
Contents lists available at ScienceDirect
Signal Processing

Signal Processing 113 (2015) 32–37
http://d
0165-16

n Corr
E-m

hongbin
1 N

Xidian U
journal homepage: www.elsevier.com/locate/sigpro
Fast communication
On the performance of the cross-correlation detector
for passive radar applications

Jun Liu a,1, Hongbin Li a,n, Braham Himed b

a Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
b AFRL/RYMD, 2241 Avionics Circle, Bldg 620, Dayton, OH 45433, USA
a r t i c l e i n f o

Article history:
Received 21 October 2014
Received in revised form
13 December 2014
Accepted 7 January 2015
Available online 14 January 2015

Keywords:
Passive radar
Cross-correlation
Passive detection
Direct-path interference
Reference signal
x.doi.org/10.1016/j.sigpro.2015.01.006
84/& 2015 Elsevier B.V. All rights reserved.

esponding author.
ail addresses: jun_liu_math@hotmail.com (J.
.li@stevens.edu (H. Li), braham.himed@wpa
ow with the National Laboratory of Rada
niversity, Xi'an 710071, China.
a b s t r a c t

For passive radar target detection, the cross-correlation (CC) based detector is a popular
method, which cross-correlates the signal received in a reference channel (RC) and the signal
in a surveillance channel (SC). The CC is simple to implement and resembles the clairvoyant
matched filter (MF) in idealistic conditions. However, there is limited understanding on its
performance in passive sensing environments with non-negligible noise in the RC and direct-
path interference in the SC. This paper examines such effects on the detection performance of
the CC detector. Closed-form expressions for the probabilities of false alarm and detection of
the CC detector are derived, which are employed to quantify to what extent the noise in the
RC and the direct-path interference in the SC should be suppressed in order to achieve a
targeted performance loss of the CC detector relative to the MF. These results are useful in
designing practical CC solutions for passive radar sensing.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

A passive radar system can detect and track a target of
interest by exploiting non-cooperative illuminators of
opportunity (IOs), which is of great interest in both civilian
and military scenarios due to a number of advantages such
as low cost, spatial diversity and availability of many
existing IOs [1–8]. In passive radars, the locations and
waveforms used by the IOs are no longer under control. As
such, passive radar systems often require an additional
separate channel, referred to as the reference channel (RC),
to measure the transmitted signal from the IO to serve as a
reference. One of the most popular detection strategies in
passive radar is to conduct delay-Doppler cross-correlation
(CC) between the data received in the RC and surveillance
Liu),
fb.af.mil (B. Himed).
r Signal Processing,
channel (SC) [1,9–11], which mimics matched-filter (MF)
processing in conventional active sensing systems where
the transmitted signal is cross-correlated with the received
signal. The principal advantages of the CC lie in its
simplicity of implementation, and requirement of no prior
knowledge of the transmitted waveform.

It is worth noting that under some ideal assumptions,
the CC attains the detection performance of the optimum
MF which maximizes the output signal-to-noise ratio
(SNR). Specifically, the assumptions are (1) the RC is
noiseless; and (2) the direct-path from the IO is absent
from the SC. In practice, there inevitably exists noise in the
RC [12]. Moreover, commercial IOs such as radios and TV
stations typically employ isotropic antennas to cover a
wide area. Without any pre-processing, the direct-path
signal seen in the SC is typically stronger than the target
signal by several orders of magnitude [13]. It is therefore
necessary to apply some direct-path signal cancellation
techniques in the SC before target detection, e.g., by using
an adaptive array with a spatial null formed in the IO
source direction. Due to array size limitation, the null may
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not provide adequate direct-path cancellation. As a result,
the SC may still see significant direct-path signal residual
relative to the target signal strength. Apparently, the
existence of the noise in the RC and the direct-path
interference in the SC will deteriorate the CC detection
performance. However, their impact on the CC detector
has not been systematically studied in the open literature.
It is unclear to what extent the noise in the RC and the
direct-path interference in the SC should be suppressed in
order to ensure an acceptable performance loss of the CC
with respect to the optimal MF.

The goal of this work is to analyze the CC detector for
passive sensing. Let SNRr denotes the SNR in the RC, while
the INRs denotes the direct-path interference-to-noise in
the SC. Our main contribution here is to quantitatively
analyze the effects of the SNRr and INRs on the detection
performance of the CC detector. To this end, we first derive
closed-form expressions for the probability of false alarm
(PFA) and probability of detection (PD) of the CC detector
by taking into consideration the noise in the RC and the
direct-path interference in the SC. Based on these theore-
tical results, we obtain simple expressions for the SNRr

and INRs required by the CC detector to achieve a targeted
performance loss with respect to the MF detector. Inter-
estingly, it is found that there exists an upper bound for
the INRs above which it is impossible for the CC detector to
achieve the targeted performance loss, no matter how
clean the reference signal is. In addition, there exists a
lower bound for the SNRr, below which it is impossible to
ensure the targeted performance of the CC detector. Monte
Carlo (MC) simulations are provided to confirm the theo-
retical analysis.

2. Signal model

Consider a passive bistatic radar system as shown in
Fig. 1. Denote by xsðnÞ the signal received in the SC, which
involves noise, a direct-path signal (i.e., interference) from
the IO, and the echo of a target of interest, i.e.,

xsðnÞ ¼ γpðnÞþαpðn�τÞexpðjΩdnÞþwðnÞ; ð1Þ
where p(n) is the signal transmitted by the non-cooperative
IO, γ is a scaling parameter accounting for the channel
propagation effects of the direct path from the IO to the
Non-cooperative
illuminator

Target

Surveillance
channel

Reference
channel

Direct path

Fig. 1. Configuration of a passive radar system.
receive antenna in the SC, τ is the propagation delay of the
target return relative to the direct path, α is a scaling
parameter accounting for the target reflectivity as well as
the channel propagation effects, Ωd is a normalized Doppler
frequency, and w(n) denotes noise modeled as identically and
independently distributed (i.i.d.) circular complex Gaussian
with zero mean and variance σw

2
, i.e.,wðnÞ � CN ð0;σ2

wÞ. Unlike
[9,14], where the direct-path interference is assumed to be
fully suppressed, we consider a more realistic scenario with
direct-path residual due to imperfect interference mitigation.

The RC usually employs a directional antenna pointing
toward the IO, and its received signal can be written as

xrðnÞ ¼ βpðnÞþvðnÞ; ð2Þ

where β is a scaling parameter accounting for the channel
propagation effects from the IO to the receive antenna in
the RC, and v(n) is i.i.d. circular complex Gaussian noise
with zero mean and variance σv

2
, i.e., vðnÞ � CN ð0;σ2

v Þ. It is
reasonable to assume that v(n) and w(n) are independent.

Let the null hypothesis (H0) be such that the data in the
SC is free of target echoes whereas the alternative hypoth-
esis (H1) be the opposite. Hence, the passive detection
problem can be formulated in terms of the following
binary hypothesis test:

H0:
xrðnÞ ¼ βpðnÞþvðnÞ;
xsðnÞ ¼ γpðnÞþwðnÞ;

(

H1:
xrðnÞ ¼ βpðnÞþvðnÞ;
xsðnÞ ¼ γpðnÞþαpðn�τÞexpðjΩdnÞþwðnÞ:

(
8>>>>><
>>>>>:

ð3Þ
3. Analysis of the CC detector

A popular solution for the above passive detection
problem is the CC detector given by

TCC ¼ jT j2 ¼
XN�1

n ¼ 0

Tn

�����
�����
2

≷
H1

H0

λ; ð4Þ

where Tn ¼ xns ðnÞxrðn�τÞexpðjΩdnÞ, N is integration time, λ
is the detection threshold, j � j represents the modulus of a
complex number, and the superscript ð�Þn is the conjugate
operation. In other words, the RC signal xrðnÞ is delay- and
Doppler-compensated, before it is cross-correlated with
the SC signal xsðnÞ. This resembles the MF in active radar,
except that the latter uses the noiseless waveform p(n)
instead of xrðnÞ for processing. The delay τ and DopplerΩd

are generally unknown in practice. A standard approach
for CC or MF implementation is to divide the uncertainty
region of the target delay and Doppler frequency into
small cells and the test is run on each cell with a given
delay and Doppler frequency.

It is well-known that the MF is the optimum detector in
active radar. The MF performance can be thought of as an
upper bound for passive detection when the RC noise and
SC direct-path interference vanish. An important question
is, how far is the CC detector away from the MF bound in
typical passive radar environments where the noise in the
RC and the direct-path interference in the SC cannot be
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neglected? To the best of our knowledge, the problem has
not be addressed in the open literature.

To answer the above question, we derive closed-
form expressions for the PFA and PD of the CC detector
by using a Gaussian distribution to approximate the
distribution of T based on the central limit theorem
(CLT). This CLT approximation is justified since in
practice a long integration time is usually required in
passive radar to detect weak target returns. Although
the Gaussian approximation is standard, it leads to a
simple and accurate result which can be used to answer
the previous question. In addition, it provides insights
as to how clean the RC signal should be made relative to
its noise level, as well as to what extent the direct-path
interference in the SC should be mitigated, in order for
the CC to be reasonably close to the MF bound. Such
insights are useful to design practical CC solutions for
passive radars.

Under H1, we have

Tn ¼ γnβpnðnÞpðn�τÞexpðjΩdnÞ
þγnpnðnÞvðn�τÞexpðjΩdnÞ
þαnβjpðn�τÞj2þαnpnðn�τÞvðn�τÞ
þβpðn�τÞwðnÞexpðjΩdnÞ
þwðnÞvðn�τÞexpðjΩdnÞ: ð5Þ

Assume that p(n) are i.i.d. random variables with zero mean
and unit variance.2 The assumption is justified by observing
that coding with interleaving, which lead to approximately
i.i.d. samples, is often employed in wireless communications
to deal with burst channel errors, [15, chap. 8].

Then, we have Efjpðn�τÞj2g ¼ 1, and

Varfjpðn�τÞj2g ¼ Efjpðn�τÞj4g�19ϕ; ð6Þ
where Ef�g and Varf�g denote the mean and variance of a
random variable, respectively. As a result, EfTng ¼ αnβ; and

VarfTng ¼ jγj2jβj2þjγj2σ2
vþϕjαj2jβj2þjαj2σ2

vþjβj2σ2
wþσ2

vσ
2
w: ð7Þ

The correlation between Tn can be neglected since the
integration time N is usually large in passive radars [9].
Then, the mean μ1 and variance σ2

1 of T under H1 are
μ1 ¼Nαnβ and

σ2
1 ¼Nðjγj2jβj2þjγj2σ2

vþϕjαj2jβj2þjαj2σ2
vþjβj2σ2

wþσ2
vσ

2
wÞ; ð8Þ

respectively. It is straightforward that the mean μ0 and
variance σ2

0 of T under H0 can be obtained by setting
α¼0 under H1, i.e., μ0 ¼ 0 and

σ2
0 ¼Nðjγj2jβj2þjγj2σ2

vþjβj2σ2
wþσ2

vσ
2
wÞ: ð9Þ

Hence, the distributions of T under H0 and H1 can be
approximated by CN ðμ0;σ

2
0Þ and CN ðμ1;σ

2
1Þ due to the CLT,

respectively. It follows that the PFA of the CC detector is

PFA ¼ exp � λ
σ2
0

 !
: ð10Þ

Accordingly, the detection threshold for a given PFA is
2 Note that the actual variance of p(n) can be absorbed into the
foregoing scaling parameters.
λ¼ σ2
0 lnðP�1

FA Þ. In addition, the PD of the CC detector is

PD ¼ Q1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jμ1j2
σ2
1

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2

0 lnðP�1
FA Þ

σ2
1

s0
@

1
A; ð11Þ

where Qmð�; �Þ is the generalized Marcum Q-function of order
m [16].

It is noted that the above analysis include the MF filter in
active radars as a special case just by setting σ2

v ¼ 0 and γ¼0.
As noted earlier, the active MF performance can be thought of
as an upper bound that cannot be achieved by any detectors in
the passive detection set-up. Now, we investigate the perfor-
mance loss of the passive CC detector with respect to the
active MF detector. Let SNRs be the ratio of the target returns’
power to the noise power in the SC, which is defined by

SNRs ¼ 10 log10
jαj2
σ2
w
: ð12Þ

We also define

SNRr ¼ 10 log10
jβj2
σ2
v
; INRs ¼ 10 log10

jγj2
σ2
w
: ð13Þ

Theorem 3.1. To ensure a performance loss no more than δ
dB in the CC detector with respect to the optimal MF detector
for a given SNRs, the INRs in the SC must satisfy (in decibels)
for a given SNRr:

INRsr10 log10
10ðδþSNRrÞ=10�10ðδþSNRsÞ=10�10SNRr=10�1

1þ10SNRr=10

" #
: ð14Þ

Meanwhile, the SNRr in the RC must satisfy (in decibels) for a
given INRs:

SNRrZ10 log10
10INRs=10þ10ðδþSNRsÞ=10þ1

10δ=10�10INRs=10�1

" #
: ð15Þ

Proof. For a given probability of false alarm PFA, we
can obtain from (11) that the PD of the MF detector for
Fig. 2. Contour of the PD of the CC detector with different SNRs loss with
respect to the MF detector. The lines denote MC simulation results, and
the symbols “þ” are the results obtained with the analytical expression
in Theorem 3.1 (by making (14) or (15) an equality).
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a given SNRs is

PMF
D ðSNRsÞ ¼Q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηMFðSNRsÞ

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζMFðSNRsÞ

q� �
; ð16Þ

where

ηMF SNRsð Þ ¼ 2N � 10SNRs=10

ϕ � 10SNRs=10þ1
;

ζMF SNRsð Þ ¼ 2 lnðP�1
FA Þ

ϕ � 10SNRs=10þ1
: ð17Þ

Similarly, for a given probability of false alarm PFA, the
PD of the CC detector is
ηCC SNRsð Þ92jμ1j2
σ2
1

¼ 2N � 10ðSNRs þSNRr Þ=10

10ðINRs þSNRr Þ=10þ10INRs=10þϕ � 10ðSNRs þSNRr Þ=10þ10SNRs=10þ10SNRr=10þ1
: ð19Þ

ζCC SNRsð Þ92σ2
0 lnðP�1

FA Þ
σ2
1

¼
2 lnðP�1

FA Þ 10ðINRs þSNRr Þ=10þ10INRs=10þ10SNRr=10þ1
� �

10ðINRs þSNRr Þ=10þ10INRs=10þϕ � 10ðSNRs þSNRr Þ=10þ10SNRs=10þ10SNRr=10þ1
: ð20Þ
PCC
D ðSNRsÞ ¼Q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηCCðSNRsÞ

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζCCðSNRsÞ

q� �
; ð18Þ

where ηCCðSNRsÞ and ζCCðSNRsÞ are defined in (19) and
(20), and are shown on the top of the next page,
respectively.
In order to achieve a δ dB loss in the performance of

the CC detector with respect to the MF detector, i.e.,
PCC
D ðSNRsþδÞ ¼ PMF

D ðSNRsÞ, it suffices that

ηCCðSNRsþδÞ ¼ ηMFðSNRsÞ; ð21Þ
which automatically means ζCCðSNRsþδÞ ¼ ζMFðSNRsÞ. After
simplifying (21), we can obtain (14) and (15) in equalities.
Obviously, the less the INRs (and/or the more the SNRr), the
better the PD. Therefore, the inequalities in (14) and (15)
follow to ensure a loss no larger than δ dB from the MF
bound. The proof is completed. □

Remarks. Eq. (14) gives the maximum INRs to achieve a
loss within δ dB for given SNRr and SNRs. In turn, Eq. (15)
gives the minimum SNRr to achieve a loss within δ dB for
given INRs and SNRs.

Corollary 1. To ensure a performance loss no more than δ
dB in the CC detector with respect to the optimal MF detector
for a given SNRs, the upper bound for the INRs in the SC is

INRso10 log10 10δ=10�1
� �

; ð22Þ

and the lower bound for the SNRr in the RC is

SNRr410 log10
10ðδþSNRsÞ=10þ1

10δ=10�1

 !
: ð23Þ

Proof. Since the quantity in the bracket of the right-hand
side of (15) must be positive, the condition (22) holds.
Similarly, (23) must be satisfied in order to ensure the
positiveness in the bracket of the right-hand side of
(14). □

Remarks. Eq. (23) specifies to the minimum how clean
the reference signal is required to be. If (23) is not met,
namely, the reference signal is not sufficiently clean, the
performance loss of the CC detector with respect to the MF
detector would exceed δ dB, however small the INRs is in
the SC. Meanwhile, (22) specifies to what extent the
direct-path signal (i.e., the interference) in the SC should
be suppressed at a minimum. If the INRs in the SC does not
satisfy (22), namely, the direct-path interference is not
adequately cancelled, the loss would be greater than δ dB,
no matter how large the SNRr in the RC is. Finally, (22) also
implies that the upper ceiling of the INRs in the SC is
determined only by the loss value δ. It is irrelevant to the
sample number and the specific value of SNRs.

4. Numerical results

In this section, numerical simulations are conducted to
confirm the validity of the above theoretical results. The
PFA is set to be 10�5. The transmitted signal p(n) is
sampled from the circular complex normal Gaussian dis-
tribution. In this case, it is easy to obtain that the para-
meter ϕ defined in (6) is 2. The combined effects of the
noise in the RC and the direct-path interference in the SC
on the performance of the CC detector with N¼500 is
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examined. The PD of the MF detector at the given
SNRs ¼ �15 dB is 0.8159. In order to achieve the same
PD for the CC detector with a certain loss δ dB in the SNRs,
i.e., PCC

D ðSNRsþδÞ ¼ PMF
D ðSNRsÞ, the requirements on SNRr

and INRs are illustrated in Fig. 2. Inspections of these
results highlight that there exists a lower floor for SNRr.
For example, the SNRs loss of the CC detector with respect
to the MF detector would always be larger than 3 dB, if the
value of SNRr is below the lower floor (i.e., 0.2863 dB3 in
this example), no matter how small the INRs in the SC is.
Similarly, there exists a ceiling for the INRs in the SC. For
example, the loss exceeds 3 dB if the INRs in the SC is
greater than �0.0206 dB4, no matter how high the SNRr in
the RC is. The above findings indicate that to ensure a
targeted CC performance, we need to simultaneously clean
up the reference signal in the RC and suppress the direct-
path interference in the SC. Care to only one of the two
requirements is not enough to guarantee good perfor-
mance of the CC detector.

The detection probability curves of the CC detector with
respect to SNRs are plotted in Fig. 3, where different values
of INRs are used and SNRr ¼ 5 dB. It can be seen that the
detection performance of the CC detector increases as
SNRs increases. Nevertheless, the increase of INRs results
in a significant performance loss. It means that the
negative effect of the direct-path interference in the SC
on the performance of the CC detector is obvious, and we
need to suppress this direct-path interference for ensuring
good detection performance.

In Fig. 4, the detection performance versus the integra-
tion time N is examined for four cases: (1) with both noise
in the RC and the direct-path interference in the SC; (2) no
noise in the RC but with the direct-path interference in the
SC; (3) no direct-path interference in the SC but with noise
in the RC; (4) no noise in the RC, no direct-path inter-
ference in the SC; The dashed, dotted, dashed-dotted and
3 This value is predicted by computing the right-hand side of (23)
with SNRs ¼ �15 dB and δ¼3 dB.

4 This value is predicted by computing the right-hand side of (22)
with δ¼3 dB.
solid lines denote the performance of the CC detector in
Cases (1)–(4), respectively. Note that the CC detector in
Case (4) corresponds to the optimal MF detector whose
performance serves as a benchmark. It can be seen that the
existence of the noise in the RC and/or the direct-path
interference in the SC leads to a notable loss in the
detection performance. In particular, to achieve the same
PD ¼ 0.9, the difference of the integration time required
by the CC detector in Case (1) and the MF detector in Case
(4) is as large as 950, which nearly doubles the integration
time in this example. This is to say, by taking into
consideration the noise in the RC and the direct-path
interference in the SC, the CC detector needs approxi-
mately 3 times as much integration time as the MF
detector in order to achieve the same PD. It signifies again
the necessity of taking into account the noise in the RC and
the direct-path interference in the SC during the design of
passive detection systems.
5. Conclusion

In this paper, we derived closed-form expressions for
the PFA and PD of the CC detector in the presence of noise
in the RC and the direct-path interference in the SC. The
effects of noise in the RC and the direct-path interference
in the SC on the performance of the CC detector have been
evaluated analytically. These theoretical results enable
designers to determine to what extent the noise in the
RC and the direct-path interference in the SC should be
mitigated in order to achieve a given performance loss of
the CC detector with respect to the optimal MF detector.
Our future work will focus on the development of new
detection algorithms in passive radar by taking into
account the noise in the RC and the direct-path interfer-
ence in the SC, if they are non-negligible.
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