI.

white noise. Fig. 2 depicts the performance in such a situation .

where all other simulation parameters remain unchanged, &- Fading Rate

cept thate(n) is now awhitenoise. It is seen that the subspace Next, we examine the effect of channel variations on the pro-

method () = 1) outperforms the proposed methag £ 1) for posed and subspace methods. To this end, frequency-flat time-

low SNR; however, when oversampling is utilized, the proposemdrying Rayleigh fading channels are simulated. The channel

scheme @ = 2) yields almost identical performance to that ofading . (¢) [cf. (1)] is modeled as a zero-mean Gaussian sta-

the subspace metho@ (= 2). tionary process with the classical U-shape PSD and unit power
In Fig. 2, we also simulate a scenario involving intercell inf27]. It is parameterized by theormalized Doppler ratg'p 7T,

terference (ICI) by letting two out ok = 8 transmissions be where fp is the maximum Doppler rate arid the symbol in-

originated from some neighboring cells. We assume that ttexval. In our simulations, the fading process is generated by
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-G Proposed (Q=2) 0. e T A | =% Subspace (Q=2) |
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Normalized Doppler Rate: f.T. Normalized Doppler Rate: f,T 0 10 20 30 0 10 20 30
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Elogrh”lgl.ize(clieg)op&rg:) ?abtgtyTorNﬁgggl_sLtlog\ %nd_ gré%h%NIEM_SEO \égsgidthq:ig. 4. (left) Probability of acquisition and (right) RMSE versus NFR when
$D1s = O, M = ’ = ' S — M = i - ime- i

NFR= 10 dB in frequency-flat channels. \{Cit;f&;j = %JS(?S and SNR= 20 dB in frequency-flat time-varying channels
Jp+Ls = U.Uo.

the Jakes’ model [27] and updated continuously evErs, locked at a deep fade throughout one trial. For example, at
whereT; = T./Q is the sampling interval. As a result, thefp7; = 0.08, we have observed that the “down” time is
fading does not remain unchanged within a symbol interval, ggpically less than 30% of the transmission time. Thus, channel
assumed in Section Il. Fig. 3 depicts (left) the probability ofariations provide the remarkable time diversity that may be
correct acquisition and (right) RMSE of the proposed and suéxploited to improve performance. We note, however, that
space methods as a function 7, whenK = 8, M = 150, while the proposed scheme is able to benefit from channel
SNR= 20 dB, NFR= 10 dB, and the channel noise is whitefading, most training-assisted synchronization schemes suffer
The result shows that the proposed scheme is extremely fimm it. As shown in [6], a relatively small Doppler rate (e.g.,
bust to time-varying fading, yielding no acquisition failure forfpT; = 0.008) breaks down most well-known training-based
all fading rates, whereas the subspace method degrades corssilemes.

erably as the fading rate increases. We also note that the sub-

space method produces slightly better RMSE when the chanfiel Near—Far Resistance

is close to being stationary (i.e., SmaB 7). To test the performance of the proposed and subspace
A comparison of Figs. 2 and 3 reveals that the proschemes in near-far environments, we consider a scenario
posed scheme actually achieves improved performance yjfere K — 8, M = 150, SNR= 20 dB, and the underlying
time-varying channels than in time-invariant channels. Th,annel is frequency-flat time-varying witfip7, = 0.08.
improvement comes from additionaine diversityimplicit in - rjg 4 depicts (left) the probability of correct acquisition and
time-varying channels. To see this, we first remark that tQﬁght) RMSE when the NFR is varied from 0 to 30 dB. It is
performance of the proposed (as well as the subspace) schegié, that performance of the proposed scheme is relatively
is primarily determined by theffectiveSNR for the desired jysensitive to the NFR, whereas the subspace method degrades
user. Recall thaty;, the (small-scale) fading coefficientsjgnificantly as the NFR increases. We note that with power

associated with pathof user 1, is a Gaussian random variablgqynirol and thus small NFR, the subspace method may yield
that is fixed in one experiment but varied independently fro'%]ightly better RMSE.

trial to trial in the time-invariant case. The magnitudeef,
which determines the effective SNR for user 1, has a Rayleigh yser Capacity

distribution and, therefore, is less than 0.5 with probability Wi ¢ ine th itv of th d and
0.22124 That is, the effective SNR of the desired user is at € next examine e user capacily of the proposed an

least 6 dB smaller than the nominal average SNR for abaijiPspace schemes in time-varying, frequency-fiat, and fre-
22.12% of the total (which is 400 in our simulations) trialémency-selectlve channels. For frequency-selective channels,

in the time-invariant case. As one can expect, the probabili engziltjm:thtgat.tehagh :Te; t;?gsren'Ssclolrugsfirrgeoreesaévr\]’% 'nt?]i'
of correct acquisition in these fading-impaired trials woul P with equal (average) pow Ny

be significantly lower than in the others, which degrades th ce:‘vevr. :’YE d((jacllare cg:rr]e(t:t aﬁﬁ's't'o{;}mfti?f I:]UIttlipa\}vri]tr?iise
overall performance. On the other hand, in the time—varyir\,ﬁae cver the delay estimate of the path of Interest 1S a

case with sufficiently fast fading rate, the channel is rare If chip to the true delay, regardless of the delay estimate of the
' gther path. Nevertheless, we have noticed similar performance

4The cumulative distribution function ¢f. [ is F(|r:.|) = 1 — e~ 111> for both paths, in terms of both the probability of acquisition
[22, p. 45]. and RMSE, primarily because each path carries similar average
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' o) D AN . . .
: W 09— i@ — method with a larger capacity. The subspace method has a lim-
0.9 N y
B UV W T B \ . . . . .
- \’?l‘ Sos ' % ited capacity in multipath channels due to the so-called inter-
\ — : — . . . .
1‘:308_ B 2" & ference dimension problem. In particular, assuming that each
on Y- (2] H .
=1 : 307— ®— of the K users undergoes, paths, the maximum number of
1 B .
Lo7l— [ ' users that can be supported by the subspace method must satis
<07 , < \ pp y p
3 s go.e— "] K < NQ/(2L) in order to ensure nontrivial noise subspace
= 1 = . . .
50.6— S 505 - (see also [7]). FoN = 31 and@ = 2, this implies that the sub-
% " 5(')3 19 space can support up 6 = 30 users in single-path channels
\] — e . .
205— T 30'4 ' and K = 15 users in two-path channels, respectively, as also
2 \ 203} —{ confirmed in Fig. 5(a). On the other hand, the proposed scheme
1 . . . . . .
04— 8 | is not limited by the above interference dimension problem and
= = — pp— .
e : |02 & has alarger user capacity than the subspace method.
03 g gubspacg‘ (g=§) i 04— Fi i We note, however, that the user capacity of the proposed
[ (I =21 BN scheme is affected by the overall interference level. Fig. 5(b)
03 10 20 % %3 5 7 9 11 13 15 depicts the results of the two methods in a more difficult sce-
User Number: K User Number: K nario with simulation parameters similar to those in Fig. 5(a),
(b) except that NFR 10 dB (for all interfering users). In the
Fig. 5. Probability of acquisition versus, the number of users whew’ =  CUrrent case, the proposed method is seen to have a similar

150 and SNR= 20 dB in (left) frequency-flat and (right) frequency-selective,user capacity to that of the subspace method. We also see

time-varying channels witfip T, = 0.08. (a) NFR= 0 dB. (b) NFR= 10 dB.  that for small-to-medium values df, the performance of the
subspace scheme fluctuates quit a bit, whereas the proposed

power. Accordingly, instead of showing the results for eadjfheme maintains an ideal performance with a probability of

path separately, we only show the average of the probabilggquisition equal to one.

of acquisition (or RMSE) of the two paths. During our sim-

ulations, we have also observed that the proposed as wellEasUCRB

the subspace methods occasionally produce two path delayhe last example compares the RMSE of the timing estimates
estimates that are very close to one another, with a differenggh the UCRB in (34). Fig. 6 depicts the RMSE and UCRB
typically less than OL.. Since such a relative delay is nolwhen Kk = 4, M = 150, and NFR= 10 dB in frequency-se-
resolvable in practice unless additional bandwidth is availablgctive (two-path), time-varying channels wiflh 7, = 0.08.
whenever this occurs, we discard one of the two estimates atjlce the UCRB is a function of the delay parameters, these pa-
use the next candidate i#, which we recall is formed by all rameters are fixed through the 400 Monte Carlo trials, whereas
candidates, or the local minima of the cost function for thge other parameters are varied independently from trail to trial,
proposed scheme [see the discussions following (31)]. like the previous examples. It is seen that the proposed scheme

We first consider the scenario whéf = 150, SNR= 20 dB, approachesthe UCRB as the SNR increases. On the other hand,
and NFR= 0 dB. Fig. 5(a) depicts the results for (left) fre-the subspace method is far away from the UCRB, with an irre-
guency-flat and (right) frequency-selective channels. We sdecible estimation error suggesting that it may be statistically
that in both cases, the proposed scheme surpasses the subspegesistent.
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VI. CONCLUSIONS Wherefxs, ES, An, andﬁ)n are known to converge uniformly to

27 ; 2
We proposed a filterbank-based blind code synchronizati&f’ E;, 0cIng. andE,, respectively, as; — 0[31]. Hence

scheme for asynchronous DS-CDMA systems. The proposed lim o2R-! = E EH
scheme requires only the spreading code of the desired user. It 020 ¢ Y e

can be efficiently recursively implemented for both code acqui- o .

sition and code tracking. The proposed scheme yields statidtifollows that the cost function in (20) can be written as
cally consistent delay estimates under mild conditions. It is ver- lim aftr{AH(rl)jolAH('rl)}

satile since it is applicable to diverse fading environments such 020

as single-path and multlpath, t|me-|nyar|ant, and t|me-vary|r_19 :tr{AH(n)EnEgAH(Tl)}
channels. Furthermore, it can deal with colored channel noise Lo

and interference of various origins, including MAI, 1SI, ICI, =Vi(71).

and narrowband interference. We also derived a UCRB, which R
serves as a lower bound for all unbiased blind code synchroni¥ée note that the minimurir1(7,) = 0 is achieved iffr; = 7.

tion algorithms. The uniqueness of this estimate follows from Assumption A2.
The filterbank scheme is rather general in the sense that dif- [ |

ferent choices of the filterbank lead to different code synchro-

nizer. Although other code synchronization schemes based on APPENDIX B

alternative filterbank designs have yet to be discovered, it cer- UNCONDITIONAL CRAMER—RAO BOUND

tainly remains an interesting topic that merits future investiga-

tion Using the definitions (32) and (33), we rewrite (11) as fol-

We focused on rectangular chip waveforms througholl?tws'
this paper. To consider bandlimited chip waveforms (e.qg, y(m) = A(T)b(m) + e(m), m=0,..., M—1.
square-root raised-cosine pulses), we can first apply Fourier o
transform on the received signal and then perform a deconyge note that [cf. (9) and (10)]
lution in the frequency domain (see, e.g., [28] and [29]). After
the chip-pulse deconvolution, it is conceivable that a similar Ry, 2E{by(m)b(m)}

fiIterbank approach can be devise_d fo_r code tir_ning estimation =diag{ Pr1, Pr1, - Per,, Prer,}
(which reduces to frequency estimation in this case) in the
frequency domain. We are exploring such a direction and willhere P,.; = E{|ay. (m)|*}, I = 1,..., Ly, which is the
report our finding in the near future. average received power associated with Miepath of user
k, and the fading processdsy;(m)}, ", are assumed sta-
APPENDIX A tionary, zero-mean, independent of one another (with respect
PROOF OFPROPOSITION1 to differentk or [), as well as independent of the information
We first rewrite (11) as symbols {r(m)}; the information _symbols are assumed to
be i.i.d. and drawn from some unit-energy constellation, i.e.,
y(m) = A(T)b(?’n) + e(m) E{dkl (ml)dzz (m2)} = 6(k‘1 — ]Cg)é(ml — m2). With these

_ o assumptions, we can see that
As the SNR increases, one can see that the limiting form of the

sample covariance matrix is given by Ry, £ E{b(m)b" (m)} =diag{ Ry,, ..., Ru, }.

Jlim R, = A(T)R, AT (7). Although the assumptions made in the above are rather stan-
‘ dard, we need a few additional ones in order to arrive at a simple
The above expression, along with Assumptions A1-A3, suput useful expression for the UCRB. In particular, we assume
gests that the eigendecomposition of the limiting sample covatirat the vectorgb(m)}) =} are Gaussian with zero-mean and

m=0

ance matrix can be expressed as covariance matrix;{b(m)b(mz)} = Ryd(m1 — my); fur-
. A. 0] [EH thermore, the noise vectofe(m)} =} are assumed to to be
12im0 R, =[E,, E,] [ 05 0} [ESH} independent offb(m)} -1 and follow a Gaussian distribu-

tion with zero-mean and covariance matfixe(ms)e(ms)} =
whereA, € R2L%2L js a diagonal matrix made from thel2 Red6(mi — m2). We will point out thaty (m+) andy(m.) for
nontrivial eigenvaluest, € CN9*2L contains the associateddifferentm; andms may be correlated with each other, due to
eigenvectors, and, € CN@*(NQ-2L) contains the eigen- asynchronous transmissions. However, we ignore the correla-
vectors Corresponding to the Zero-eigenva|ue with mu|t|p||C|1gDn to make our derivation tractable. The exact distribution of
NQ — 2L. We note that spgfE,} = spa{ A(r)}, whereas the {y(m)}is, in general, too complex to obtain. On the other hand,

left null space ofA (7) is spanned b, (e.g., [30]). the CRB based on a Gaussian assumption is the lower bound for
At finite SNR,R;l can be expressed by the eigendecomp#€ covariance matrices of a large class of estimation methods,
sition of Ry: regardless of the data distribution [23, p. 293]. As such, it makes
sense to compare with the CRB based on a Gaussian assump-
R;' =E,A'E! + E,A'E] tion.
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Lety 2 [y7(0), ..., y*(M — 1)]T. With the aforemen-

tioned assumptions, we haye~ CN'(0,R,), where "
1

Ry, =1y ® [A(TRA(T)" +R.] 21y ®R,.  (36)
[2]

(3]

According to the Slepian—-Bangs formula, the UCRB matrix
is given elementwise by (e.g., [23])

[6]: 016l

[UCRB (6)];; =tr |R (4]

" (37)
Using (36), it is trivial to show that (37) can be simplified as 5]
(34).

We next calculate the partial differentiation w.r.t. each un- [€]
known parameter. First, consider the partial differentiation w.r.t.

the delay parameters containedin 7

OR,
87;6,1 [8]
:3Tk,l Pyt [an(re)ar! (Tha) + ak(7e0)ag (t)] [9]
0
:a—Pk,l [Fk(pk,l)”k,lll'kH,IFkH(pk,l)
Tl ) [10]
+ Fk(pk,l)ﬂk,ll"ﬁ,lFE(pk,l)]
=Pyt [Fr(pe,)DiyFr (pret) + Fre(0r,) Die i F (pret)] [11]
k=1,...,K;1=1,..., L (38)

_ [12]
where the second equality follows from (23Eu(pk.1),
Fi(pir), and p,, are similarly defined as in (24)—(26), [13]
respectively, and

. [14]
D, 2 M eabiy) 2peg —1) 1 —2p5, 1
kil Otk | 1 —2uny 2p0k 0 ol

Next, consider the partial differentiation w.r.t. the power parami1g]
eters contained iflip:

IR, 0 [17]

apk”jl :Wlalpk’l [ar(Tr,)af! (Tr,1) + ak(7r,0)af (75,0)] 18]
=ay(mp1)af (1h1) + ag(mr1)as (1)

k=1, Kil=1,. . . L (39) [9]

Finally, the partial differentiation w.r.t. the noise autocorrelation

parameters contained & is given by [20]
OR, OR, 21]
o.]; 0[0.]; 221

I]VQ? =1
= Q+Qf, i=2,1=1,...,.NQ-1 [23]
J(Q-QF), i=2+1,1=1,...,NQ—1 24
(40) 25]

where
(26]
A 0 0

Q2 [INQ_I 0} . o
128]

Substituting (38) —(40) in (34), the UCRB can be readily calcu
lated.
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