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We examine the adaptive detection problem in the presence of
colored noise with an unknown covariance matrix, by exploiting a
persymmetric structure in the received signal. The persymmetric
adaptive matched filter (PS-AMF) is used to address this problem,
which can significantly alleviate the requirement of secondary data.
In G. Pailloux et al. “Persymmetric adaptive radar detectors,” (2011)
the probability of false alarm of the PS-AMF has been obtained in
terms of the Gaussian hypergeometric function. In this paper,
finite-sum expressions for the probability of false alarm of the
PS-AMF are derived, which are more convenient to use in
calculating the detection threshold. Moreover, the detection
probabilities of the PS-AMF for both nonfluctuating and fluctuating
target models are derived. In the fluctuating model, the amplitude of
the target echoes is described by a generalized Chi distribution that
involves the Rayleigh distribution as a special case. These theoretical
results are all confirmed using Monte Carlo (MC) simulations.
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I. INTRODUCTION

The problem of adaptive detection in colored noise
with an unknown covariance matrix is commonly
encountered in many applications such as radar, sonar, and
communications. To deal with this problem, a standard
approach is to employ a set of secondary data (training
data) to estimate the covariance matrix. This has led to the
development of several seminal detectors, e.g., Kelly’s
generalized likelihood ratio test (GLRT) [2], adaptive
matched filter (AMF) [3], and adaptive subspace detector
[4]. Numerous studies of these detectors have been
reported in the literature, including performance analysis
[5–7], extensions for applications in multi-input
multi-output (MIMO) radar [8–10], and polarimetric radar
[11, 12], among others. Interestingly, all these detectors
ensure constant false alarm rate (CFAR) properties with
respect to the noise covariance matrix. It is well known
that the loss in detection performance of the adaptive
detectors with respect to the nonadaptive matched filter
(MF) is 3 dB when the amount of training data used to
estimate the noise covariance matrix is approximately
twice the dimension of the received signal [13]. The
requirement on the number of the training data may be
restrictive. In many practical scenarios, it is difficult to
collect sufficient target-free training data to meet the
training requirement, due to many factors such as
variations in terrain and interfering targets [14]. Therefore,
it is of importance to investigate how to achieve
satisfactory detection performance when the amount of
training data is limited.

Note that all the detectors mentioned above do not
exploit any structural information on the noise covariance
matrix. In practical applications, the noise covariance
matrix has a Hermitian persymmetric (also called
centrohermitian) form, when the used system is equipped
with a symmetrically spaced linear array for spatial
processing or symmetrically spaced pulse trains for
temporal processing [15]. Hermitian persymmetry has a
property of double symmetry, i.e., Hermitian about its
principal diagonal and persymmetric about its cross
diagonal. Unless otherwise stated, “persymmetric” always
denotes “Hermitian persymmetric” for brevity in the
following. Note that the persymmetry includes as a special
case the Toeplitz structure existing in a uniformly spaced
array or pulse train. The persymmetric structure
information has been applied in many scenarios, such as
direction-of-arrival estimation [16], detection [1, 17], and
adaptive beamforming [18].

The investigation on the persymmetric structure of the
noise covariance matrix can be traced to Nitzberg’s paper
[19], where the maximum likelihood (ML) estimate of the
persymmetric covariance matrix is obtained. Using this
ML estimate, Cai and Wang developed two persymmetric
detection algorithms, i.e., the persymmetric multiband
GLRT algorithm [15] and the persymmetric sample matrix
inversion (SMI) algorithm [20]. In recent years, many
other detection algorithms have been proposed with a
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priori information on the persymmetric structure of the
noise covariance matrix [1, 17, 21–25]. All these
persymmetric detection algorithms mentioned above
validate the fact that a notable gain in detection
performance can be obtained by exploiting the
persymmetric structure in the noise covariance, especially
when the amount of training data available is limited.

In [1], a persymmetric adaptive matched filter
(PS-AMF) is proposed, which is an extension of the AMF
in [3] from the unstructured case to the persymmetric case.
The authors in [1] have derived an expression for the
probability of false alarm of the PS-AMF in terms of the
Gaussian hypergeometric function that involves
integration and may not be convenient to use for the
calculation of the detection threshold given a probability
of false alarm. In addition, the detection probability of the
PS-AMF is not provided in [1]. Therefore, a more
comprehensive investigation on the performance of the
PS-AMF is needed. In principle, the theoretical analysis of
the PS-AMF can be conducted by using an approach
similar to that in [26]. As shown in [26], nevertheless, the
derivation is lengthy and complicated.

In this paper, the statistical properties of the PS-AMF
are obtained in a simple method which is different from
that in [26]. More specifically, we derive elementary
expressions for the probability of false alarm of the
PS-AMF in two special cases where the amount of
secondary data is about half of the dimension of the
received signal. In other cases, the probability of false
alarm can be well approximated by an elementary
expression due to the Laplace approximation of the
Gaussian hypergeometric function. These elementary
expressions for the probability of false alarm are easier to
use in setting the test threshold than the Gaussian
hypergeometric function in [1]. Furthermore, closed-form
expressions for the detection probability of the PS-AMF
are derived for both nonfluctuating and fluctuating target
models. In the nonfluctuating model, the target echoes are
deterministic, whereas in the fluctuating model, the
amplitude of the target echoes is assumed to have a
generalized Chi distribution and the phase of the target
echoes is uniformly distributed in [0, 2π ) [27]. These
theoretical results are all verified by using Monte Carlo
(MC) simulations. Finally, numerical simulations are
provided to demonstrate the performance of the PS-AMF.

The remainder of this paper is organized as follows.
Section II formulates the problem to be studied. In Section
III, a detailed performance analysis of the PS-AMF is
provided. Simulation results are illustrated in Section IV
and finally the paper is summarized in Section V.

Notation: Vectors (matrices) are denoted by boldface
lower (upper) case letters. Superscripts (·)T, (·)*, and (·)†
denote transpose, complex conjugate, and complex
conjugate transpose, respectively. The notation ∼ means
“is distributed as,” and CN denotes a circularly
symmetric, complex Gaussian distribution. Ip stands for a
p-dimensional identity matrix. For any matrix B, the
(i, j)-th entry is denoted by bi,j. | · | represents the modulus

of a complex number and j = √−1. det(·) and tr(·) denote
the determinant and trace of a matrix, respectively. �(·) is
the Gamma function. �e and �m represent the real and

imaginary parts of a complex quantity, respectively.
d=

means the random quantities on both sides of the equation
have the same distribution. Wn(K, R) is an n-dimensional
complex Wishart distribution with K degrees of freedom
(DOFs) and parameter matrix R. Cm

n is the binomial
coefficient. χ2

n denotes the central Chi-squared distribution
with n DOFs, and χ ′2

n (v) is the noncentral Chi-squared
distribution with n DOFs and noncentrality parameter v.

II. PROBLEM FORMULATION

Consider the following hypothesis testing problem:

H0 :

{
y = c ∼ CN (0, M)

yk = ck ∼ CN (0, M), k = 1, . . . , K,
(1a)

and

H1 :

{
y = ap + c ∼ CN (ap, M)

yk = ck ∼ CN (0, M), k = 1, . . . , K,
(1b)

where p is a known steering vector of dimension m × 1;
a is a deterministic but unknown complex scalar
accounting for the target reflectivity and the channel
propagation effects; the noise c is assumed to have
circularly symmetric, complex Gaussian distribution, i.e.,
c ∼ CN (0, M), where M is a positive definite covariance
matrix of dimension m × m.

When the system is equipped with a symmetrically
spaced linear array for spatial domain processing or
symmetrically spaced pulse trains for temporal domain
processing, p and M possess persymmetric structures.
More specifically,

M = JM∗J and p = Jp∗, (2)

where J is a permutation matrix given as⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1

0 0 · · · 1 0
...

...
...

...
...

0 1 · · · 0 0

1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Based on the persymmetric structure in the received data,
we can use a unitary matrix to transform the complex
quantities p and M to real ones. Such a unitary matrix is
given by [1]

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

(
Im/2 Jm/2

j Im/2 −j Jm/2

)
for m is even,

1√
2

⎛
⎜⎝

I(m−1)/2 0 J(m−1)/2

0
√

2 0

j I(m−1)/2 0 −j J(m−1)/2

⎞
⎟⎠ for m is odd.

(4)
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Applying this unitary transform to the received data
results in

H0 :

{
x = n ∼ CN (0, R)

xk = nk ∼ CN (0, R)
(5a)

and

H1 :

{
x = as + n ∼ CN (as, R)

xk = nk ∼ CN (0, R)
, (5b)

where

x = Ty ∈ C
m, (6)

xk = Tyk ∈ C
m, (7)

s = Tp ∈ R
m, (8)

n = Tc ∼ CN (0, R) (9)

with

R = TMT† ∈ R
m×m. (10)

It is worth noting that s and R are both real. As shown in
[1], the ML estimator R̂ of the real covariance matric R is

R̂ = �e

(
1

K

K∑
k=1

xkx†
k

)
. (11)

Moreover,

2KR̂ ∼ Wm(2K, R). (12)

Therefore, the AMF using the persymmetric structures
becomes

�PS−AMF = |sT R̂−1x|2
sT R̂−1s

H1

≷
H0

λ, (13)

where λ is the detection threshold. This detector is
referred to as the PS-AMF. In the sequel, we provide a
statistical analysis of this detector, and derive closed-form
expressions for the probabilities of false alarm and
detection.

III. PERFORMANCE ANALYSIS

A. Probability of False Alarm

The probability of false alarm of the PS-AMF has been
derived in [1, eq. (55)] in terms of the Gaussian
hypergeometric function, i.e.,

PFA = 2F1

(
M, M + 1

2
; K + 1

2
; − λ

K

)
, (14)

where

M = 2K − m + 1

2
, (15)

and 2F1(·) denotes the hypergeometric function given by

2F1(n1, n2; n3; x̃) = �(n3)

�(n2)�(n3 − n2)

×
∫ 1

0

tn2−1(1 − t)n3−n2−1

(1 − t x̃)n1
dt. (16)

It is not convenient to set the detection threshold by using
(14), since the Gaussian hypergeometric function is in an
integral form. In the following, we develop a simpler
method to calculate the detection threshold.

In the extreme cases where the number of secondary
samples is about half the dimension of the primary data
vector, the expression for the probability of false alarm
can be written in terms of elementary functions. Such two
cases are listed below.

Case 1: when m is even and K = m/2, we have M = 1/2.
Then, the probability of false alarm in (14) can be cast as

PFA = 2F1

(
1

2
, 1; K + 1

2
; − λ

K

)

= 2F1

(
1,

1

2
; K + 1

2
; − λ

K

)

=
[

2
√

z tanh−1(
√

z) +
K−2∑
k=1

(k − 1)!(
1
2

)
K

(
z

z − 1

)k
]

×
(

1
2

)
K

(z − 1)K−1

(K − 1)!zK
, (17)

where z = − λ
K

, the third equality is obtained by using [28,
p. 463, eq. 7.3.1.137], the Pochhammer symbol (a)n and
the inverse hyperbolic tangent function tanh–1(x) are
defined as

(a)n = �(a + n)

�(a)
, (18)

and

tanh−1(x) = 1

2
[ln(1 + x) − ln(1 − x)], (19)

respectively.
Case 2: when m is odd and K = m+1

2 , we have M = 1.
Then,

PFA = 2F1

(
1,

3

2
; K + 1

2
; − λ

K

)

= 2K − 1

2K − z − 3

{
1 + 2

(
1
2

)
K−1(z − 1)K−2

(K − 2)!zK

×
[
−z + (2K − z − 3)

√
z tanh−1(

√
z)

−
K−2∑
k=1

(k − 1)!zk(k − K + z + 1)(
1
2

)
K

(z − 1)k

]}
, (20)

where the last equation is derived with [29].
To facilitate setting the detection threshold in other

cases, we provide an approximate expression (in terms of
elementary functions) for (14). According to [30, eq. 24],
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the probability of false alarm in (14) can be approximated
as

PFA ≈
(

K + 1

2

)K

r
−1/2
2,1

( y

M

)M

(
1 − y

K − M + 1
2

)K−M+ 1
2

× (1 − xy)−M− 1
2 , (21)

where

x = − λ

K
, (22)

r2,1 = y2

M
+ (1 − y)2

K − M + 1
2

− (M + 1
2 )x2y2(1 − y)2

M(K − M + 1
2 )(1 − xy)2 ,

(23)

y = 2M√
ε2 − 4Mx(K − M) − ε

(24)

with

ε = x

2
− K − 1

2
. (25)

As shown in Section V, the approximate accuracy of (21)
is very high.

Note that the exact expressions in (17) and (20), and
the approximate expression in (21) are represented in
finite sums of well-known elementary functions, which are
easier to use than the hypergeometric function in (14).

B. Probability of Detection

Note that [1] did not provide an expression for the
detection probability of the PS-AMF, which is considered
in the following. We first derive an exact detection
probability for the case of m odd. Next, we discuss how to
deal with the case of m even.

As derived in the Appendix, (13) can be equivalently
written as

v

τ

H1

≷
H0

λ

K
ρ, (26)

where the distributions of v, τ , and ρ are given by (55),
(51), and (52), respectively. Moreover, the random
variables v and τ are independent of each other. According
to (51), the probability density function (pdf) of τ under
H1 is

p(τ |H1) = 1

�(M)
τM−1 exp(−τ ), τ > 0. (27)

Actually, τ under H1 has a Gamma distribution with shape
M and scale 1. From (55), the pdf of v under H1 is

p(v|H1) = exp[−(v + ξ )]I0(2
√

ξv), v > 0, (28)

where Ir is the modified Bessel function of the first kind.
1) Nonfluctuating Target Model: Here, we examine

the nonfluctuating target model where a is deterministic.
Define

ω = λρ

K
τ. (29)

Based on (27), the pdf of ω conditioned on ρ can be
expressed as

p(ω|ρ) = K

λρ�(M)

(
K

λρ

)M−1

ωM−1 exp

(
−Kω

λρ

)
.

(30)
Therefore, the detection probability of the PS-AMF
conditioned on ρ is

PD |ρ =
∫ +∞

0

(∫ +∞

ω

p(v| H1)dv

)
p(ω|ρ) dω

= 1 −
(

1 + λρ

K

)−M M∑
j=1

Cj

M

(
λρ

K

)j

× exp

(
− ρζ

1 + λρ

K

)
j−1∑
n=0

1

n!

(
ρζ

1 + λρ

K

)n

, (31)

where the second equality is obtained by using [31,
eq. (4-16)]. Furthermore, the unconditional probability of
detection for m odd is obtained by averaging over ρ, i.e.,

PD =
∫ 1

0
PD|ρp(ρ)dρ, (32)

where p(ρ) is the distribution of ρ given by [see (52)]

p(ρ) =
[
B

(
M + 1

2
,
m − 1

2

)]−1

ρM− 1
2 (1 − ρ)

m−3
2 ,

(33)
where B(·,·) denotes the Beta function.

Note that the above derivation of the detection
probability in (32) is based on the assumption of m odd.
When m is even, unfortunately, a closed-form expression
for the probability of false alarm is intractable. Intuitively,
we can approximate the detection probability for m even as
the arithmetic mean of the detection probabilities obtained
by replacing m with m –1 and m + 1 in (32). Number
simulations in Section IV show that the approximate
results match the MC simulation results pretty well.

2) Fluctuating Target Model: In the above analysis we
assumed that the amplitude a of the target is deterministic.
In many practical scenarios, a may be described better
with a fluctuating model where a is random [27, 32].
Therefore, it is of interest to examine how the detector
performs with a fluctuating target model. It should be
pointed out that the PS-AMF is developed for the
nonfluctuating target model, not for the fluctuating one.
Therefore, there exists a mismatched signal model when
the PS-AMF is applied to the fluctuating target model.
Nevertheless, similar examinations of detectors derived
for nonfluctuating targets in fluctuating cases are
considered in many studies (e.g., [3, 11]).

Let a = |a| exp(j θ). The phase θ is often assumed to
be uniformly distributed within the interval [0, 2π ), while
many pdfs have been used to describe the statistical
characterization of the amplitude |a|. We consider that |a|
has a generalized Chi distribution [27, 32–34], namely, the
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pdf of |a| is

p|a|(r) = 2LLr2L−1

σ 2m
a �(L)

exp

(
−Lr2

σ 2
a

)
, r > 0, (34)

where L and σ 2
a are the shape and scale parameters,

respectively. Note that the above distribution in (34)
includes the Rayleigh distribution as a special case with
L = 1. In this special case, a is a complex Gaussian
variable, i.e., a ∼ CN (0, σ 2

a ).
Define

δ = σ 2
a sT R−1s, (35)

and

φ = σ−2
a |a|2. (36)

Then, ζ defined in (57) can be rewritten as ζ = δ φ. Based
on (34), we can derive the pdf of φ as

pφ(φ) = LLφL−1

�(L)
exp (−Lφ) , φ > 0. (37)

Therefore, the detection probability of the PS-AMF with
m odd, conditioned on ρ for the fluctuating target model,
can be expressed as

P̃D|ρ =
∫ +∞

0
PD|ρ pφ(φ)dφ

= 1 −
(

1 + λρ

K

)−M M∑
j=1

Cj

M

(
λρ

K

)j j−1∑
n=0

LL�(n + L)

n!�(L)

×
(

ρδ

1 + λρ

K

)n(
L + ρδ

1 + λρ

K

)−(n+L)

. (38)

Furthermore, the unconditional detection probability of
the PS-AMF with m odd for the fluctuating target model is

P̃D =
∫ 1

0
P̃D|ρ p(ρ)dρ, (39)

where p(ρ) is defined in (33).
We now turn to the case where m is even. In such a

case, we can obtain an approximate detection probability
of the PS-AMF for the fluctuating model, in an intuitive
way similar to that in the case of nonfluctuating target
model. More precisely, the detection probability with m
even in the fluctuating target model can be approximated
as the arithmetic mean of the detection probabilities
obtained by replacing m with m – 1 and m + 1 in (39).

IV. SIMULATION RESULTS

In this section, numerical simulations are conducted to
confirm the validity of the above theoretical results.
Without loss of generality, we select s = [1, 1, . . . , 1]T.
The (i, j)th element of the noise covariance matrix is
chosen to be [R]i,j = σ 2ρ̃|i−j |, where ρ̃ is the correlation
coefficient, and σ 2 represents the noise power and is set to
be 1. It should be pointed out that many values of ρ̃, such
as 0.9 and 0.99, have been used in simulations. It is shown

Fig. 1. Probability of false alarm calculated with exact but elementary
expressions in (17) and (20).

that the PS-AMF works well with these values. Here, we
choose the simulation results with ρ̃ = 0.9 for illustration.

For comparison purposes, we introduce the MF
detector and the AMF. The MF detector can be written as

�MF = |p†M−1x|2
p†M−1p

H1

≷
H0

λMF, (40)

where λMF is the detection threshold. Note that the MF
detector cannot be implemented in practice, since it
assumes that the noise covariance matrix is known.
However, it can provide a benchmark against which we
can compare the detection performance of the proposed
detectors. The AMF is [3]

�AMF = |p†M̂−1x|2
p†M̂−1p

H1

≷
H0

λAMF, (41)

where M̂ = 1
K

∑K
k=1 yky†

k and λAMF is the detection
threshold.

In Fig. 1, the probability of false alarm as a function of
the detection threshold is depicted for m = 8 and m = 9.
The number of secondary data is selected to be the
minimum value required, i.e., K = 4 for m = 8 in case 1
and K = 5 for m = 9 in case 2. Note that the dashed and
solid lines denote the results obtained by using the exact
but elementary expressions in (17) and (20), respectively.
The symbols “◦” and “*” denote the results obtained with
MC simulations. The number of independent trials used in
each case is 100 000. It is shown that the analytical results
are in good agreement with the simulation results.

In Fig. 2, we examine the general case. The lines
denote the approximate thresholds obtained using (21)
instead of (14), and the symbols denote the results
obtained by MC simulations. It can be seen from Fig. 2
that the approximate results match the simulation results
pretty well. It means that the integral in (14) can be
approximated well by the elementary expression in (21).

Performance comparisons between the MF, AMF, and
PS-AMF detectors in the deterministic target model are
presented for m = 8 and m = 9 in Figs. 3 and 4,
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Fig. 2. Probability of false alarm calculated with approximate but
elementary expression in (21) for m = 8.

Fig. 3. Performance comparisons in nonfluctuating target model for
even m = 8.

Fig. 4. Performance comparisons in nonfluctuating target model for
odd m = 9.

respectively. The detection probability curves of the
PS-AMF (i.e., the dashed lines) in Figs. 3 and 4 are
depicted by using the intuitive approximation method and
(32), respectively. The detection probability curves of the
MF detector and the AMF (i.e., the solid and dotted lines,

Fig. 5. Performance comparisons in fluctuating target model for even
m = 8.

respectively), and the symbol * are plotted by using MC
simulations. The number of independent trials used to
calculate the detection probability in each case is 5 000,
and the detection threshold is obtained by using the
theoretical expression. Obviously, the theoretical results
are in good accordance with the simulation results.

It is demonstrated that the PS-AMF significantly
outperforms the AMF, especially when the number of
secondary data is small (for instance, K = 8 in Fig. 3 and
K = 9 in Fig. 4). This is due to the fact that the PS-AMF
exploits a priori knowledge about the persymmetric
structure of the noise covariance matrix. In addition, we
can see that the detection performance of the AMF and
PS-AMF improves as the number of secondary data
increases. Interestingly, the AMF and PS-AMF detectors
perform almost the same as the MF detector when the
number of secondary data is sufficiently large (for
example, K = 32 in Fig. 3 and K = 36 in Fig. 4). This is
expected, since one can obtain high accuracy in the noise
covariance matrix estimate by using sufficient secondary
data, even without a priori information on the
persymmetric structure.

In Figs. 5 and 6 we make performance comparisons in
the random model. All the parameters except L in Figs. 5
and 6 are the same as those in Figs. 3 and 4, respectively.
Here, we select L = 1, which means that the complex
amplitude a has a complex Gaussian distribution. Note
that the detection probability curves of the PS-AMF (i.e.,
the dashed lines) in Figs. 5 and 6 are plotted by the
intuitive approximation method and (39), respectively.
The solid and dashed lines, and the symbol * are all
depicted by the MC simulations. It can be seen that in the
stochastic model the analytical results also agree with the
simulation results. In addition, the relationship among the
detection performance of the three detectors in Figs. 5 and
6 is the same as in Figs. 3 and 4, respectively. We can use
the same reasons to explain the phenomenon.

The impact of the scale parameter L on the detection
performance of the PS-AMF is presented in Fig. 7, where
m = 9 and K = 12. These detection probability curves are
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Fig. 6. Performance comparisons in fluctuating target model for odd
m = 9.

Fig. 7. Detection performance for different L with m = 9 and K = 12.

obtained by using (39). One can observe that as L
decreases, the detection performance improves in the low
signal-to-noise ratio (SNR) region (e.g., SNR ∈ [–10, 0]
dB in this example), but decreases in the high SNR region.
This phenomenon can be easily explained. In fact, the
depth of the amplitude fluctuation is ruled by the scale
parameter L. More precisely, the lower the scale parameter
L, the wider the fluctuation span. Wide fluctuation spans
can result in a gain in the detection performance for a low
SNR, but lead to a loss in the detection performance for a
high SNR.

V. CONCLUSION

The problem of detecting a target embedded in colored
noise with an unknown covariance matrix is considered by
exploiting the persymmetric structures in the received
signal. This problem can be handled with the PS-AMF
proposed in [1]. Two elementary expressions for the
probability of false alarm of the PS-AMF are obtained in
two training-limited cases where the number of secondary
data is only about half of the dimension of the received
data. In other cases, we derive an approximate but
elementary expression for the probability of false alarm,

based on the Laplace approximation to the Gaussian
hypergeometric function. It is easier to set the detection
threshold by employing these derived elementary
expressions than the original hypergeometric function.
More importantly, the detection probabilities of the
PS-AMF for both nonfluctuating and fluctuating target
models are obtained in terms of one-dimensional integral
forms. Numerical simulations demonstrate that these
theoretical results match the MC simulation results very
well. Our analytical results can serve as a set of
mathematical tools for the design and evaluation of the
PS-AMF.

It should be pointed out that in the current study we do
not consider the mismatched case where the actual noise
covariance matrix deviates from being persymmetric.
Development of robust detection algorithms to deal with
such mismatch is a future work.

APPENDIX. EQUIVALENT TRANSFORMATION
OF �PS-AMF

Define e1 = [1, 0, . . . , 0]T ∈ R
m. There always exists

a real orthogonal matrix U such that

e1 = UR−1/2s

(s†R−1s)1/2 . (42)

Let

z = UR−1/2x, (43)

and

Ŵ = UR−1/2(2KR̂)R−T/2UT . (44)

It is easy to check that

z ∼
{
CN (0, I), under H0

CN (aUR−1/2s, I), under H1
(45)

and

Ŵ ∼ Wm(2K, I). (46)

Moreover, the test statistic �PS–AMF in (13) can be
rewritten as

�PS−AMF = 2K
|eT

1 Ŵ−1z|2
eT

1 Ŵ−1e1

�= Kv

τρ
, (47)

where

v = |eT
1 Ŵ−1z|2

eT
1 Ŵ−2e1

, (48)

τ = 1

2eT
1 Ŵ−1e1

, (49)

and

ρ = (eT
1 Ŵ−1e1)

2

eT
1 Ŵ−2e1

. (50)
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Following a line of reasoning similar to that in
[1, Appendix A], the distribution of τ is

τ ∼ 1

2
χ2

2K−m+1, (51)

and the distribution of ρ is

ρ ∼ β

(
2K − m + 2

2
,
m − 1

2

)
. (52)

Moreover, τ and ρ are independent of each other.
In the following, our focus is to analyze the statistical

properties of the random variable v under hypothesis H0

and hypothesis H1. To this end, we introduce a unit-norm
vector

v = Ŵ−1e1

(eT
1 Ŵ−2e1)

−1/2 . (53)

Then, v can be rewritten as

v = z†Pvz, (54)

where Pv = vv† is the projection matrix onto the subspace
spanned by the vector v. Due to (45), we can obtain that
the distribution of v conditioned on ρ is

v ∼
{

1
2χ2

2 , under H0,

1
2χ ′2

2 (2ξ ), under H1,
(55)

where

ξ = |a|2sT R−1/2UT PvUR−1/2s

= |a|2sT R−1/2UT Ŵ−1e1eT
1 Ŵ−1UR−1/2s

eT
1 Ŵ−2e1

= |a|2sT R−1s
(eT

1 Ŵ−1e1)
2

eT
1 Ŵ−2e1

= ζ ρ, (56)

where the third equality is obtained by (42), ρ is defined in
(50) and

ζ = |a|2sT R−1s. (57)

Applying (47) to (13) results in (26).
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