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Two Target Detection Algorithms for
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Abstract—This paper considers the problem of passive detection
with a multistatic radar system involving a noncooperative illumi-
nator of opportunity (IO) and multiple receive platforms. An un-
known source signal is transmitted by the IO, which illuminates a
target of interest. These receive platforms are geographically dis-
persed, and collect independent target echoes due to the illumi-
nation by the same IO. We consider a generalized canonical cor-
relation (GCC) detector for passive detection which requires the
knowledge of the noise power. We derive closed-form expressions
for the probabilities of false alarm and detection of this detector.
For the case where the noise power is unknown, we propose a gen-
eralized likelihood ratio test (GLRT) detector to deal with the pas-
sive detection problem.Moreover, a closed-form expression for the
probability of false alarm of this GLRT detector is given, which
shows that the proposed GLRT detector exhibits a constant false
alarm rate property with respect to the noise power. Numerical
simulations demonstrate that the proposed GLRT detector gen-
erally outperforms the generalized coherence detector, a previous
popular passive detector that neither requires the knowledge of the
noise power. In addition, the GLRT also outperforms the GCC de-
tector when the latter has an uncertainty in its knowledge of the
noise power.

Index Terms—Complex Wishart matrix, generalized coherence,
generalized likelihood ratio test, opportunistic illuminator, passive
detection, passive multistatic radar.

I. INTRODUCTION

A passive radar system can detect and track a target of in-
terest by exploiting readily available, non-cooperative il-

luminators of opportunity (IOs) [1]–[4], which is of great in-
terest in both civilian and military scenarios due to a number of
advantages. First, this system is substantially smaller and less
expensive compared to an active radar system because it does
not need a transmitter. Second, the bistatic or multistatic config-
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uration enables it to obtain spatial diversity of the targets’ radar
cross section (RCS), which leads to potential gains in detection
and classification capabilities [5]. Finally, many IOs are avail-
able for passive sensing, such as frequency modulation radio
[6]–[8], television [9], [10], cell phone base stations [11], digital
audio broadcasting (DAB) [12], digital video broadcasting-ter-
restrial (DVB-T) [13]–[15], and second generation digital video
broadcasting-terrestrial (DVB-T2) sources [16].
Due to the non-cooperative nature of the IO, the transmitted

signal is out of control and generally unknown to a passive
receiver. As a result, a conventional matched filter cannot be
implemented for detection. In many passive radar systems, an
additional separate channel, referred to as the reference channel
(RC), is usually equipped to collect the transmitted signal as
a reference for passive detection. This reference signal can
be used to eliminate unwanted echoes in surveillance chan-
nels (SCs), e.g., direct signals, clutter, and multi-path signals
[17]–[21]. For target detection, the reference signal can also
be heuristically employed to conduct delay-Doppler cross-cor-
relation operation with the surveillance signal [3], [17], [22].
Nevertheless, the performance is significantly degraded when
the reference signal is noisy. To deal with the lack of knowledge
of the signal transmitted from the IO, a different approach is
to employ multiple SCs in a passive radar system [23]. Since
these SCs collect target echoes due to the illumination of the
same IO, a correlation exists among the observations collected
by the SCs, which can be employed for passive detection. In
the following, we focus on target detection in a passive radar
system with multiple SCs.
A passive radar system may have a monostatic or multistatic

configuration. A monostatic passive radar system usually con-
sists of a single receive platform, while a multistatic one is com-
prised of multiple spatially separated receivers. In general, a
multistatic passive radar system has a better performance than
a monostatic counterpart due to the following reasons. First,
in the multistatic passive radar system, the receivers are geo-
graphically distributed such that independent observations of a
target from multiple different aspects are possible, which brings
about the so-called spatial diversity. This spatial diversity can
be used to reduce significantly the scintillations of the target’s
RCS. Second, multiple receivers are able to collect more data
samples over a given observation time. It is of significant im-
portance for a passive system exploiting low-power IOs, since
many IOs may have a low power in practice. For example, a
broadcast station usually uses an approximately isotropic an-
tenna to transmit a signal to cover a broad area, which leads to
no directional gain in its transmit antenna and low-power illu-
mination to the target [24].
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The target detection problem in a passive multistatic radar
system is equivalent to determining the presence or absence
of a common but unknown signal with independent noisy ob-
servations from multiple receivers. Studies of this and similar
detection problem can be traced to [25]–[28], where a magni-
tude-squared coherence (MSC) detector is developed for a two-
channel signal detection. The MSC is a normalized cross-spec-
tral density function and measures the coherence between two
stationary stochastic processes. Further studies on the properties
of the MSC can be found in [29]–[31]. To handle the detection
problem in the case of multiple channels, a generalized coher-
ence (GC) is proposed in [32], [33] as an extension of the MSC.
Its probability of false alarm has a simple form [34], and is inde-
pendent of the noise power. Hence, the GC detector bears a con-
stant false alarm rate (CFAR) property against the noise power.
The asymptotic performance analysis of the GC detector is pro-
vided in [35]. Recently, the GC detector is also derived from a
Bayesian perspective [36].
For a passive multistatic radar systemwith a single IO, the au-

thors in [1] propose the generalized canonical correlation (GCC)
detector for passive detection with known noise power. This de-
tector is exactly the largest eigenvalue of the Grammatrix or co-
variance matrix of the signals received by the multistatic radar
system. The GCC detector can also be applied in a single fre-
quency network with multiple transmitters emitting a common
unknown signal [37]. It is worth noticing that the same detector
as the GCC in [1] is independently derived in [2] for the de-
tection of low probability of intercept signals using distributed
sensors. However, the performance analysis of the GCC is not
provided in [1], [2], or [37].
The purpose of this paper is two-fold. One is to develop a

GLRT detector for the case of unknown noise power in pas-
sive multistatic radars, since in practice knowledge of the noise
power is often unavailable a priori. It is shown that the pro-
posed GLRT detector is associated with all eigenvalues of the
Gram matrix of the received signals. A closed-form expression
for the probability of false alarm of the proposed GLRT de-
tector is obtained, which indicates that the proposed GLRT de-
tector exhibits a CFAR property with respect to the noise power.
The second objective is to provide a performance analysis of
the detector of [1], [2], [37], which is considered as a bench-
mark for our proposed GLRT detector, since the former assumes
knowledge of the noise power. We derive closed-form expres-
sions of the probabilities of false alarm and detection for this de-
tector. Simulation results demonstrate that the proposed GLRT
detector outperforms the GC detector in cases where the number
of receive platforms is large (greater than 3). In addition, the pro-
posed GLRT detector with unknown noise power provides im-
proved detection performance, compared with the GCC detector
proposed with known noise power in [1], in the case where there
exists an uncertainty in the noise power.
The remainder of this paper is organized as follows.

Section II establishes the signal model. We investigate the
detection problem for the cases of unknown and known noise
powers in Sections III and IV, respectively. Simulation results
are illustrated in Section V and finally the paper is summarized
in Section VI.

Fig. 1. Configuration of a multistatic passive radar system.

Notation: Vectors (matrices) are denoted by boldface lower
(upper) case letters. Superscripts and denote trans-
pose and complex conjugate transpose, respectively. The no-
tation means “is distributed as,” and denotes a circu-
larly symmetric, complex Gaussian distribution. stands for
a -dimensional identity matrix. represents the modulus of a
complex number, is the Frobenius norm, and .

and denote the determinant and trace of a ma-
trix, respectively. and are the binomial coefficient and
the Pochhammer symbol, respectively. and denote
the Heaviside step function and Gamma function, respectively.

denote the
ordered eigenvalues of -dimensional matrix . The th
entry of matrix is represented by .

II. SIGNAL MODEL

Consider a passive multistatic radar system as shown in
Fig. 1, which involves one non-cooperative transmitter (i.e.,
IO) and geographically dispersed receivers or sensors are
deployed to collect the echoes of a target of interest due to the
illumination of the IO.
Denote by for the unknown signal

transmitted by the non-cooperative IO in the discrete time do-
main. Assume that in each receiver the direct signal from the IO
has been removed by using a directional antenna or some signal
processing techniques [17], [21]. The signal received in the th
receiver, denoted by , can be expressed as [23]

(1)

where , , is a scaling param-
eter that accounts for the target reflectivity as well as the propa-
gation effects in the th receive channel, is the propagation
delay of the target returns accounting for both the distance be-
tween the IO and the target and the distance between the target
and the th receive platform, is the normalized Doppler fre-
quency in the th receive channel, and is the Gaussian
noise with zero mean and variance , i.e., .
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Suppose that for and
are identically and independently distributed (i.i.d.).
It is worth noting that the time delays (or frequency shifts) in

the different channels may be distinct due to the geographical
dispersion of the receivers. In practice, a set of time delay and
frequency shift (e.g., ) in one of the received channels
is selected as a reference set. Notice that the differences in the
time delay (or frequency shift) between different received sig-
nals, instead of the original time delays (or frequency shifts) in
all received signals, are of interest. These differences ,
where and , can be obtained
by a cross-correlation operation between and [17].
Therefore, for a specific reference set , we can com-
pensate for the time delays and Doppler shifts of the received
signals in all other channels. A similar compensation operation
can be found in [1] and [37]. In addition, although the time delay
and the Doppler shift in the reference set are not known

a priori, their estimates can be obtained using a grid search as
in conventional active radars [38].
Let the null hypothesis be such that the received data

are free of the target echoes and the alternative hypothesis
be such that the received data contain the target echoes. After
compensating for a particular hypothesized set, the passive de-
tection problem can be formulated in terms of the following bi-
nary hypothesis test

(2)

where
• denotes the sample vector in the th receiver (
is the number of samples);

• is an sample vector, whose elements are unknown
due to the non-cooperative nature of the IO;

• is an unknown scaling parameter that accounts for the
channel propagation effect and the target reflectivity;

• is an noise vector in the th receiver; they are
modeled as independent circular complex Gaussian pro-
cesses with zero mean and covariance matrix , where
denotes the noise power, i.e., .

In practice, a long integration time is usually required in the pas-
sive detection due to the weakness of the target returns. Hence,
we impose an assumption that in the passive detection
problem (2).

III. GLRT DETECTION WITH UNKNOWN NOISE POWER

In this section, we consider the design of a GLRT detector for
the case of unknown noise power. According to the Neyman-
Pearson criterion, the optimum solution to the above hypothesis
testing problem (2) is obtained by comparing the ratio of the
likelihood of the received data under hypothesis over that
under hypothesis with an appropriate detection threshold.
However, the optimum detector cannot be used since these like-
lihood functions depend on the unknown parameters , , and
.

A. GLRT Detector With Unknown

To obtain a practical detector, we resort to the GLRT, which
is equivalent to replacing all the unknown parameters with their

maximum likelihood estimates (MLEs) [39]. In other words, the
GLRT detector in this case is to be obtained from

(3)

where is the detection threshold,

(4)

and are the probability density functions
(PDFs) of the received signals under and , respectively,
i.e.,

(5)
and

(6)

It can be shown that the MLE of under is [1, eq. (5)]

(7)

Inserting this MLE of into (5) leads to

(8)

The maximization of (8) with respect to is equivalent to max-
imizing the Rayleigh quotient . This maximum value is
exactly the largest eigenvalue of , i.e.,

(9)

where

(10)

It is worth noting that the employment of the -dimensional
matrix instead of the -dimensional matrix in (9) is
more computationally effective in calculating the maximum
eigenvalue. In addition, it should be pointed out that there exists
an ambiguity in the estimation of the norm of the vector . It
means that cannot be uniquely determined. Nevertheless,
this ambiguity does not affect the GLRT.
Substituting (9) into (8) produces

(11)

It is easy to show that the MLE of the noise power under is

(12)
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Substituting (12) into (11) yields

(13)
According to (6), we obtain theMLE of the noise power under
to be

(14)

Inserting (14) into (6), we have

(15)

Applying (13) and (15) to (3) and making an equivalent trans-
formation, we derive the GLRT detector as

(16)

where is a suitable modified version of the threshold in (3).
Note that in the equivalent transformation in (16) we have used
the result

(17)

In the particular case where , the eigenvalues of can
be explicitly expressed as elementary functions of the received
signals. More precisely, in (10) for can be written as

(18)

It is easy to show that the largest and smallest eigenvalues are,

(19)

and

(20)

respectively. As a result, the test statistic in (16) for
can be explicitly written as the following equivalent form:

(21)

where .

For the purpose of having a deeper insight into the structure
of the proposed GLRT detector, we equivalently write (16) as

(22)

where is a suitable modified version of the threshold in (16).
Interestingly, it can be seen from (12) and (17) that the MLE of
the noise power under is

(23)

which is exactly the denominator of the test statistic in (22).
This is to say, the test statistic in (22) can be interpreted as the
maximum eigenvalue normalized by the estimated noise power.

B. Performance Analysis

In order to complete the construction of the test in (16), we
should provide an approach to set the detection threshold. To
this end, a closed-form expression for the probability of false
alarm of the GLRT detector in (16) is derived, which can be em-
ployed to compute the detection threshold for any given proba-
bility of false alarm. According to [40], the probability of false
alarm of the GLRT detector in (16) can be expressed as

(24)

where ,

(25)

(26)

and

(27)

Note that the coefficients in (24) can be obtained by the
following equality [41]:

(28)
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where the th entry of is given by

(29)

with the lower incomplete Gamma function defined as

(30)

It is easy to determine in (28) by using most symbolic soft-
wares such as Maple and Matlab (see [42, Algorithm 1]).
In the particular case where , the probability of false

alarm of the GLRT detector in (21) can be explicitly written in
terms of elementary functions, i.e.,

(31)

where , and

(32)

It can be seen from (24) that the probability of false alarm of
the GLRT detection in (16) is independent of the noise power. It
implies that the GLRT detection in (16) possesses the desirable
CFAR property against the noise power.
As to the detection performance, unfortunately, a closed-form

expression for the detection probability of the GLRT detector in
(16) is intractable.

IV. DETECTION WITH KNOWN NOISE POWER

Now, we turn to the case of known noise power. The GCC
has been proposed in [1], [2] to handle the passive detection
problem in this case, which can be expressed as

(33)

where is the detection threshold. Using (19), we can equiva-
lently write the GCC detector in (33) for as

(34)
where .
Since the noise power is assumed known, we can equiva-

lently write (33) as

(35)

where . Comparison between the test statistics in (22)
and (35) reveals that both test statistics are the normalized

maximum eigenvalue of , and the normalization factors used
in (22) and (35) are the estimated and exact noise powers,
respectively.
It should be pointed out that the performance analysis of the

GCC detector is not provided in [1], [2]. In the following, we
fill this gap by offering closed-form expressions for the proba-
bilities of false alarm and detection.
Recall that where . Due

to the Gaussian properties of for , we can
obtain that has a complex Wishart distribution under ,
i.e., . Note that the cumulative distribution
function (CDF) of the largest eigenvalue of a central Wishart
matrix has been derived in [43]. Based on this result, we can
obtain the probability of false alarm of the GCC detector in (33)
to be

(36)

where the th element of the matrix is given by

(37)
In addition, the detection probability of the GLRT detector in
(33) can be written as [44]

(38)

where is the non-zero eigenvalue of the matrix with
,

(39)

and the entries of the matrix are given in Appendix A.

V. SIMULATIONS RESULTS

In this section, numerical simulations are conducted to
validate the above theoretical analysis and illustrate the perfor-
mance of the proposed detector. The signal transmitted from
the IO is sampled from . The signal-to-noise ratio
(SNR) is defined by

(40)

For comparison purposes, the GC detector and the ED are
introduced. The GC detector can be represented as [34]

(41)

where is the detection threshold. The ED detector can be
expressed as

(42)
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Fig. 2. Probability of false alarm of the GLRT detector in (16) versus the detec-
tion threshold for . The dashed and solid lines denote the results obtained
with (31) and (24) for and , respectively. The symbols “ ” and
“ ” denote the results obtained using MC simulations for and ,
respectively.

where is the detection threshold. The probabilities of false
alarm and detection of the GC detector can be seen in [34], [35].
For convenience of performance evaluation, the probabilities of
false alarm and detection of the ED are derived in Appendix B.
Obviously, the expression in (B.4) for the false alarm rate is
related to the noise power, which implies that the ED does not
possess a CFAR property against the noise power.

A. False Alarm Rates

The probability of false alarm of the proposed GLRT detector
in (16) as a function of the detection threshold is presented
in Fig. 2, where and . The dashed and solid
lines denote the results obtained with (31) and (24) derived in
Section III-B for and , respectively. The sym-
bols “ ” and “ ” denote the results obtained using Monte Carlo
(MC) simulations for and , respectively. The
number of independent trials used to calculate the probability
of false alarm in each case is . It can be seen that there is
exact agreement between the theoretical results and the simula-
tion results.
In Fig. 3, we plot the probability of false alarm of the GCC

in (33) as a function of the detection threshold. The results ob-
tained by the theoretical expression in (36) and the MC tech-
niques are all provided. The parameters used in Fig. 3 are the
same as those in Fig. 2. It can be observed that the theoretical
results match the MC results pretty well.

B. Detection Performance Without Uncertainty in Noise
Power

The detection probability curves of the GCC detector in (33)
and the proposed GLRT detector in (16) as a function of the
number of samples are plotted in Fig. 4, where

and . Both the theoretical expression in (38)
and the MC simulation are used to obtain the detection proba-
bility of the GCC detector in (33). The theoretical result and the
MC result are denoted by the solid line and the symbol “ ”, re-
spectively. It is shown that they are consistent with each other.

Fig. 3. Probability of false alarm of the GCC detector in (33) versus the detec-
tion threshold for . The dashed and solid lines denote the results obtained
with (36) for and , respectively. The symbols “ ” and “ ” denote
the results obtained using MC simulations for and , respectively.

Fig. 4. Performance comparisons with for different .
(a) ; (b) .

For comparison purposes, the detection probabilities of both
the GC detector and the ED are also provided. It should be
pointed out that the detection probability curves of the proposed
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GLRT detector in (16) and the GC detector in (41) are plotted
using MC simulations, and the curve of the ED is obtained with
the theoretical expression in (B.5). The number of independent
trials used to calculate the detection probability in each case is
.
From Fig. 4(a) with , we can observe that the GCC

detector in (33) developed with known noise power performs
the best, the ED has slightly inferior performance, the GC de-
tector provides a detection performance obviously worse than
the ED, and the GLRT detector in (16) proposed with unknown
noise power performs the worst. Obviously, the GCC detector
in (33) outperforms the proposed GLRT detector in (16) and the
GC detector, due to the exploitation of a priori knowledge about
the noise power. In addition, the GCC detector in (33) provides
a detection performance better than the ED, since it exploits the
coherence between the received signals.
In Fig. 4(b) with , it is shown that the GLRT detector

in (16) proposed with unknown noise power has better perfor-
mance than the GC detector, and even outperforms the ED in the
large sample region (e.g., in this example). However,
the performance of the GLRT detector in (16) proposed for un-
known noise power is worse than that of the GCC detector in
(33) developed for known noise power.
Fig. 4 reveals that the increase in the sample number leads to a

gain in the detection performance of all the detectors considered
here. In addition, it is found that the GC detector outperforms
the proposed GLRT detector in (16) when the number of sensors
is small (e.g., in Fig. 4(a)). When the number of sensors
increases up to 8, as shown in Fig. 4(b), the proposed GLRT
detector in (16) significantly outperforms the GC detector.
In order to clarify the effect of on the performance of all

the detectors considered, we plot the detection probability as a
function of in Fig. 5, where , and

. It is demonstrated that performance improves with
increased number of sensors. More importantly, the proposed
GLRT detector in (16) performs better than the GC detector,
when multiple receivers (more than 3) are used. Additionally,
the proposed GLRT detector in (16) also outperforms the ED,
when the number of the receivers is large (e.g., in this
example).

C. Detection Performance With Uncertainty in Noise Power

Note that the noise power is required to be exactly known to
obtain the detection thresholds of the GCC detector in (33) and
the ED in (42). In practice, the noise power is usually unknown
and need to be estimated. Nevertheless, the estimation of the
noise power leads to an error. Denote the estimated noise power
by , where describes how accurate the estimate is.
Using the estimated noise power to set the detection thresholds,
(33) and (42) become, respectively,

(43)

and

(44)

Note that and can be obtained by replacing
with in (36) and (B.4), respectively. For ease of notation, the

Fig. 5. Performance comparisons with for different .

Fig. 6. Performance comparisons with uncertainty in the noise power. (a)
, , ; (b) , , .

detectors in (43) and (44) are referred to as GCC-U and ED-U,
respectively.
In the following, we examine the effect of the uncertainty in

the noise power on the detection performance of the GCC-U
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detector in (43) and the ED-U in (44). The noise uncertainty
factor is defined as .
In Fig. 6(a), the detection performance of the GCC-U detector

in (43) and the ED-U in (44) versus SNR for the case of
is presented. Here, we select , , and
. It can be seen that the GCC detector and the ED, both

of which are derived with known noise power, do not always
outperform the proposed GLRT detector in (16), when there is
3 dB uncertainty in the estimated noise power.
Fig. 6(b) plots the detection probability as a function of SNR

for , and . Other parameters are se-
lected the same as those in Fig. 6(a). We observe that the GLRT
detector in (16) proposed with unknown noise power for large
and has an obvious gain in the detection performance with

respect to both the GCC detector and the ED, when there is only
1 dB uncertainty in the estimated noise power. It implies that the
performance of the GCC detector in (33) and the ED for the case
of large and is very sensitive to the uncertainty in the noise
power estimate.

VI. CONCLUSION

We examined the problem of passive detection with a multi-
static radar system consisting of a non-cooperative IO and mul-
tiple geographically distributed receive platforms. Due to the
non-cooperative nature of the IO, the signal transmitted from
the IO is unknown. A GLRT detector is proposed for the case
in which both the transmitted signal and the noise power are
unknown. It has the form of the ratio of the maximum eigen-
value to the sum of all eigenvalues of the Gram matrix or co-
variance matrix of the received signals. The proposed GLRT
detector can also be transformed as an equivalent form of the
maximum eigenvalue of the Gram matrix normalized by the
estimated noise power. The probability of false alarm of the
proposed GLRT detector is derived, implying that the proposed
GLRT detector possesses the desirable CFAR property against
the noise power. Notice that this expression can be used to set
the detection threshold for a preassigned false alarm rate. In ad-
dition, we employ the GCC detector developed in [1], [2] to
deal with the passive detection problem in the case of known
noise power. The performance of the GCC detector with known
poise power is evaluated in terms of the probabilities of false
alarm and detection. All analytical results derived in this study
are verified using MC simulations. Simulation results demon-
strate that the performance of the proposed GLRT detector in-
creases as the number of receive platforms or/and data samples
increases. In particular, when the number of receive platforms
is large, the proposed GLRT detector outperforms the ED and
the GC detector. Note that, the GCC detector developed with
known noise power in [1], [2] performs the best due to its usage
of a priori knowledge on the noise power and the coherence be-
tween the received signals. However, it performed worse than
the proposed GLRT detector with unknown noise power, when
uncertainty in the noise power exists.

APPENDIX A
ELEMENTS OF

The th element of the matrix for is given
by

(A.1)

and the th element of is expressed as

(A.2)
with denoting the hypergeometric function of Bessel
type, i.e.,

(A.3)

Using the change of variable , the integral in (A.2)
can be written as

(A.4)

where

(A.5)
Furthermore, the integral in (A.5) can be cast into

(A.6)

where , , , ,
is the confluent hypergeometric function given as

(A.7)

and is the Nuttall -function defined as [45]

(A.8)

with denoting the th order modified Bessel function of the
first kind. According to [46, eq. (8)], the Nuttall -function in
(A.6) can be expressed as

(A.9)

where

(A.10)

(A.11)
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and is the th order generalized Marcum -function
defined as [47]

(A.12)

APPENDIX B
PERFORMANCE ANALYSIS OF ED

According to (2), we have

under ,
under ,

(B.1)

where . Under , in (42) is the sum of
the square of i.i.d. complex Gaussian vectors with zero mean
and covariance matrix . Under , in (42) is the sum
of the square of complex Gaussian vectors where the th
Gaussian vector has mean and covariance matrix . As
a consequence,

under ,

under ,
(B.2)

where and denote the central and non-central
Chi-squared distributions, respectively, and the non-cen-
tral parameter is given by

(B.3)

Therefore, the probability of false alarm of the ED in (42) can
be expressed as

(B.4)

where the lower incomplete Gamma function is defined
in (30). Furthermore, the detection probability of the ED in (44)
can be calculated as

(B.5)

where is defined in (A.12).
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