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Based on persymmetric structures in received signals, we
consider the adaptive detection problem in colored Gaussian noise
with unknown persymmetric covariance matrix in a multiple-input,
multiple-output (MIMO) radar with spatially dispersed antennas. To
this end, a set of secondary data for each transmit-receive pair is
assumed to be available. A MIMO version of the persymmetric
generalized likelihood ratio test (MIMO-PGLRT) detector is
proposed. A closed-form expression for the probability of false alarm
of this detector is derived. In addition, a MIMO version of the
persymmetric sample matrix inversion (MIMO-PSMI) detector is
also developed. Compared to the MIMO-PGLRT detector,
MIMO-PSMI has a simpler form and is computationally more
efficient. Numerical examples are provided to demonstrate that the
proposed two detection algorithms can significantly alleviate the
requirement of the amount of secondary data and allow for a
noticeable improvement in detection performance.
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I. INTRODUCTION

The paradigm of multiple-input, multiple-output
(MIMO), which originated in communications, is more
and more widely applied to radars [1–5]. In general,
MIMO radar falls into two classes according to the
configuration of its antennas, one with colocated antennas
[6–8] and the other with widely distributed antennas
[9–14]. We restrict ourselves to the second MIMO radar
configuration, which for brevity is referred to as MIMO
radar in the following.

In [15], several temporal coherent adaptive detectors
are proposed to deal with the problem of target detection
in MIMO radar. A set of training data is employed for
each transmit-receive pair to estimate the unknown clutter
covariance matrix. The performance analysis in [15] is
conducted by resorting to Monte Carlo simulations
because of the lack of theoretical expressions for the
probabilities of false alarm and detection. In [16], a
MIMO version of the generalized likelihood ratio test
(MIMO-GLRT) detector, which is an extension of the
detector in [15, Eq. (19)], is developed, and its false alarm
rate is obtained in closed form. The problem of moving
target detection with distributed MIMO radar is also
considered in [17] where a MIMO version of the adaptive
matched filter (MIMO-AMF) detector is proposed. It is
shown that the number of training data has a great impact
on the detection performance of the MIMO radar [15, 17].
Particularly, the detection performance is significantly
degraded when the number of training data is small. In
many practical scenarios, it is difficult to collect a large
number of independent identically distributed target-free
training data due to many factors such as variations in
terrain [18] and interfering targets [19, 20]. Therefore, it is
interesting to investigate how to achieve satisfactory
detection performance when the amount of training data is
limited.

Some prior knowledge about the structure of clutter
covariance matrix (e.g., persymmetric structure) may be
exploited to alleviate the requirement of the amount of
training data [21–25]. In practical applications, the clutter
covariance matrix has a Hermitian persymmetric (also
called centrohermitian) form, when a detection system is
equipped with a symmetrically spaced linear array
[26, chap. 7] or symmetrically spaced pulse trains [27].
Hermitian persymmetry has a property of doubly
symmetry, i.e., Hermitian about its principal diagonal and
persymmetric about its cross diagonal. Unless otherwise
stated, “persymmetric” always denotes “Hermitian
persymmetric” for brevity in the following.

The investigation on the persymmetric structure of
clutter covariance matrix can be traced to Nitzberg’s paper
[28], where the maximum likelihood (ML) estimate of the
persymmetric covariance matrix was obtained. Using this
ML estimate, Cai and Wang developed two persymmetric
detection algorithms, i.e., the persymmetric multiband
GLRT algorithm [27] and the persymmetric sample matrix
inversion (SMI) algorithm [29]. In recent years, several
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other detection algorithms have been proposed with
a-priori information on the persymmetric structure of the
clutter covariance (see [30–36]). All these persymmetric
detection algorithms mentioned above validate the fact
that an obvious gain in detection performance can be
obtained by exploiting persymmetric structures in the
clutter covariance, especially when the amount of training
data available is limited.

In this study, we examine the adaptive detection
problem in the presence of colored Gaussian noise with
unknown covariance matrix in a distributed MIMO radar
by using persymmetric structures in the received data. The
unknown noise covariance matrix for each
transmit-receive pair is estimated from a set of secondary
data. A MIMO version of the persymmetric GLRT
detector, referred to as the MIMO-PGLRT detector, is
proposed, whose false alarm rate is derived in closed form.
Moreover, we develop a MIMO version of the
persymmetric SMI detector, referred to as the
MIMO-PSMI detector, which is simpler than the former
detector, and thus has lower computational complexity.
Interestingly, both persymmetric detection algorithms bear
a constant false alarm rate (CFAR) property with respect
to the noise covariance matrix. Simulation results reveal
that compared to the conventional MIMO-GLRT and
MIMO-AMF detectors that do not use the persymmetric
structure, both of the proposed detectors obtain significant
gains in detection performance, especially when the
amount of secondary data is limited. Additionally, the
MIMO-PGLRT detector outperforms the MIMO-PSMI
detector, even though a higher computational burden is
incurred. However, the performance difference among
these four MIMO detectors is negligible when the amount
of training data is adequate.

1) Notation: Vectors (matrices) are denoted by
boldface lower (upper) case letters. Superscripts (·)T, (·)∗,
and (·)† denote transpose, complex conjugate, and
complex conjugate transpose, respectively. The notation ∼
means “is distributed as,” and CN denotes a circularly
symmetric, complex Gaussian distribution. Ip stands
for a p-dimensional identity matrix. | · | represents the
modulus of a complex number and j = √−1. The
determinant and trace of a matrix are denoted by det(·)
and tr(·), respectively. �e(·) and �m(·) represent the
real and imaginary parts of a complex quantity,
respectively.

II. SIGNAL MODEL

In this section, a signal model for MIMO radar with
widely distributed antennas is presented. Suppose that a
MIMO radar consists of M transmit antennas and N
receive antennas that are geographically dispersed. The
total number of transmit-receive paths available is
V = MN. Assume that the tth transmitter sends Qt pulses,
and a target to be detected does not leave the cell under
test during these pulses. We further impose the standard
assumption that all transmit waveforms are orthogonal to

each other, and each receiver uses a bank of M matched
filters corresponding to the M orthogonal waveforms.

Sampled at the pulse rate via slow-time sampling, the
signal received by the rth receive antenna due to the
transmission from the tth transmit antenna, which is
usually called test data (primary data), can be expressed as
a Qt × 1 vector, i.e.,

xr,t = ar,t sr,t + nr,t , (1)

where sr,t ∈ C
Qt×1 denotes a known Qt × 1 steering

vector for the target relative to the tth transmitter and rth
receiver pair [12, 17]; ar,t ∈ C is a deterministic but
unknown complex scalar accounting for the target
reflectivity and the channel propagation effects in the tth
transmitter and rth receiver pair; the noise
nr,t ∼ CN (0, Rr,t ), where Rr,t is a positive definite
covariance matrix of dimension Qt × Qt.

These primary data vector {xr,t} can be assumed to be
independent of each other due to the widely distributed
antennas in the MIMO radar. Notice that in the above
model (1), these steering vectors sr,ts are not necessarily
identical even though they describe the same target, since
the relative position and velocity of the target with respect
to different widely dispersed radars may be distinct. In
addition, the covariance matrices Rr,ts are also not
constrained to be the same, because the statistical
properties of the noise may be unique for each
transmit-receive perspective. We further assume that
Qt > 1, t = 1, 2, . . . , M, such that coherent processing for
each test data is possible. Note that Qt, t = 1, 2, . . . , M are
not constrained to be identical, which means that the
numbers of the pulses transmitted by different transmit
antennas may be distinct. Another standard assumption we
impose is that for each test data vector xr,t, there exists a
set of training data (secondary data) free of target signal
components, i.e., {yr,t (k), k = 1, 2, . . . , Kr,t|yr,t (k)
∼ CN (0, Rr,t )}. Here, we require Kr,t ≥ Qt/2 to guarantee
a nonsingular covariance matrix estimate with unit
probability [27]. Note that the numbers of secondary data
vectors Kr,t are not constrained to be the same. Suppose
further that these secondary data vectors are independent
of each other and of the primary data vectors.

The detection problem considered herein involve
structured Rr,t and sr,t. Specifically, it is supposed that each
of the Rr,ts has the persymmetric property, i.e.,
Rr,t = JR∗

r,tJ where J is a permutation matrix with unit
antidiagonal elements and zeros elsewhere, namely,⎡⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
...

0 1 · · · 0 0
1 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎦ . (2)

In addition, the steering vector is also assumed to be a
persymmetric one satisfying sr,t = Js∗

r,t . The above
assumption on the structures of Rr,t and sr,t is valid when
each antenna in the MIMO radar uses a pulse train
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symmetrically spaced with respect to its midtime delay for
temporal domain processing. In the common case of pulse
trains with uniform spacing, the steering vector sr,t has the
form:

sr,t =
[
e−j

(Qt −1)2πf̄r,t
2 , . . . , e−j 2πf̄r,t , 1,

ej 2πf̄r,t , . . . , ej
(Qt −1)2πf̄r,t

2

]T

,
(3)

where f̄r,t defined similarly as [12, Eq. (2)] is the
normalized target Doppler shift corresponding to the tth
transmitter and rth receiver pair.

Let the null hypothesis (H0) be such that the primary
data is free of the target signal and the alternative
hypothesis (H1) be such that the primary data contains the
target signal. Hence, the detection problem is to decide
between the null hypothesis and the alternative one:

H0 :

{
xr,t ∼ CN (0, Rr,t )

yr,t (k) ∼ CN (0, Rr,t )
(4a)

and

H1 :

{
xr,t ∼ CN (ar,t sr,t , Rr,t )

yr,t (k) ∼ CN (0, Rr,t )
(4b)

for t = 1, 2, . . . , M, r = 1, 2, . . . , N, and k = 1, 2, . . . ,
Kr,t. In [15–17], MIMO detection algorithms were
developed without using any prior knowledge about the
special structure of the noise covariance matrix. In the
sequel, two adaptive detectors are proposed by exploiting
the persymmetric structures of Rr,t and sr,t. It will be seen
that the exploitation of persymmetry can bring in a
noticeable detection gain.

III. MIMO-PGLRT DETECTOR

A. MIMO-PGLRT Detector

Because of the unknown parameters ar,t and Rr,t, the
Neyman-Pearson criterion cannot be employed.
According to the GLRT, a practical detector can be
obtained by replacing all the unknown parameters with
their ML estimates, i.e., the detector is obtained by

max{ ar,t , Rr,t | t=1,2,...,M,r=1,2,...,N} f (X|H1)

max{Rr,t | t=1,2,...,M,r=1,2,...,N} f (X|H0)

H1

≷
H0

l0, (5)

where l0 is the detection threshold, f (·) denotes
probability density function (PDF), and X = {X1,1, . . . ,
XN,M} with Xr,t = [xr,t, yr,t (1), yr,t (2), . . . , yr,t (Kr,t)]. Due
to the independent assumption on these test data vectors,
the PDF of X under Hq (q = 0, 1) can be represented as

f (X|Hq) =
N∏

r=1

M∏
t=1

fXr,t
(Xr,t |Hq)︸ ︷︷ ︸
�=fr,t,q

, q = 0,1, (6)

where

fr,t,q =
{

1

πQt det(Rr,t )
exp

[−tr(R−1
r,t Tr,t,q)

]}Kr,t+1

(7)

with

Tr,t,q = 1

Kr,t + 1

⎡⎣ Kr,t∑
k=1

yr,t (k)y†
r,t (k)

+ (xr,t − qar,t sr,t )(xr,t − qar,t sr,t )
†

⎤⎦ . (8)

Define

R̂r,t = 1

2

Kr,t∑
k=1

{
yr,t (k)y†

r,t (k) + J[yr,t (k)y†
r,t (k)]∗J

}
(9)

xe
r,t = 1

2

[
(I + J)�e(xr,t ) − (I − J)�m(xr,t )

]
(10)

xo
r,t = 1

2

[
(I − J)�e(xr,t ) + (I + J)�m(xr,t )

]
(11)

and

X̃r,t = [xe
r,t , xo

r,t ]. (12)

As derived in Appendix A, the detector is given by

N∏
r=1

M∏
t=1

(
1

1 − �r,t

)Kr,t+1 H1

≷
H0

l0, (13)

where

�r,t = s̃†r,t R̃−1
r,t X̃r,t (I2 + X̃†

r,t R̃−1
r,t X̃r,t )−1X̃†

r,t R̃−1
r,t s̃r,t

s̃†r,t R̃
−1
r,t s̃r,t

(14)

with

s̃r,t = �e(sr,t ) − �m(sr,t ), (15)

and

R̃r,t = �e(R̂r,t ) + J�m(R̂r,t ). (16)

Here, (13) is referred to as the MIMO-PGLRT detector.
Note that there exists a significant difference between

the detector (13) developed in [27] and the MIMO-PGLRT
detector (13) derived here. In [27], the noise covariance
matrices at multiple bands are assumed to be identical,
whereas in our study, the noise covariance matrices at
different transmit-receive pairs may be distinct.

B. Performance Analysis

In order to complete the construction of the test in
(13), we should provide an approach to set the detection
threshold. In this section, we derive a closed-form
expression for the probability of false alarm of the
MIMO-PGLRT detector, which can be employed to
compute the detection threshold for any given probability
of false alarm. In doing so, we take the logarithm of (13),
namely,

� =
N∑

r=1

M∑
t=1

(Kr,t + 1) ln

(
1

1 − �r,t

)
H1

≷
H0

l, (17)

where l = ln l0.
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Define

αr,t = 2Kr,t + 2

2Kr,t − Qt + 1
. (18)

We relabel α1,1, . . . , α1,M, . . . , αN,1, . . . , αN,M as α1, α2,
. . . , αV, respectively, where V = MN. As shown in
Appendix B, (17) has a statistically equivalent form as
follows:

� =
V∑

i=1

αi�i

H1

≷
H0

l, (19)

where the PDF of �i under hypothesis H0 is the standard
exponential distribution as seen in (56), and the random
variables �i are independent of one another. It is worth
noting that the test statistic � under H0 is exactly a sum of
weighted exponential variables �i.

Recall that some Qts may be identical, and so are some
Kr,ts. Thus, some αis may be equal. We denote these
coefficients with the same value by a new symbol, i.e., α1,
α2, . . . , αV are denoted by e1, e2, . . . , es (en 
= em for n 
=
m), where s is the total number of the coefficients with
different values, and ei corresponds to some coefficient
whose value is repeated di + 1 times among α1, α2, . . . ,
αV. In addition, di ≥ 0, i = 1, 2, . . . , s and
s + ∑s

i=1 di = V.

According to Theorem 3 of [37], the probability of
false alarm of the MIMO-PGLRT detector can be
expressed as

PFA =
(

s∏
i=1

di!

)−1
∂d1+d2+...+ds

∂e
d1
1 ∂e

d2
2 . . . ∂e

ds
s

[
s∑

n=1

JV (en, l)

En

]
,

(20)
where the operator ∂d1+d2+...+ds

∂e
d1
1 ∂e

d2
2 ...∂e

ds
s

(·) denotes the mixed

(d1 + d2 + . . . + ds)th order partial derivatives of a
function with respect to e1, e2, . . . , es,

JL(x, T ) = xL exp(−T x−1) (21)

and

En = en

s∏
j=1,j 
=n

(en − ej ). (22)

Note that for n = 1, we have E1 = e1.
In particular, the expression (20) bears a simple form

for the following two cases.
1) Case I: α1, α2, . . . , αV are all the same. At this

moment, s = 1, E1 = e1 = α1 and d1 = V – 1. Then, we
have

s∑
n=1

JV (en, l)

En

= JV −1(e1, l). (23)

Thus, the probability of false alarm for this case is

PFA = 1

(V − 1)!

∂V −1

∂eV −1
1

[JV −1(e1, l)]

= exp(−le−1
1 )

(V − 1)!

V −1∑
n=0

Cn
V −1(V − 1 − n)!lne−n

1

= exp(−le−1
1 )

V −1∑
n=0

1

n!
(le−1

1 )n, (24)

where the second equality is obtained with the Lemma in
[38], and Cn

m = m!
n!(m−n)! .

2) Case II: α1, α2, . . . , αV are all distinct. In this
case, s = V and dk = 0, ek = αk for k = 1, 2, . . . , V.
Therefore, the probability of false alarm for this case can
be simplified as

PFA =
V∑

n=1

JV (en, l)

En

=
V∑

n=1

eV
n exp(−le−1

n )

En

. (25)

For the general case where parts of αi’s are identical,
we can use (20) to obtain the false alarm rate of the
MIMO-PGLRT detector. As an example, we consider the
case in which V = 4, α2 = α3, but α1, α2 and α4 are all
different. In this case, the expression for the probability of
false alarm of the MIMO-PGLRT detector can be
represented by

PFA = 1

0!1!0!

∂

∂e2

⎡⎣ 3∑
j=1

J4(ej , l)

Ej

⎤⎦
= e3

1 exp(−le−1
1 )

(e1 − e2)2(e1 − e3)
+ e2(3e2 + l) exp(−le−1

2 )

(e2 − e1)(e2 − e3)

− e3
2(2e2 − e1 − e3) exp(−le−1

2 )

(e2 − e1)2(e2 − e3)2

+ e3
3 exp(−le−1

3 )

(e3 − e1)(e3 − e2)2
. (26)

It is obvious that the probability of false alarm of the
MIMO-PGLRT detector does not depend on the noise
covariance matrix. Therefore, the MIMO-PGLRT detector
exhibits the desirable CFAR property against the noise
covariance matrices.

It can be seen from the above derivation that the
closed-form expression for the probability of false alarm
of the MIMO-PGLRT detector is obtained with the fact
that under H0 the individual test statistic �r,t in the
MIMO-PGLRT detector has a simple right-tail probability
as seen in (52), and thus has a simple PDF as seen in (54).
However, the right-tail probability of �r,t under H1

contains a one-dimensional integral (see [27, Eq. (16)]).
Therefore, the detection probability of the MIMO-PGLRT
detector is analytically intractable.

IV. MIMO-PSMI DETECTOR

In this section, an alternative solution to the detection
problem (4) is proposed, which has a lower computational
burden than the MIMO-PGLRT detector. To this end, an
approach similar to that in [29] is employed. More
specifically, for each transmit-receive pair, we use the
following test statistic:


r,t = |w†
r,tx

e
r,t |2 + |w†

r,tx
o
r,t |2, (27)
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where xe
r,t and xo

r,t are defined in (10) and (11),
respectively, and the weight vector wr,t is given by

wr,t = R̃−1
r,t s̃r,t

(s̃†r,t R̃
−1
r,t s̃r,t )1/2

. (28)

Jointly processing the independent data received by all the
transmit-receive pairs, we have the following decision
rule:


 =
N∑

r=1

M∑
t=1


r,t =
N∑

r=1

M∑
t=1

s̃†r,t R̃−1
r,t X̃r,t X̃

†
r,t R̃−1

r,t s̃r,t

s̃†r,t R̃
−1
r,t s̃r,t

H1

≷
H0

ξ,

(29)
where ξ is the detection threshold. Here, (29) is referred to
as the MIMO-PSMI detector.

Note that 
 in (29) is different from the test statistic in
[29, Eq. (13)], since the weight vectors wr,t in (28) are
distinct for different transmit-receive pairs, whereas the
weight vectors in [29, Eq. (13)] are all the same.
Compared with the MIMO-PGLRT detector in (13), the
MIMO-PSMI detector in (29) has a simpler structure.
More specifically, (29) does not need to compute the term
(I2 + X̃†

r,t R̃−1
r,t X̃r,t )−1, and thus is computationally more

efficient.
As to the theoretical performance of the MIMO-PSMI

detector, unfortunately, closed-form expressions for the
probabilities of false alarm and detection are both
intractable, since the right-tail probability of its
constituent test statistic 
r,t under H0 or H1 includes a
one-dimensional integral (see [29, Eqs. (14) and (15)]).
Nevertheless, we can observe from [29, Eq. (14)] that the
statistical property of the test statistic 
r,t under H0 is
irrelevant to the noise covariance matrix. As expected, the
MIMO-PSMI detector consisting of 
r,t’s possesses the
CFAR property with respect to all the noise covariance
matrices.

V. SIMULATIONS RESULTS

In this section, numerical simulations are conducted to
validate the above theoretical analysis and illustrate the
performance of the proposed two detectors. For simplicity,
we consider a MIMO radar made up of two transmit
antennas and two receive antennas (i.e., M = N = 2), and
each transmit antenna sends nine coherent pulses with
equal spacing (i.e., Q1 = Q2 = 9). The steering vector sr,t

has the form as seen in (3). Suppose further that the
normalized Doppler shifts of the target are 0.1, 0.2, 0.3,
and 0.4 for the (1,1), (1,2), (2,1), and (2,2)
transmit-receive pairs, respectively. The (i, j)th element of
the noise covariance matrix is chosen to be
[R]i,j = σ 2 0.95|i–j|, where σ 2 represents the noise power.
Note that the covariance matrices for all transmit-receive
pairs are set to be identical for simplicity. Nevertheless,
we estimate the covariance matrix for a specific
transmit-receive pair by using only the training data
collected in that corresponding transmit-receive pair,
instead of using all training data from all transmit-receive
pairs. Without loss of generality, ar,ts are supposed to be

Fig. 1. Probability of false alarm of MIMO-PGLRT detector in three
cases. Dashed, dotted, and solid lines indicate results obtained from (24),
(25), and (26) for Cases (1), (2), and (3), respectively. Symbols �, o, and
+ denote corresponding results obtained from Monte Carlo simulations.

the same, and then can be uniformly denoted by a. The
signal-to-noise ratio (SNR) is defined by

SNR = 10 log10
|a|2
σ 2

. (30)

We consider three cases with different number of
secondary data, namely,

• Case (1): K1,1 = K1,2 = K2,1 = K2,2 = 10, i.e., αi’s
defined in (18) are all identical;

• Case (2): K1,1 = 14, K1,2 = 16, K2,1 = 18 and K2,2 =
20, i.e., αi’s are all distinct;

• Case (3): K1,1 = 12, K1,2 = K2,1 = 10 and K2,2 = 14,
i.e., α2 = α3, but α1, α2, α4 are all distinct.

The probability of false alarm of the MIMO-PGLRT
detector as a function of the detection threshold l for the
above three cases is shown in Fig. 1, where the dashed,
dotted and solid lines denote the results obtained from
(24), (25), and (26) for Cases (1), (2), and (3),
respectively, and the symbols represent the corresponding
results obtained from Monte Carlo simulations. The
number of independent trials used in each case is 105. It is
shown that the simulation results match the theoretical
results pretty well.

The detection probability curves of the proposed
persymmetric detectors versus SNR for the above three
cases are plotted with Monte Carlo simulations in Fig. 2,
where the probability of false alarm is set to be 10−3. For
comparison purpose, the MIMO-GLRT detector in [16]
and the MIMO-AMF detector (19) in [17], both of which
do not utilize a-priori knowledge about the persymmetric
structure of the noise covariance matrix, are considered.
Notice that the MIMO-AMF detector in [17, Eq. (19)] is
derived based on the assumption that each
transmit-receive pair uses the same number of secondary
data. Therefore, the performance of the MIMO-AMF
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Fig. 2. Performance comparisons between three detectors with fixed
PFA = 10−3 in three cases. Dotted-dashed, dashed, solid, and dotted lines

indicate detection probabilities obtained with Monte Carlo simulations
for MIMO-AMF, MIMO-GLRT, MIMO-PSMI, and MIMO-PGLRT

detectors, respectively.

detector is presented only in Case (1) (see Fig. 2a). The
number of independent trials used to obtain each value of
the detection probability is 5000.

Fig. 3. Performance comparisons between three detectors with different
amount of secondary data for fixed PFA = 10−3. Each transmit-receive

pair has same number of secondary data that is uniformly denoted by K.
Dotted-dashed, dashed, solid, and dotted lines indicate detection

probabilities obtained with Monte Carlo simulations for MIMO-AMF,
MIMO-GLRT, MIMO-PSMI, and MIMO-PGLRT detectors,

respectively.

Comparing the detection performance of the same
detector in different cases, we can see that increasing the
amount of secondary data improves the performance. This
is because the use of more secondary date samples can
improve the accuracy in estimating the noise covariance
matrix, hence leading to a gain in detection performance.

It can also be observed in Fig. 2 that in each case taken
into consideration, the MIMO-PGLRT detector performs
the best, the MIMO-PSMI detector has slightly inferior
performance, and the MIMO-GLRT or MIMO-AMF
detector achieves the worst performance. In particular, the
performance gains of the MIMO-PGLRT detector and the
MIMO-PSMI detector with respect to the MIMO-AMF
detector in Case (1) are about 14 and 12 dB, respectively,
when the detection probability is 0.9. Obviously, the
MIMO-PSMI and MIMO-PGLRT detectors outperform
the MIMO-GLRT and MIMO-AMF detectors due to the
exploitation of a priori knowledge about the persymmetric
structures in the received signals. In addition, the
MIMO-PSMI detector performs worse than the
MIMO-PGLRT detector but with the benefit of lower
computational burden.

Nevertheless, these four detectors considered here may
perform almost similarly when the number of secondary
data is sufficient. This can be seen in Fig. 3 (along with
Fig. 2a) where performance comparisons among these
detectors are presented with different numbers of
secondary data. It is assumed that each transmit-receive
pair has the same number of secondary data which is
uniformly denoted by K. As shown in Fig. 3, the
performance difference between these detectors can be
negligible in the case of sufficient secondary data (for
instance, K = 64 in this example). This is due to the fact
that using sufficient secondary data, one can obtain a high
accuracy in the noise covariance matrix estimate, even
without a priori information on the persymmetric
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structures. Hence, when sufficient secondary data are
available, the MIMO-PSMI detector is highly
recommended because of its relatively low computational
burden and negligible performance loss.

The above simulations are conducted by assuming that
there is no mismatch in the persymmetric structure of
covariance matrix. In practice, the covariance matrix may
deviate from the persymmetric structure due to spacing
errors in coherent pulses or array processing. In what
follows, we illuminate the effects of a mismatch in the
persymmetric structure of covariance matrix on the
performance of the considered detectors. We construct the
noise covariance matrix as R = σ 2

2 (R1 + R†
1), where each

entry of R1 is independently sampled from a uniform
distribution on the range [0, 1]. Note that the noise
covariance matrix R is Hermitian but not necessarily
persymmetric.

Fig. 4 presents the detection performance of four
detectors for different training data sizes in the mismatch
case. It can be seen that in this mismatch case, the
MIMO-PGLRT (or MIMO-PSMI) detector provides a
detection performance better than the MIMO-GLRT (or
MIMO-AMF) detector when the number of training data
is limited (for instance, K = 10 in this example). This
observation in the mismatch case is the same as that in the
match case (compare Fig. 2a and Fig. 4a). However, the
MIMO-GLRT (or MIMO-AMF) detector outperforms the
MIMO-PGLRT (or MIMO-PSMI) detector when the
number of training data is large (for instance, K = 36 in
this example). This phenomenon can be easily explained.
In fact, the detection performance in the mismatch case is
related to two factors: the persymmetric mismatch and the
training data size. In the case of sufficient training data,
the exploitation of the mismatched persymmetric structure
does not necessarily lead to a performance gain.

VI. CONCLUSION

In this paper, we propose two persymmetric detectors
(i.e., MIMO-PGLRT and MIMO-PSMI) in a distributed
MIMO radar by exploiting persymmetric structures in
received signals. The probability of false alarm of the
MIMO-PGLRT detector is obtained in closed form, which
is validated with Monte Carlo simulations. It can be used
to compute the detection threshold for any given
probability of false alarm. Compared with the
MIMO-PGLRT detector, the MIMO-PSMI detector has a
simpler structure and is computationally more efficient.
Both detectors have the desirable CFAR property against
the noise covariance matrix. Simulations results show that
with a limited amount of secondary data, the two proposed
detectors significantly outperform the conventional
MIMO-GLRT and MIMO-AMF detectors, which do not
exploit the persymmetric structure, and the
MIMO-PGLRT detector performs better than the
MIMO-PSMI detector. When the amount of secondary
data is sufficient, all detectors considered in this paper
achieve similar detection performance. Therefore, when

Fig. 4. Performance comparisons for fixed PFA = 10−3 in mismatch
case. Each transmit-receive pair has same number of secondary data that

is uniformly denoted by K: (a) K = 10; (b) K = 18; (c) K = 36.

the amount of secondary data is limited, the
MIMO-PGLRT detector is recommended due to its
superiority in detection performance, whereas when the
amount of secondary data is sufficient, the MIMO-PSMI
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detector is suggested because of its lower computation
complexity.

APPENDIX A. A DERIVATION OF MIMO-PGLRT
DETECTOR

Because the random variables Xr,t are independent, the
maximization of the left-hand side of (5) can be performed
term by term. Using (6), we can rewrite (5) as

N∏
r=1

M∏
t=1

max{ar,t ,Rr,t } fr,t,1

max{Rr,t } fr,t,0︸ ︷︷ ︸
�=ϒr,t

H1

≷
H0

l0. (31)

In the following, we simplify ϒ r,t by using the approach in
the case of a single band in [27]. Exploiting the
persymmetric structure of Rr,t, we have

tr(R−1
r,t Tr,t,q) = tr(R−1

r,t JT∗
r,t,qJ). (32)

Then,

tr(R−1
r,t Tr,t,q) = tr(R−1

r,t T̂r,t,q), (33)

where

T̂r,t,q = (Tr,t,q + JT∗
r,t,qJ)/2. (34)

Using (8),T̂r,t,q can be rewritten as

T̂r,t,q = R̂r,t + (X̂r,t − q sr,t âr,t )(X̂r,t − q sr,t âr,t )†

Kr,t + 1
, (35)

where

âr,t = [�e(ar,t ), j�m(ar,t )], (36)

R̂r,t = 1

2

Kr,t∑
k=1

{yr,t (k)y†
r,t (k) + J[yr,t (k)y†

r,t (k)]∗J}, (37)

and

X̂r,t = [x̂e
r,t , x̂o

r,t ] (38)

with

x̂e
r,t = (xr,t + Jx∗

r,t )/2 (39)

and

x̂o
r,t = (xr,t − Jx∗

r,t )/2. (40)

According to [28], the ML estimates of Rr,t under H0

and H1 are T̂r,t,0 and T̂r,t,1, respectively. Using these ML
estimates, we can write ϒ r,t defined in (31) as

ϒr,t =
[

det(T̂r,t,0)

min{âr,t } det(T̂r,t,1)

]Kr,t+1

. (41)

It follows from (35) that

det(T̂r,t,1) = 1

(Kr,t + 1)Qt
det(R̂r,t ) det[I2

+ (X̂r,t − sr,t âr,t )
†R̂−1

r,t (X̂r,t − sr,t âr,t )].

(42)

It is straightforward that the value of âr,t minimizing the
denominator of (41) is (s†r,t R̂−1

r,t sr,t )−1s†r,t R̂−1
r,t X̂r,t .

Substituting this ML estimate into (41) and after some
algebraic manipulations, we can obtain

ϒr,t =
(

1

1 − �r,t

)Kr,t+1

, (43)

where

�r,t = s̃†r,t R̃−1
r,t X̃r,t (I2 + X̃†

r,t R̃−1
r,t X̃r,t )−1X̃†

r,t R̃−1
r,t s̃r,t

s̃†r,t R̃
−1
r,t s̃r,t

. (44)

Define two unitary matrices

D = 1

2
[(I + J) + j (I − J)], (45)

and

V =
[

1 0
0 −j

]
. (46)

Then, �r,t in (44) can be rewritten in the real domain as

�r,t = s̃†r,t R̃−1
r,t X̃r,t (I2 + X̃†

r,t R̃−1
r,t X̃r,t )−1X̃†

r,t R̃−1
r,t s̃r,t

s̃†r,t R̃
−1
r,t s̃r,t

, (47)

where

X̃r,t = DX̂r,tV†, (48)

R̃r,t = DR̂r,tD† = �e(R̂r,t ) + J�m(R̂r,t ), (49)

and

s̃r,t = Dsr,t = �e(sr,t ) − �m(sr,t ). (50)

Furthermore, X̃r,t can be expressed as (12).

APPENDIX B. EQUIVALENT TRANSFORMATION
OF �

First, we examine the possible range where the test
statistic �r,t can take values. As derived in [27, Eq. (B29)],
the test statistic �r,t can be transformed into

�r,t = 1 − [1 + ψAAW(I + �B)−1W†]−1, (51)

where the quantity ψAA W(I + �B)−1W† defined in [27]
is a positive number. It is obvious that 0 < �r,t < 1. Notice
that the right-tail probability of the test statistic �r,t is
equal to its probability of false alarm. According to
[27, Eq. (15)], the right-tail probability of �r,t under
hypothesis H0 is

Pr(�r,t > φr,t |H0) = (1 − φr,t )
2Kr,t−Qt+1

2 , 0 < φr,t < 1.
(52)

Then, the cumulative distribution function (CDF) of �r,t

under hypothesis H0 is

Pr(�r,t < φr,t |H0) = 1 − (1 − φr,t )
2Kr,t−Qt+1

2 . (53)

Therefore, the PDF of �r,t under hypothesis H0 can be
obtained by taking the derivative of the CDF with respect
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to �r,t, namely,

f�r,t
(φr,t ) = 2Kr,t − Qt + 1

2
(1 − φr,t )

2Kr,t−Qt−1
2 . (54)

Define a monotone transform

�r,t = 2Kr,t − Qt + 1

2
ln

1

1 − �r,t

, (55)

we can then obtain the PDF of �r,t under hypothesis H0

f�r,t
(ωr,t ) = exp(−ωr,t ), ωr,t > 0. (56)

Using (55), (17) can be written as

� =
N∑

r=1

M∑
t=1

αr,t�r,t

H1

≷
H0

l, (57)

where

αr,t = (2Kr,t + 2)/(2Kr,t − Qt + 1). (58)

For ease of notation, α1,1, . . . , �1,M, . . . , �N,1, . . . , �N,M

are relabeled as α1, α2, . . . , αV, respectively, where
V = MN. Similarly, �1,1, . . . , �N,M are relabeled as �1,
�2, . . . , �V, respectively. Then, (57) can be rewritten as

� =
V∑

i=1

αi�i

H1

≷
H0

l (59)

where the random variable �i under H0 has the standard
exponential distribution as in (56).
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