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Abstract—It is known that the probabilities of false alarm
(PFAs) of several celebrated adaptive detectors including the
adaptive matched filter (AMF) and the adaptive coherence esti-
mator (ACE) can be expressed as integral forms. Nevertheless, it
is inconvenient to set the detection thresholds by using these inte-
gral expressions. Here, we propose two computationally efficient
schemes to calculate the thresholds of the AMF and ACE. In the
first method, approximate expressions, in forms of elementary
functions, for the PFAs of the AMF and ACE are derived. The
thresholds of the AMF and ACE can be numerically computed
by using these elementary expressions instead of the integrals,
for reducing computational complexity. In the second approach,
further approximations are employed to lead to highly simple ex-
pressions for the thresholds of the AMF and ACE, which enable us
to directly compute the thresholds for a given PFA. Compared to
the first one, the second scheme is more computationally efficient,
but at the cost of a slight loss in accuracy. Numerical results verify
the effectiveness of the two proposed schemes.

Index Terms—Adaptive coherence estimator, adaptive detection,
adaptive matched filter, generalized likelihood ratio test, Laplace
approximation, Rao test.

I. INTRODUCTION

D ETECTING a signal of interest (SOI) in Gaussian noise
with an unknown covariancematrix is a common problem

in space-time adaptive processing (STAP) [1]–[3]. Typically,
the presence of SOI is sought in a (range) cell under test (CUT),
based on a single observation or multiple observations which
are referred to as test data (primary data). To this end, a set
of training data (secondary data) samples, which contain noise
only, are employed to estimate the unknown noise covariance
matrix. In radar, these training data samples are usually col-
lected from range cells adjacent to the CUT.
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In an ideal situation, the noise in the training data is assumed
to share the same covariance matrix as that in the test data. This
situation is often referred to as a homogeneous environment.
In this case, many classic detectors have been proposed. More
specifically, a generalized likelihood ratio test (GLRT) was first
proposed byKelly in [4]. Then, Robey et al., derived an adaptive
matched filter (AMF) by using a two-step procedure [5]. Inter-
estingly, it is proved in [6] that the Wald test coincides with the
AMF. In addition, De Maio develops a Rao test in [7]. Each test
mentioned above has a constant false alarm rate property with
respect to the unknown noise covariance. In particular, simple
expressions for the probabilities of false alarm (PFAs) of the
GLRT and Rao test have been obtained in [4] and [6], respec-
tively. As a result, the detection threshold of the GLRT or Rao
test can be expressed as an elementary function with respect to
the PFA, which enables us to directly compute the threshold for
any given PFA. However, the PFA of the AMF is obtained as an
integral form [5], [8], which cannot be used to directly calculate
the detection threshold. Hence, numerical techniques, although
time-consuming, have to be employed to find the threshold of
the AMF for a given PFA.
In practice, partially homogeneous environments may be

encountered, where the noise covariance matrix has the same
structure in the test and training data samples but may differ
by a scaling factor [9], [10]. To address the detection problem
in partially homogeneous environments, an adaptive coherence
estimator (ACE) was proposed in [9], [11]. It is proved in [12],
[13] that in the partially homogeneous case, both the Rao and
Wald tests exhibit the same form as the ACE test. In [14],
the PFA of the ACE test is derived in terms of an integral.
Nevertheless, we cannot directly calculate the threshold for a
given PFA by using the integral whose invertibility with respect
to the threshold does not exist analytically. Thus, numerical
techniques have to be used to obtain the threshold in the ACE,
as in the AMF.
In this study, our main contribution is to propose two com-

putationally efficient approaches for the threshold setting of the
AMF and ACE. In the first method, the PFAs of the AMF and
ACE are approximated by elementary functions which can be
used to numerically calculate the thresholds with less compu-
tational complexity. In the second method, an approximate but
impressively simple expression for the thresholds of the AMF
and ACE are derived, which can be used to directly design
the thresholds of the AMF and ACE, as in the GLRT and Rao
test. Simulation results show that the thresholds obtained with
these approximate expressions match the thresholds obtained
via Monte Carlo (MC) techniques. The second scheme has a
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less computational burden than the first one, but at the expense
of an insignificant loss in accuracy.

II. PROBLEM FORMULATION

Consider the data model widely used in STAP [1]:

(1)

where is a known steering vector of dimension ; is
a deterministic but unknown complex scalar accounting for the
target reflectivity and the channel propagation effects; the noise
is assumed to have a circularly symmetric, complex Gaussian

distribution, i.e., , where is a scaling of the
noise in the test data, and is a positive definite covariance
matrix of dimension .
In practice, the noise covariance matrix structure is usually

unknown. To estimate , one often imposes a standard assump-
tion that there exists a set of training data (secondary data) free
of target signal components, i.e.,

and . Note that the scaling factor ac-
counts for the non-homogeneity between the test and training
data. In particular, and correspond to homo-
geneous and partially homogeneous environments, respectively
[15].

A. AMF

In the homogeneous case where , the AMF is proposed
as [5]

(2)

where and are the target-present and target-absent hy-
potheses, respectively; denotes complex conjugate trans-
pose; is the modulus of a complex number; is the

corresponding detection threshold, and .
The PFA of the AMF is given in an integral form [5], [8], i.e.,

(3)

where

(4)

and

(5)

Obviously, it is not easy to compute the invertibility of the inte-
gral expression (3) with respect to .

B. ACE

For the partially homogeneous case where , the ACE
is proposed as [11], [9]

(6)

where is the detection threshold. As derived in [14], the
PFA of the ACE is

(7)

where is defined in (4), and

(8)

Obviously, it is inconvenient to use the integral expression (7)
to set the detection threshold.
The statements above indicate that the detection thresholds

of the AMF and ACE cannot be computed in a simple way sim-
ilar to that in the GLRT [4] and Rao test [7]. To circumvent this
drawback, we derive approximate but elementary expressions
for the PFAs of the AMF and ACE, by using the Laplace ap-
proximation method in [16].

III. THRESHOLD COMPUTATION

A. Threshold Setting for AMF

The PFA of the AMF in (3) can be rewritten as

(9)

where the second equation is obtained by [17, p. 317,
eq. (3.197.3)], and is the Gaussian hyperge-
ometric function defined as [17]

(10)

with being the Pochhammer
symbol.
According to [16, eq. 24], the Gaussian hypergeometric func-

tion can be approximated by

(11)

where is an elementary function defined in (A.1)
of Appendix A. As shown in Appendix A, for , we
obtain

(12)

Hence, the approximate threshold of the AMF is

(13)

B. Threshold Setting for ACE

The PFA of the ACE in (7) can be rewritten as
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(14)

Due to [16, eq. 24], we have

(15)

where is defined in (A.1). For , we fur-
ther have

(16)

where the first equation is derived with (A.8), and the second
equation is obtained with the fact that when ,

(17)

It follows from (16) that the approximate threshold of the ACE
is

(18)

It should be emphasized that the expressions in (13) and (18)
for the detection thresholds are very simple functions with re-
spect to the PFA. Thus, the detection threshold of the AMF or
ACE can be directly computed for a given PFA. The approx-
imation accuracy of (13) and (18) will be demonstrated in the
next section.

IV. SIMULATION RESULTS

In this section, numerical simulations are conducted to check
the validity of the above theoretical results. We consider a STAP
system with 4 antennas and 10 coherent pulses, i.e., .
The th element of the noise covariance matrix is chosen to
be , where represents the noise power
and is set to be 1.
In Fig. 1, the PFA of the AMF versus the detection threshold

is presented for different values of . The line, the symbols
“ ”, and “ ” denote the results obtained with (3), (11), and (12),
respectively. It can be seen that the approximate results obtained
with (11) match the exact ones obtained with (3) pretty well.
It means that without sacrificing accuracy, the computational
complexity can be significantly reduced by using the elementary
expression in (11) instead of the integral in (3). In addition, there
is a little loss in the accuracy of (12) compared to (11), mainly
due to its two-step approximation.
The detection threshold of the AMF as a function of the

training data size is reported in Fig. 2. The line and the
symbol “ ” denote the results obtained by the MC simulation
and (13), respectively. The number of independent trials used

Fig. 1. Probability of false alarm of AMF with different .

Fig. 2. Detection threshold of AMF versus .

in each case is . We can observe that the thresholds
calculated with the simple expression (13) are close to those
obtained with MC simulations. However, the error is relatively
large in some cases (e.g., in this example). If high
precision is required, caution must be taken when using (13) to
compute the threshold of the AMF.
For obtaining highly accurate thresholds, we can use (11),

instead of the integral expression (3), to numerically search for
the threshold. Apparently, the computational burden is relieved
due to avoiding the calculation of the integral. Note that the
choice of an initialization value plays an important role in the
numerical search. The approximate result obtained with (13),
even though inexact, can be used as a good initialization in the
numerical search. In Fig. 2, the symbol “ ” denotes the result
obtained by using (11) to numerically search for the threshold,
where the approximate result obtained with (13) serves as the
initialization. It can be seen that the thresholds by this numerical
method are in very good agreement with the MC results.
In practical applications, we suggest (13) to calculate the

threshold of the AMF due to its simplicity, if high accuracy
in the threshold is not required. When a precise threshold is
needed, (11) is preferred since it avoids the computation of
the integral or hypergeometric function, without sacrificing the
accuracy.
Fig. 3 depicts the PFA of the ACE as a function of detection

threshold for different values of . The line, the symbols “ ”,
and “ ” denote the results obtained with (7), (15), and (16),
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Fig. 3. Probability of false alarm of ACE with different .

Fig. 4. Detection threshold of ACE versus .

respectively. It is shown that the approximation accuracy of (15)
and (16) is acceptable. Nevertheless, the error in (16) compared
to (15) is large, due to the three-step approximation in deriving
(16).
Fig. 4 compares the thresholds obtained by (15), (18), and the

MC simulations. When employing (15) to numerically compute
the threshold, we use the results obtained with (18) as initializa-
tion. It is shown that the thresholds obtained using (15) and (18)
are close to the MC simulations. Additionally, the accuracy of
(15) compared to (18) is higher, but at the expense of more com-
putational burden. Nevertheless, the complexity in numerically
searching for the threshold is significantly reduced by using (15)
instead of (7).
Therefore, (15) is recommended if a high accuracy in the

threshold of the ACE is required in practice. Otherwise, (18)
is suggested due to its simplicity.

V. CONCLUSION

In the existing literature, the PFA of the AMF (or ACE) is
expressed in terms of an integral or Gaussian hypergeometric
function. Obviously, it is inconvenient to set the detection
threshold by using the integral or Gaussian hypergeometric
expression. To overcome it, two approximate schemes are

proposed. In the first scheme, highly accurate but elementary
expressions for the PFAs of the AMF and ACE are given. The
computational complexity in numerically searching for the
threshold is significantly reduced without sacrificing accuracy
by using these elementary expressions compared to the integrals
or Gaussian hypergeometric expressions. In the second scheme,
the thresholds of the AMF and ACE are derived as approximate
but very simple functions with respect to the PFA. These
provide a simple and direct way to compute the thresholds for
a preassigned PFA. Simulation results demonstrate that the
approximation accuracy in the first scheme is better than that
in the second scheme, but at a relatively higher computational
cost. If high precision in the threshold is not needed, the second
scheme is suggested. Otherwise, the first one is recommended.

APPENDIX A

According to [16, eq. 24], given positive numbers , and
and any real number , we can approximate by

which is defined as

(A.1)

where

(A.2)

and

(A.3)

with

(A.4)

and

(A.5)

When , we have

and (A.6)

Then,

and (A.7)

Inserting (A.7) into (A.1) results in

(A.8)
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