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Both the Capon and APES estimators can be shown to belong
to the class of matched-filterbank spectral estimators and can be
used to obtain complex spectral estimates that have more narrow
spectral peaks and lower sidelobe levels than the fast Fourier
transform (FFT) methods. It can also be shown that APES has
better statistical performance than Capon. In this paper, we
address the issue of how fo efficiently implement Capon and

APES for spectral estimation.
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[.  INTRODUCTION

Complex spectral estimation is important in a
variety of applications including target range signature
estimation and synthetic aperture radar (SAR)
imaging. Both the Capon [1] and APES [2] methods
are adaptive finite impulse response (FIR) filtering
based approaches that can be used to obtain complex
spectral estimates with more narrow spectral peaks
and lower sidelobes than the conventional fast Fourier
transform (FFT) methods [2].

It has been shown in [3] that both Capon and
APES belong to the class of matched-filterbank
spectral estimators. However, Capon is proven to
be biased downward whereas APES is unbiased
(to within a second-order approximation) [3].

The theoretical results therein supplemented with
the empirical observation that Capon usually
underestimates the spectrum in samples of practical
length while APES is nearly unbiased are believed
to provide a compelling reason for preferring

APES over Capon. However, the problem of how
to efficiently implement Capon and APES has not
been addressed carefully and the intuitive ways of
implementing Capon and APES are computationally
very expensive, especially for two-dimensional (2-D)
spectral estimation from 2-D data sequences.

Here, we study how to implement Capon and
APES efficiently. We only consider 2-D spectral
estimation since one-dimensional spectral estimation
is just a special case of what we consider herein.

‘We show that the amount of computation required
by APES is about 1.5 times that required by Capon.
Furthermore, the efficient implementations of
Capon and APES can significantly reduce the
amount of computation needed by their intuitive
implementations.

II. PROBLEM FORMULATION

Let {zn’—ﬁ, n=0,1,...,.N-1,7=0,1,....,N -1}
denote a 2-D discrete-time data sequence. For a
frequency pair (w,w) of interest, we model z, 5 as

2oz = a(w, @)/ 4y, (W, D),

n=0,1,.,N—1, A=01,...N—-1 (1)

where o(w,w) denotes the complex amplitude of a 2-D
sinusoid with frequency (w,w) and w, (w,w) denotes
the unmodeled noise and interference at frequency
(w,). The problem of interest is to obtain the
estimate of a(w,w) from the 2-D data sequence for all
(w,w) of interest. In 2-D SAR imaging applications,
for example, a(w,w) would be proportional to the
radar cross section of a target scatterer located at a
range proportional to w and cross-range proportional
to w.
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We describe below the efficient implementation
of APES in detail since the discussion can be easily
extended to the efficient implementation of Capon.

. APES ESTIMATOR

Let H(w,w) e CM M denote the impulse response

of an (M x M)-tap 2-D FIR filter and Z;;={2,5 n=
L. l+M—1 A=l 0+M-1},1=0,...,.L—1,
I= L—1, be the overlapplng matrix of the2D

data sequence where L=N-M +1landL=N —
M+ 1. Let h(w,D) = vec{H(w,@)} and z;= vec{Z,j},
where vec{-} denotes the operation consisting of
stacking the columns of a matrix on top of each other.
We have

W(w,2)z; = a(w,m) (w,D)a,, 37w, )]
x el | §,7(w, @) 2)

where () denotes complex conjugate transpose

and aMﬁ(w,D) = az7(0) ® ay,(w), with ay(w) =

[1e/ ... /M-De1T & denoting the Kronecker
product [4], and £ ;(w,@) = hH(w,E)le(w,w) with
WIZ(‘U w) formed from {w 7(w,w)} in the same way as
z;; is formed from {z,;}. Let h¥(w, w)a,, M(w w)=1.
Then the least squares estimate of a(w,) is

L-1L-1

o(w, @) = hH(w ")) {ZZZ e—xmum} 3)

o =0

It has been shown in [2] that the (forward-and-
backward) APES filter has the form

o
hw,3) = — 2P (0) @
az’ﬁ(wa D)Q_ ! (LU, w)aM,)\—j(wv a')-)

with
Qw.®) = R~ [gw,0)g"w,0) + gw,0)g"(w,0)]/(IL)
&)
where
P 2T
R=R+JR ] 6)
" L-1L-1
R= Z zljz;} )
i=0 =0
L-1L-1 _
g(w,w) = z zlje_j(l“’”m (8)
i=0 =0
L-1L-1 L
gw,w) = 7, e/t )
1=0 1=0

and where J denotes the exchange matrix (with
ones on the cross-diagonal and zero elsewhere) with
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appropriate dimensions, and zl 7= JzL LIt with

(-)* denoting complex conjugate. By substituting (4)
into (3), we obtain the APES estimate of o/(w,):

all 2(0,D)Q (v, D)g(w,D)
LLal —(0,2)Q (@, Day 7(w,d)

(10

G zpps (W, ) =

IV. EFFICIENT IMPLEMENTATION OF APES
Let

Z,_171]

(11)
and Z = JZ*J. We can then rewrite (8) and (9) as
Za —(w w)

Z = [z, Z 10 Zo1-1

gw,w) = 12)

and

8w, @) = Za; 1(w,D). (13)

By applying the matrix inversion lemma, we obtain

Q' (w,D)g(w,®)g"(w,7)Q (w,2)
LL - gi(w,)Q "} (w,0)g(w,@)
(14)

Ql(w,@) = Q(w,m) +

R 1§(w,m)g N (w,B)R™!
LL gH(w, w)R lo(w, w)
(15)

(For notational convenience, we sometimes drop the
dependence on w and @ below.) Hence,

al (W, 2)Q7 (w,D)gw, D)

H O-lgsHO-1
~ a, ;;Q 22’ Q'g

=all _Q7lg+ A2 -
e LL-giQ-g
TraH O-1
= M (16)
-giQ'g
and
all ﬁ@,w)é-‘amm,w)
e +Q gl an
= a MM
% S LL-giQ g
It follows that (10) can be rewritten as
aH _(2—1
& (w,D) = = .
Ares TL—g'Q 'gall -Q a5 +]a Q'8P
(18)
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Since R is Hermitian and positive deﬁnite we can
obtain an upper triangular matrix c by Cholesky
factorization such that R-! = C-1(C-))H [5]. Let

T, — _ oH -1
b (w,@) = aMﬁ(w,w)C (19)
d(w, @) = Da; 7(w,7) 20)
and

e(w,7) = Ea; -(,7) 21)

where D = (C-1)MZ and E = (C~)HZ. We have

- . all _R-1gg"R-'g

H A-lg_aH R-1 MM
a,;Q g=a, ;R g+ IL-g'R g

= bT (w,D)d(w,D)

b (w,D)e(w, D) (w, D)d(w,T)
LL — |le(w,)|?

(22)
g"R'g3"R"'g
LL— gHR Ig

— —\2
- .z + L @DewDE

LL — |le(w

g'Q'g=¢g"R g+

(23)

. . azﬁﬁ‘lggHﬁ'laMﬁ
IL-gHR-g

_ b’ (w,D)e(w, D)
Next we observe that b(w,), d(w,w), and e(w,)
can be calculated via 2-D FFT. Specifically, we
partition C~!, D, and E as follows: C™! =
(vec{B,} --- vec{B,37}], D = [vec{D,} -
vec{D,,7}7, and E = [vec{El} : vec{EMM}
where B, € MM D, e CLxL and E, e CLXL. Then
(again, we drop the dependence on w and W)

(24)

T _H -1
b _aM’MC

= [(af- ® ajy )vec(B, } (all- @ ajy )vec{B, ;7}]

= [a;;B,aZ; ay B, at]. (25)
Likewise, we have

d =Da; > = [a/Dja; a D]t (26)
and

e=Ea;; = [a/Ea} a B, zar]t.  (27)

Note that a,’[‘,Bkai;‘/7 denotes the 2-D discrete Fourier
transform of B, at (w,w). Hence APES can be
efficiently implemented by first calculating b(w, ),
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d(w,w), and e(w,®) via 2-D FFT, then using (22)
(23), and (24) to determine a Q g g HQ g, and

M,HQ a,, 37, respectively, and finally using (18) to
obtain & pppg(w,@).
. = R_l/zaM,A—/f(w7Z"7)7 “25(“)75) =
R1/2g, 5(w,0)/(LD), and p3(w,@) = R717g,, 37(w0, D)/
(LL), The intuitive implementation of APES suggested
in [3] has the form:

Let py(w,w)

IquHz}

pip, — 5, u’fug]E“[ o
H3 gy

Gppps (W, @) =

H
el
i 2 = S0ty uﬁwz—l[ 2 1}
H3 1y
(28)
where
:zl[lluzll2 u?ua]_
2 [y sl

with I denoting the 2 x 2 identity matrix.

The structure of (28) is similar to that of (18).
However, the amount of computation required by
the former is much larger than that by the latter. The
reason is that, even though gM,ﬁ(w,w) and gM,M—(w,w)
can be obtained by 2-D FFT, for each (w,w) pair, we
have to compute the additional matrix-vector products
R-1/2g, —(w,@) and R/, +(w, D) (recall that

R-1/2 ¢ cMMXMM £y, 37w, ) and gy, 37(w,w) € CHM1)
to obtain u,(w,w) and p4(w,). On the other hand,

by computing D and E first (which are computed
only once), we bypass calculating such matrix-vector
products and save a large amount of computation. The
larger the number of samples in the 2-D frequency
domain, the more the amount of computation we save.
These discussions also apply to the implementation of
Capon.

V. EXTENSION TO CAPON

It has been shown in [2] that APES becomes
Capon when Q(w,w) is replaced by R. Hence the
efficient implementation of Capon can readily be
achieved by modifying (18) as follows:

b7 (w,D)d(w, D)
LL|bw,D)|*

Hence the efficient implementation of Capon is by
using (19) and (20) to calculate b(w,w) and d(w,®),
respectively, and then using them in (29). Since

the amount of computation required to calculate
b(w,@) in (19), d(w,®) in (20), or e(w,w) in (21) is
approximately the same and calculating & ,pgg(w,@) by
(18) and Qcypo,(w,@) by (29) are much less involved
than obtaining b(w,), d(w,®), and e(w, ), the total
amount of computation required by APES is about

dCapon (w,0) = 29)
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(e)
Fig. 1.

(d)

SAR images of simulated MIG-25 airplane obtained by using (a) 2-D FFT, (b) 2-D windowed FFT, (c) 2-D Capon, (d) 2-D

APES.

1.5 times that required by Capon, as verified by the
numerical and experimental examples in Section VI.
The intuitive implementation of Capon has the

form [3]:

l"’ll—{((U?w)lJ'Z(wvw)

”Il'l(w’w)nz
Again, for similar reasons as for APES, this intuitive
implementation of Capon is computationally more
involved than the efficient implementation of Capon
proposed above.

(30)

&Capon (UJ, w) =

VI.  NUMERICAL AND EXPERIMENTAL EXAMPLES

We present numerical and experimental examples
comparing the performances of APES and Capon
with the FFT methods [2] for SAR imaging. In
the following examples, we choose M = N /2 and
M = N/2 for both Capon and APES. (Note that
choosing smaller values of M and M improves the
accuracy of the Capon estimates at the cost of poorer
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resolution. See [2, 3] for details. We compare herein
the computational complexity only when identical
parameters are used.) For the windowed FFT method,
we use the Kaiser window with parameter 4.

We first consider SAR imaging of a simulated
MIG-25 airplane. The 32 x 32 data matrix was
provided to us by the Naval Research Laboratory. The
128 x 128 SAR images obtained by using 2-D FFT,
2-D windowed FFT, 2-D Capon, and 2-D APES are
shown in Figs. 1(a)-(d), respectively. We note that
Capon and APES outperform the FFT methods. The
number of flops required by our efficient ways of
implementing Capon and APES are about 950 and
1500 times those required by the FFT methods, while
those required by the intuitive ways of implementing
Capon and APES are about 22800 and 30000 times,
respectively, those required by the FFT methods. That
is, the number of flops required by the intuitive ways
of implementing Capon and APES are, respectively,
about 24 and 20 times of those required by our
efficient ways of implementing them. If we increase
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(@)

()
Fig. 2. SAR images obtained from ERIM data by using (a) 2-D FFT, (b) 2-D windowed FFT, (c) 2-D Capon, (d) 2-D APES.

the size of the image to 256 x 256 and 512 x 512,

respectively, the ratios of the needed flops between the

intuitive ways and our new ways for implementations
are 36 and 40 for Capon, and 31 and 34 for APES,
respectively.

We now consider an example of SAR imaging
with experimental data. The data matrix is 64 x
64 and is obtained from the experimental data
collected by one of the two apertures of the ERIM’s
(Environmental Research Institute of Michigan) DCS
IFSAR (interferometric SAR). The 256 x 256 SAR
image obtained by using 2-D FFT, 2-D windowed
FFT, 2-D Capon, and 2-D APES are shown in Figs.
2(a)—(d), respectively. Again, Capon and APES
outperform the FFT methods. The number of flops
required by the intuitive ways of implementing Capon
and APES are, respectively, about 38 and 32 times
those required by our efficient ways of implementing
them. If we increase the size of the image to 512 x
512, the ratios of the needed flops between the
intuitive ways and our new ways of implementing
Capon and APES are 86 and 73, respectively.
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(b)

(d)

Vil.  CONCLUSIONS

We have presented computationally efficient ways
of implementing both Capon and APES. We have
shown that the amount of computation required by
APES is about 1.5 times that required by Capon.
Furthermore, the amount of computation required
by our proposed approach is significantly reduced as
compared with those needed by the existing intuitive
methods.
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