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Abstract—This paper examines moving target detection in
distributed multi-input multi-output radar with sensors placed
on moving platforms. Unlike previous works which were focused
on stationary platforms, we consider explicitly the effects of
platform motion, which exacerbate the location-induced clutter
non-homogeneity inherent in such systems and thus make the
problem significantly more challenging. Two new detectors are
proposed. The first is a sparsity based detector which, by exploiting
a sparse representation of the clutter in the Doppler domain,
adaptively estimates from the test signal the clutter subspace,
which is in general distinct for different transmit/receive pairs
and, moreover, may spread over the entire Doppler bandwidth.
The second is a fully adaptive parametric detector which employs
a parametric autoregressive clutter model and offers joint model
order selection, clutter estimation/mitigation, and target detection
in an integrated and fully adaptive process. Both detectors are
developed within the generalized likelihood ratio test (GLRT)
framework, obviating the need for training signals that are in-
dispensable for conventional detectors but are difficult to obtain
in practice due to clutter non-homogeneity. Numerical results
indicate that the proposed training-free detectors offer improved
detection performance over covariance matrix based detectors
when the latter have a moderate amount of training signals.

Index Terms—Distributed multi-input multi-output (MIMO)
radar, moving platforms, moving target detection, parametric
methods, sparsity.

I. INTRODUCTION

R ADARS on multiple airborne or ground based moving
platforms are of increasing interest in recent years, since

they can be deployed in close proximity to the event under in-
vestigation and thus offer remarkable sensing opportunities [1].
For example, unmanned aerial vehicles (UAVs) based radars
are expected to play an important role in disaster relief efforts
by quickly flying to the impacted area and providing the most
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accurate and updated information [2]. In urban sensing envi-
ronments, potential targets may be obscured by buildings and
other man-made structures; with sensors on moving platforms,
the subject area can be probed from more favorable positions to
yield enhanced detectability [3]. Other applications of radar on
moving platforms for military and civilian sensing operations
can be found in, e.g., [4]–[6].
With multiple sensors, the system can be implemented as a

multi-input multi-output (MIMO) radar with multiple transmit/
receive (TX/RX) antennas using multiple waveforms, which
offers several advantages over traditional array radar systems
(e.g., [7]–[10]). There are two general configurations, namely
co-located MIMO radars [8], where antennas within the TX or
RX array are closed to each other relative to the target, and dis-
tributed MMO radar [10], where the antennas are widely sepa-
rated to allow statistically independent observations of the target
from multiple aspects (geometric diversity).
Here, we consider the moving target detection (MTD)

problem in distributed MIMO radar. The problem has been
studied in a number of studies leading to a sample covariance
matrix (SCM) based detector [10], [11], a robust extension of
the SCM based detector [12], [13], a subspace based detector
[14], a parametric MTD detector [15], among others. How-
ever, all these studies were restricted to the case when radar
platforms are non-moving. One major challenge of the MTD
problem in distributed MIMO radar is clutter non-homogeneity.
The covariance matrix based detectors in [10], [11], [16] can
provide good performance only when adequate homogeneous
training data is available, a condition that is difficult to meet
in practice. As shown in Section II, the clutter in distributed
MIMO radar is strongly location dependent, viz., it depends
on the location of the test cell relative to the geometry of the
transmit/receive (TX/RX) platforms as well as platformmotion.
As a result, the clutter covariance matrix varies significantly
across resolution cells and dynamically changes over time. This
non-homogeneity becomes even more severe when the moving
platforms operate in complex environments such as urban areas
or mountainous terrains. Due to the location-dependent charac-
teristics, the clutter observed by each TX/RX pair in the same
resolution cell may also have very different non-homogeneous
covariance structure than other pairs.
To handle such clutter non-homogeneity, a subspace MIMO

detector is proposed in [14], which uses only the test signal for
detection and does not require any range training data. How-
ever, the subspace clutter model is based on the assumption that
the clutter Doppler frequencies are centered around zero. This
assumption is valid only when the platforms are non-moving,
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in which case the clutter Doppler effect is caused by natural
phenomena such as wind, rain, and current flow/wave in
rivers/oceans, etc. With moving platforms, the clutter Doppler
frequency may spread over the entire Doppler bandwidth,
which disqualifies the subspace detector. Meanwhile, a para-
metric MIMO detector is introduced in [15]. The detector
circumvents the need for range training data by utilizing
low-order autoregressive (AR) processes for clutter modeling
and estimation. While this offers an effective approach to miti-
gate clutter non-homogeneity, the limitation of [15] is that the
model orders of the AR processes are assumed to be available
a priori. The assumption is justified only with non-moving
radar platforms, in which case the clutter is stationary or slowly
changing over time, and the clutter model order can be esti-
mated in advance. In [12], [13], a compound Gaussian model
is used to describe the non-homogeneity of clutter. This leads
to a modified covariance matrix based detector with improved
performance than those of [10], [11], [16] in non-homogenous
clutter environments. Nevertheless, the detector still requires
a substantial amount of training data for covariance matrix
estimation.
In this paper, we address the MTD problem with explicit

consideration of platform motion. We first analyze target and
clutter responses in a multistatic setup and highlight the ef-
fects of platform motion, which exacerbate the non-homoge-
neous clutter problem. Based on the analysis, we develop new
detection algorithms by integrating and extending recent devel-
opments in sparse signal recovery and previous MTD solutions
[14], [15]. Specifically, two detectors are developed, namely a
sparsity based detector and a fully adaptive parametric detector.
The former exploits a sparse representation of the clutter. Un-
like [14] where the clutter subspace is assumed known, iden-
tical for all TX/RX pairs, and covering only a small fractional
of the Doppler bandwidth around zero frequency, the sparsity
based detector is able to adaptively estimate the clutter sub-
space including its rank from a dictionary matrix that spans the
Doppler bandwidth, and the clutter subspace is generally dis-
tinct for different TX/RX pairs and may spread over the entire
frequency domain. Meanwhile, the fully adaptive parametric
detector extends [15] by incorporating adaptive model order se-
lection in the detection process to cope with platform motion.
Both detectors are developed within the generalized likelihood
ratio test (GLRT) framework, through which the clutter can be
estimated from only the test signal under the null and alterna-
tive hypothesis, respectively, without using any range training
signals. It should be noted that the range training-free feature
stems from the sparsity/parametric based models employed by
these detectors. The estimation results are then contrasted with
each other and the one not matched to the real hypothesis is
rejected through GLRT. Computer simulation show that these
training-free detectors significantly outperform the covariance
matrix based detectors when the latter are provided with a mod-
erate amount of range training in the considered MTD environ-
ment with moving platforms.
The remainder is organized as follows. In Section II, we

present the geometry of the distributed MIMO radar with
moving platforms, examine the target/clutter responses, and
formulate the MTD problem. In Section III, we briefly review

Fig. 1. Bistatic geometry involving one TX, one RX, and one object (target or
clutter scatterer).

several existing MTD detectors and discuss their related prob-
lems. The proposed detectors are developed in Section IV.
Numerical results and comparisons are presented in Section V,
followed by concluding remarks in Section VI.

II. DATA MODEL AND PROBLEM FORMULATION

A. Bistatic Geometry and Doppler Frequency
In this subsection, we examine the bistatic geometry of a

single transmitter (TX) and receiver (RX) on moving platforms
and the resulting Doppler frequency of a moving object ob-
served by the TX-RX pair. The result is used to develop a data
model for the MIMO case in Section II-B. Fig. 1 shows the
bistatic geometry of an object that forms a bistatic angle with
the TX-RX pair. For simplicity, we assume the TX, RX and
the object are located on a two-dimensional (2-D) plane. The
object may refer to a moving target with speed and moving
direction with respect to (w.r.t.) the bisector of ; or it may
refer to a clutter scatterer in which case . The moving an-
gles of the TX and RX are denoted by and , while their
look angles are and , respectively, all defined w.r.t. the
North direction. The transmit range (TX-to-object) is denoted
by , while the receive range (object-to-RX) by . Note that
all angles in Fig. 1 have signs, with clockwise being positive and
counter-clockwise being negative.
Based on the above bistatic radar geometry, the bistatic

Doppler frequency of the moving object is the time rate of
change of the total TX-RX path length [17]:

(1)

where denotes the wavelength, and are the
relative velocities for the TX and RX, respectively. They can be
treated as the projections of and onto and :

(2)

(3)

Taking (2) and (3) back into (1), we have

(4)
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which reveals that consists of three parts due to the motion
of the object, and the motion of the TX/RX. Several cases of
practical interest are worth discussing.
1) Moving Object and Stationary Platforms: With

, (4) reduces to

(5)

This is the case examined in [11], [14]. It can be seen from (5)
that the Doppler frequency is only dependent on the object mo-
tion and the bistatic angle . From fixed target mo-
tion, the Doppler frequency becomes larger as decreases. Note
that (5) also holds with moving platformswhen their moving an-
gles are perpendicular to their look angles, i.e.,
and .
2) Stationary Object and Moving Platforms: When the ob-

ject is stationary , for fixed target motion, the Doppler
frequency is caused by the motion of the platforms:

(6)

The above equation is useful for determining the Doppler fre-
quency of a clutter scatterer.
3) Moving Object on the Baseline: When the target is on the

baseline , (4) reduces to (6) as well, and the Doppler
frequency is contributed only by the platform motion. In such
cases the target cannot be detected by the radar.
4) Monostatic Radar: Formonostatic radar, we have ,

, and . The Doppler frequency
reduces to

(7)

which, in comparison with (4), shows that for the same target/
platform motion, the Doppler frequency of a monostatic radar
is always lager than that of a bistatic radar.

B. Target and Clutter Model

Consider a distributed MIMO radar system with TXs and
RXs, possibly moving, which forms a total of bistatic

pairs. As in standard radar operation, the radar scene is divided
into multiple resolution cells, the cell size is determined by the
bandwidth and beamwidth of the radar system, and detection is
performed on each cell one by one to look for moving targets of
interest [18], [19]. For a given resolution cell under investiga-
tion (called test cell), let and be the associated transmit
and, respectively, receive range. The range sum de-
fines an isorange of the bistatic triangle, which is an ellipse with
foci at the TX and RX [17], as shown in Fig. 2.
Suppose each TX sends a succession of periodic pulses,

i.e., repetitions of an orthogonal waveform over a coherent
processing interval (CPI) [10], [11]. Each RX employs a bank of

matched filters corresponding to the TX waveforms. The
matched filter outputs are sampled at the pulse rate with suit-
able delays according to the range sum of the test cell. Let
denote the vector formed by the samples of the matched
filter output in one CPI at the -th RX matched to the -th TX

Fig. 2. Bistatic geometry and isorange.

waveform. is the test signal, which includes contributions
from the target (if present) and clutter scatterers located on the
isorange associated with the test cell, i.e., the ellipse shown in
Fig. 2.
1) Target Response: The target response in the test signal

can be written as , where denotes the
unknown complex-valued target amplitude and the target
steering vector [11], [18]:

(8)
where is the pulse repetition interval (PRI), and is the
target Doppler frequency that is a function of the target speed
and the moving direction [cf. Fig. 1 and (4)], and is assumed to
remain fixed within a CPI. The target amplitude is determined
by a number of factors such as the transmit power, antenna gain
pattern, and the radar cross section (RCS) of the target [17], [19].
Specifically, consider Fig. 2 which depicts a target being illumi-
nated by a transmit beam with look angle and observed by a
receive beam with look angle . The target amplitude can be
expressed as1

(9)

where is a complex-valued parameter determined by the radar
RCS and channel-induced phase shift, denotes the radar
transmit power, and are the
TX and RX gain patterns which depend on the target locations
angles and , relative to TX/RX look angles and

, as shown in Fig. 2.
2) Clutter Response: The clutter response in the test signal

is the sum of reflections from all clutter scatterers on the
bistatic isorange as shown in Fig. 2. Assuming there are
dominant clutter scattering points on the isorange, the clutter
response can be approximated as [18, Section 2.6]:

(10)

1It should be noted that many quantities involved here depend on , , or
both. For example, the transmission power may be expressed as as it
relates to the -th TX, the receive beam pattern may be written as

as it is associated with the -th RX, and the target RCS also de-
pends on the -th pair, etc. Since it is clear from the context, the depen-
dence is suppressed for notational brevity. Meanwhile, we keep the subscript

for and other similar quantities since they are used in later sections.
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where denotes the clutter amplitude associated with the
-th scatterer, and is the corresponding clutter Doppler
steering vector given by

(11)

where denotes the Doppler frequency associated with the
-th clutter scatterer, which is assumed to be fixed during a CPI.
From (6), the Doppler frequency is determined by the platform
motion as well as the location of the clutter scatterer relative to
the platforms. Similar to the target amplitude (9), the clutter am-
plitude has a dependence on the transmit power, antenna
gain, and transmit/receive range associated with the clutter scat-
terer (cf. Fig. 2):

(12)

where and denote the location angles of the -th
clutter scatterer.

C. Detection Problem
Given the discussions in previous sub-sections, the moving

target detection problem using TXs and RXs can be for-
mulated as the following composite hypothesis test:

(13)

where denotes the test signal observed from the -th
TX-RX pair; is the target steering vector which
depends on the unknown target speed and direction as in
(8), is the unknown target amplitude, is the clutter
given by (10) which involves unknown parameters including
the number of clutter points , clutter amplitudes
and Doppler frequencies ; finally, is the noise,
which is modeled as uncorrelated Gaussian with zero mean
and variance . The problem of interest is to detect the
presence/absence of the moving target using the observed
signals .

III. COVARIANCE MATRIX BASED DETECTORS

Let

(14)

which is often referred to as the disturbance signal. A stan-
dard approach is to model the disturbance as Gaussian with
zero mean and covariance matrix ,
where denotes the clutter covariance matrix. If
is known, then from the perspective of maximizing the output
signal-to-clutter-plus-noise ratio (SCNR), the optimum detector
is the matched filter (MF) [18]:

(15)

In practice, the covariancematrix is unknown and needs
to be estimated. A popular choice is the sample covariance
matrix:

(16)

where denotes the training signals associated with the
test signal . Replacing by the leads to the SCM
based detector [10], [11]:

(17)

To ensure that has full rank, training data are
required for each TX-RX pair. In general, training
data are needed for an acceptable performance [18]. Therefore,
the SCM detector in (17) requires roughly training data
in total.
Another detector for MTD with distributed MIMO radar is

the robust SCM detector [12], [13]

(18)

where is a fixed point estimate (FPE) of the covariance
matrix by solving [20]–[22]

(19)

The above robust SCM detector is based on a com-
pound-Gaussian model for the test signals across TX-RX
pairs. It requires training signals which follow the same com-
pound-Gaussian model. The FPE (19) can be obtained using an
iterative approach [20]–[22].
The above solutions assume the availability of some training

signals, which are often collected in the neighboring resolu-
tion cells close to the test cell [18], [19]. This causes some
problems. In particular, from Section II-B it is clear that the
clutter response vector (both the amplitude and Doppler fre-
quency) is location dependent, i.e., the clutter at different reso-
lution cells or TX-RX pairs exhibits different clutter character-
istics. The location-dependent clutter characteristics lead to two
types of non-homogeneities. First, for the same resolution cell,
the clutter observed by different TX-RX pair is non-homoge-
neous, i.e., , if and/or . Second,
for different resolution cells, the covariance matrix is also dif-
ferent. Hence, drawing training data from the neighboring range
cells for covariance matrix estimation, as done by the conven-
tional detectors, may suffer significant performance degradation
due to the non-homogeneous nature of the clutter in distributed
MIMO radar. It is therefore imperative to seek alternative de-
tectors with reduced training signals.



1528 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 9, NO. 8, DECEMBER 2015

IV. PROPOSED APPROACHES

In this section, we propose two detectors which do not
require range training data. The first detector as introduced
in Section IV-A exploits a sparsity based model to miti-
gate the principal clutter responses, while the second one in
Section IV-B is based on a parametric clutter modeling ap-
proach. In the development of these detectors, we assume the
target velocity is known for simplicity and drop the dependence
of the target steering vectors on . It is standard
in radar detection to divide the uncertainty region of the target
velocity into small cells and each is tested for the presence of
the target [18]. The problem of estimating the target velocity
parameters is addressed in Section IV-C.

A. Sparsity Based Detector
Herein, we present a detector which aims to reject the clutter

response from the dominant clutter scatterers in the test cell. In
practice, the dominant clutter scatterers which have the most
impact must be effectively rejected to expose the target for de-
tection. The clutter from the dominant scatterers in the test cell
can be considered as residing in a subspace which can be ex-
panded by the columns of a matrix [18]

(20)

where

(21)

with representing the Doppler frequency of the -th clutter
scattering point. Then, the clutter response vector for the

-th TX-RX pair in (10) can be rewritten in matrix form

(22)

where represents the subspace of the clutter observed at
the -th TX-RX pair and is an vector con-
taining the unknown complex clutter coefficients.
Substituting (22) into (13), the hypothesis testing problem is

rewritten as follows

(23)

where is additive white Gaussian noise with zero mean
and variance . The likelihood functions ( for
and for ) are given by

(24)

(25)

We consider a generalized likelihood ratio test (GLRT) ap-
proach for target detection. The test variable of the GLRT is

given by the ratio of the likelihood function with unknowns
replaced by their maximum likelihood estimates (MLEs) [23]

(26)

Next, we discuss how to obtain the parameter estimates under
both the and hypotheses, respectively.
1) Parameter Estimation Under : From (25), the MLE of

the target amplitude conditioned on and is

(27)

Substituting (27) into (25) and maximizing the resulting like-
lihood function w.r.t. , we obtain the MLE for the noise
variance conditioned on , and , which is

(28)
where

(29)

(30)

By substituting (27) and (28) into (25), the maximization of the
likelihood function w.r.t. the clutter parameters reduces to

(31)

Note that (31) is a non-linear estimation problem, which
jointly estimates the clutter subspace parameterized
by the Doppler frequencies and amplitudes .
This non-linear estimation problem can be linearized using an
overcomplete dictionary matrix

(32)

with the dimension , where are a set of uniformly
spaced frequency points covering the entire Doppler spectrum.
For sufficiently large , i.e., the Doppler spectrum is densely
sampled, the clutter response can be written as

(33)

where is a sparse vector with only non-zero
elements (the locations of the non-zero elements are however
unknown). The non-linear joint estimation problem (31) now
reduces to a sparse linear parameter estimation problem, i.e.,
to estimate the linear amplitude vector , under a sparsity
constraint. Therefore (31) is equivalent to

(34)

where denotes the -norm of a vector argument which
gives the total number of non-zero elements in the vector.
Finding the exact MLE of is combinatorial. Specifically,

we need to minimize the cost function of (34) for every com-
bination of columns of that have non-zero coefficients,
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i.e., we have to solve least-squares (LS) problems, which
is highly complex for large . Instead of the exact MLE, we can
obtain an approximate estimate of by resorting to standard
sparse signal recovery methods with small-to-moderate com-
plexities, such as the greedy methods [24] or convex relaxation
basedmethods [25]. Next, we discuss how to employ the orthog-
onal matching pursuit (OMP) [24] to estimate due to its
computational efficiency, andwe also discuss how to address the
issue when the sparsity , i.e., the dimension of the clutter
subspace, is unknown.
To facilitate discussion, let , ,
, and . Then (34) can be rewritten as

(35)

The idea is to iteratively identify an atom (i.e., a column) of
at a time that has the largest correlation with the residual vector
until convergence. Specifically, denote by
the index set of all atoms of , the correlation index set
containing the indices of the identified atoms of at the -th
iteration, and the residual vector obtained after sub-
tracting the contribution from the identified atoms at the -th
iteration. To initialize the iterative process, we set and

. At the -th iteration, a new atom is identified from the
remaining atoms of that has the largest correlation with the
residual :

(36)

where denotes the -th column of . Then, the correla-
tion index set and residual are updated as follows:

(37)
(38)

where denotes the sub-matrix formed by the
columns of as indexed by the correlation index set and

(39)

where denotes the matrix pseudo-inverse. The iterative
process stops when the following criterion is met:

(40)

where is a small positive number which controls the dimension
of the clutter subspace. Note that the left side of (40) measures
the relative correlation between the residual and the remaining
atoms at -th iteration, and we have found a choice of
is effective in suppressing the dominant clutter.
Suppose the iterative process stops at the -th iteration. We

have estimates of the clutter subspace and coefficients,
and , respectively, which are specified

over the non-zero support , and an estimate of the clutter rank
is . Substituting these estimates into (27) and (28), we
can obtain estimates for the target amplitude and noise variance.

2) Parameter Estimation Under : Using a similar
process, the MLE of noise variance conditioned on and

can be obtained from (24) as

(41)

By taking (41) back into (24), the MLE of the clutter subspace
matrix and amplitudes are given by

(42)

which can be solved using the similar steps as shown in
(35)–(40).
3) Test Statistic: Using the MLEs obtained above, it is

straightforward to show that the GLRT test statistic reduces to

(43)

where and are the estimates of noise variance
under and , respectively.

Algorithm 1: The proposed sparsity based detector

• Step A: estimation
1) Compute the projected signal from observations

, , , by (30).
2) For each , let and . Do

the following iterations along with initializations:
, and .

a) Find the correlation index using (36), and
update the correlation index set using (37);

b) Compute from (39), and update the residual
vector using (38);

c) Check if the stop criterion (40) is met. If yes,
move to Step A-3; otherwise, let , and
go back to Step A-2a.

3) Set the sparse clutter coefficient vector as
(over its non-zero support set ). Use it

to compute an estimate of the clutter as
and, finally, an estimate of the noise variance
from (28).

• Step B: estimation
1) For each , let and . Do

the following iterations along with initializations:
, and .

2) Follow the same iterations from Step A-2a to Step
A-2c.

3) Calculate the estimates of clutter as in Step
A-3 and the noise variance from (41).

• Step C: Compute the test statistic from (43).

A summary of the proposed sparsity based detector is in-
cluded in Algorithm 1.

B. Fully Adaptive Parametric Detector

In addition to the sparsity based model discussed in
Section IV-A, parametric auto-regressive (AR) processes
have proven useful to model radar clutter in various scenarios
[26]–[37]. Examinations of numerous experimentally measured
data have shown that AR processes can be used to accurately
and efficiently approximate radar clutter using a few coeffi-
cients [28], [29], thus significantly reducing the amount of data
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that is needed for clutter estimation. For the detection problem
at hand, consider the following -order AR process

(44)

where denotes the -th slow-time sample of the distur-
bance (clutter and noise) observed at the -th TX-RX pair
[cf. (14)], denotes the -th AR coefficient of the AR
process used to model , and is
the driving noise of the AR process with zero-mean and variance

. The above AR model was employed in [15] for moving
target detection when the radar platforms are stationary. A para-
metric detector was developed there under the assumption that
the AR model orders are given a priori. The assump-
tion is justified since with fixed platforms, the environment is
relatively stationary and the AR model orders can be
estimated a priori from previously collected data. As shown in
Section II-B, the clutter response is location dependent. With
moving platforms, the clutter is highly dynamic and changes
rapidly over time, making it impossible to estimate a
priori. As such, for distributed MIMO radar on moving plat-
forms, it is imperative to extend the parametric detector to pro-
vide joint adaptivemodel order estimation on the fly andmoving
target detection.
Using ARmodel (44), the likelihood function of the observed

signal [see (13)] under hypothesis , or 1, is given
by [15]

(45)

where when , while are white Gaussian
random variables which are related to the observed signal
through the AR model:

(46)

(47)

Conditioned on known AR model orders , the MLEs
of the target and disturbance parameters have been derived in
[15]. The maximum logarithmic likelihood functions obtained
by using these MLEs in (45) are [15, Eqs. (18) and (22)]:

(48)

(49)

where is a vector formed from the observations :

(50)

and are projection matrices given by

(51)

(52)

in which

...
...

(53)

(54)

where is a
Fourier vector.

We reiterate the above estimation results are based on known
ARmodel orders , which need to be adaptively estimated
from the observations. One naive way is to treat are un-
knowns and directly maximize (48) and (49) w.r.t these param-
eters. This will inevitably lead to model over fitting, i.e., the re-
sulting will always reach the maximum tested value [38].
There are a multitude of techniques available for model order
estimation. Here, we consider the generalized Akaike informa-
tion criterion (GAIC) due to its simplicity [38]. Specifically, the
GAIC combines the negative logarithmic likelihood function
with a penalty term proportional to the model order:

(55)

(56)

where is a user parameter and a suggested choice is
for one-dimensional complex data sequence in [38].

It is clear that model order estimation from (55)–(56) is affected
by the fitting error and computation complexity caused by over-
large estimates of model orders.
Once we have model order estimates, the test statistic of the

parametric GLRT is given by the ratio of likelihood functions
(48) and (49):

(57)

where and are given by (51)–(52), re-
spectively, by using the model order estimate obtained from
(55)–(56). The proposed parametric MIMO detector is summa-
rized in Algorithm 2.
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Algorithm 2: The proposed parametric detector

• Step A: estimation
1) Calculate from (56) for and

.
2) Use to form the observational

data , and the projection matrix
according to (52).

• Step B: estimation
1) Calculate from (55) for and

.
2) Use to form the observational

data , and the projection matrix according
to (51).

• Step C: Compute the test statistic from (57).

It is worth noting that both the proposed sparsity based and
the parametric MIMO detectors in (43) and (57) require no
range training signals. Hence, they are immune to the range/lo-
cation-dependent clutter problem suffered by conventional
detectors which rely on range training. Furthermore, they also
do not require a priori knowledge of disturbance structure (i.e.,
sparsity or model orders), which implies that both proposed
detectors are fully adaptive and all the unknown parameters
which describe the clutter characteristics are estimated from
the test signal. Finally, by using the asymptotic result for GLRT
(see [23, p. 205] and also [15, Section III.D], it is easy to
show that the test variables for both S-GLRT and P-GLRT
are asymptotically central Chi-square distributed with
degrees of freedom under . Hence, both detectors achieve
asymptotically constant false alarm rate (CFAR).

C. Target Velocity Estimation
In previous discussions of both the proposed S-GLRT and

P-GLRT detectors, the target velocity parameters are as-
sumed known. We consider herein the case when the target ve-
locity is unknown and discuss how to estimate the associated
parameters for both detectors.
1) Velocity Estimation for the S-GLRT: By substituting the

estimates in (27), (28) and (31) into the likelihood function (25),
it is easy to show that the target velocity parameters can
be estimated by

(58)

where is defined in (29), which depends on the steering
vector . Note that the clutter parameters estimates

in (31) depend on and hence are func-
tions of the target velocity parameters. As such, (58) involves a
2-D search on .
2) Velocity Estimation for the P-GLRT: Following the likeli-

hood function in (49), it is readily shown that the MLEs of target
velocity parameters are given by

(59)
where , , and are defined in (50), (53),
(54), and (56), respectively. Note that is a function of

Fig. 3. A 2 2 multistatic radar scene.

TABLE I
LOCATION AND MOVING PARAMETERS OF THE

TARGET AND SENSOR PLATFORMS

the target Doppler frequency observed by the -th TX-RX
pair and hence depends on the target velocity parameters .
Therefore, (59) also involves a 2-D search.

V. SIMULATION RESULTS

In this section, we demonstrate the performance of the pro-
posed sparsity based GLRT (S-GLRT) and fully adaptive para-
metric GLRT (P-GLRT) which are compared with several ex-
isting detectors through computer simulations. The distributed
MIMO radar system consists of TX and RX an-
tennas covering a radar scene of , as shown in
Fig. 3. The position/moving parameters of the radar platforms
and target are shown in Table I. For simplicity, the radar and the
target are assumed to be located on a 2-dimensional plane. This
allows Doppler effects of the target/clutter and location/motion
induced clutter non-homogeneity and target Doppler to be ad-
equately simulated without getting into a full-blown, high-fi-
delity 3-dimensional simulation, which is time consuming and
beyond the scope of the current effort. As indicated in Table I,
the target moves in a random direction which changes from one
simulation to another, so that the average detection performance
of the detectors can be obtained and used for comparison.
The moving target is located at the center of the radar scene.

The target, along with the 2 2 TXs/RXs, specify four isoranges
(ellipses) that, as shown in Fig. 3, intercept at the target location.
Each isorange corresponds to one TX/RX pair. For clutter sim-
ulation, 500 clutter scatterers randomly distributed within the
area are generated, and those which are located on any of the
isoranges contribute to the clutter associated with that TX/RX
pair as in (10). To determine if, say, the -th clutter scatterer is
located on the -th isorange, we compare the bistatic range
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TABLE II
CLUTTER DOPPLER FREQUENCIES

of the target associated with the -th isorange and the
bistatic range of the clutter scatterer [39]

(60)

where denotes the speed of light and the bandwidth of
the radar. In our simulation, we have MHz, the car-
rier frequency GHz, the pulse repetition frequency

Hz, and the number of pulses . This
leads to clutter ranks with the Doppler
frequencies shown in Table II. It is seen that due to platformmo-
tion, the clutter Doppler frequencies are spread over the entire
Doppler bandwidth.

A. Detection Performance

We consider the proposed S-GLRT (43), P-GLRT (57), the
SCM detector (17) and the robust SCM detector (18). For all
these detectors, we consider two cases involving the target
velocity (speed and direction) which is assumed known and,
respectively, unknown. The latter case is to examine the effect
of target velocity estimation on detection performance, in
correspondence with the discussion in Section IV-C. For both
cases, is a 128 256 over-complete Fourier dictionary for
the S-GLRT usage.
First, we consider a non-fluctuating target model where the

target amplitudes are assumed fixed from trial to trial. The
clutter coefficients [cf. (12)] are compound-Gaussian that
is K-distributed clutter with a scaling factor of 5 and a shape
factor of 0.2. The signal-to-clutter-plus-noise ratio (SCNR) is
defined as

(61)

while the clutter-to-noise ratio (CNR) is defined as

(62)

The target moving direction is randomly chosen according to a
uniform distribution over the range in every simula-
tion trial.

Fig. 4. ROC curves with non-fluctuating target amplitudes in the compound-
Gaussian clutter: (a) known target velocity; (b) unknown target velocity.

The receiver operation characteristics (ROC) curves of the
detectors are shown in Fig. 4(a) for the known target velocity
case and Fig. 4(b) for the unknown target velocity case. As a
benchmark, the clairvoyant MF detector (15) is also included
in the comparison. The proposed detectors do not use any
training, but for the SCM and the robust SCM detectors,

training signals are used to estimate each covariance
matrix and the total training size is . The
results in Fig. 4 show that the proposed detectors significantly
outperform the covariance matrix based detectors. Compar-
isons between Figs. 4(a) and 4(b) reveal that all considered
detectors experience some loss in detection performance when
the target velocity is unknown.
Fig. 6 shows the detection performance of proposed and other

detectors under different SCNR, assuming unknown target ve-
locity and non-fluctuating target amplitude. Both the S-GLRT
and P-GLRT detectors do not use any training data and out-
perform the SCM-based detectors which use training
data, and the advantage is more significant at higher SCNR.
Next, we consider a fluctuating target model where the target

amplitudes are changing from one trial to another, fol-
lowing a complex Gaussian distribution with zero mean and
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Fig. 5. ROC curves with fluctuating target amplitudes in the com-
pound-Gaussian clutter: (a) known target velocity; (b) unknown target velocity.

variance for each TX-RX pair. In this case, the SCNR
is defined as

(63)

Fig. 5 plots the performance curves of the proposed, MF, SCM,
and robust SCM detectors, where all simulation parameters ex-
cept are the same as those in Fig. 4. It is also shown that
the proposed detectors have better performance than the covari-
ance matrix based detectors.

B. Model Order Selection
To illustrate the effect of model order selection on the

proposed P-GLRT detector, Fig. 7 depicts the detection per-
formance of the detector when it is used with several different
sets of model orders, including the one obtained by using
our proposed model order selection method. It is noted that
the set are identical to the true clutter ranks
as discussed earlier and hence treated as the “true” model
order. On the other hand, the model order set corre-
sponds to the case when the orders are underestimated, while

Fig. 6. Probability of detection versus SCNR with non-fluctuating target am-
plitudes and unknown target velocity.

Fig. 7. ROC curves for the proposed P-GLRT with different sets of AR model
orders.

is the case when the orders are overestimated.
It can be seen that the proposed fully adaptive P-GLRT which
uses the estimated model orders offers detection performance
close to that using the true orders. In addition, the usage of the
over-/under-estimated model orders in the P-GLRT results in
significant performance losses.

VI. CONCLUSIONS
In this paper, we examined the moving target detection

(MTD) problem in distributed MIMO radar with sensors on
moving platforms. A major issue is to deal with the bistatic ge-
ometry induced, location dependent clutter non-homogeneity,
which is further worsened by platform motion. We examined
the effects of platform motion on the target/clutter responses
and, based on our analysis, developed two new detectors by ex-
ploiting suitable sparsity based and, respectively, a parametric
autoregressive (AR) based clutter model. Both detectors were
developed within the GLRT framework and do not require
training signals. Numerical results show that the proposed
detector offer notable improvement over the conventional
covariance matrix based detectors in non-homogeneous clutter
environments. The two proposed detectors are similar to each



1534 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 9, NO. 8, DECEMBER 2015

other in general. There is no clear picture when one performs
better than the other, and their relation is subject to further
investigation.
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