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Detection Probability of a CFAR Matched Filter
with Signal Steering Vector Errors
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Abstract—Our aim in this work is to analyze the detection per-
formance of a constant false alarm rata matched filter (CFAR-MF)
which was developed for the detection problem in white Gaussian
noise with unknown noise power. An exact expression for the detec-
tion probability of the CFAR-MF is derived in themismatched case
where mismatch exists between the actual signal steering vector
and the nominal one. This theoretical expression can be used to fa-
cilitate the performance evaluation of the CFAR-MF in real-world
scenarios when signal mismatch cannot be neglected.
Index Terms—Constant false alarm rate, matched filter, signal

detection, steering vector mismatch.

I. INTRODUCTION

D ETECTING a signal of interest (SOI) in additive white
Gaussian noise (AWGN) is a common problem in radar,

sonar and communications. When the noise power level is ex-
actly known, a matched filter (MF) can be employed for the
target detection [1, ch. 4]. In the MF, a vector (including the
filter coefficients) aligned with the signal steering vector is used
to integrate the target signal energy for achieving optimal per-
formance. It is worth noting that the detection threshold of the
MF for a given probability of false alarm is set by using the per-
fect knowledge of the noise power level. In practice, the noise
power level is usually unknown, e.g., due to the variation of
noise power as a function of weather, operating frequency, and
duration time [2]. As a result, we have to use the estimated noise
power level to replace the actual one in the threshold setting of

Manuscript received September 18, 2015; revised October 19, 2015; accepted
October 20, 2015. Date of publication October 26, 2015; date of current ver-
sion October 29, 2015. This work was supported by the National Natural Sci-
ence Foundation of China under Contracts 61501351, 61501505, and 61372132,
the Program for Young Thousand Talent by Chinese Central Government , the
Program for New Century Excellent Talents in University under Grant NCET-
13-0945, and by the Fundamental Research Funds for the Central Universities
under Grant XJS14039. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Bruno Demissie.
J. Liu, C. Bo, and H. Liu are with the National Laboratory of Radar Signal

Processing, Xidian University, Xi’an 710071, China, and also with the Col-
laborative Innovation Center of Information Sensing and Understanding at
Xidian University (e-mail: junliu@xidian.edu.cn; bchen@mail.xidian.edu.cn;
hwliu@xidian.edu.cn).
W. Liu is with Wuhan Radar Academy, Wuhan 430019, China (e-mail:

liuvjian@163.com).
H. Li is with the Department of Electrical and Computer Engineering, Stevens

Institute of Technology, Hoboken, NJ 07030 USA (e-mail: hongbin.li@stevens.
edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LSP.2015.2494013

the MF. Nevertheless, there often exists an error in the noise
power estimate [3]–[6], and the uncertainty in the noise power
level is usually, under normal operating conditions, within 2 dB
[7]. Such uncertainty would result in a significant performance
degradation for the MF.
To handle this issue caused by the noise uncertainty, a con-

stant false alarm rate MF (CFAR-MF) was proposed in [1, ch. 4]
without requiring prior knowledge of the noise power level. A
complex version of the CFAR-MF was derived in [8, eq. (11)],
where it is referred to as generalized energy detector. Finite-sum
expressions for the probabilities of false alarm and detection of
the CFAR-MF were obtained in [9]. It is shown that the proba-
bility of false alarm of the CFAR-MF is irrelevant to the noise
power, and hence the CFAR-MF exhibits a constant false alarm
rate (CFAR) property with respect to the noise power level.
It should be emphasized that the signal steering vector is

assumed to be known perfectly in the studies mentioned above.
However, in many realistic applications, the actual signal
steering vector is not always aligned with the presumed one
[10]–[16]. For example, mismatch in the steering vector often
exists in an array system, due to errors in calibration or look
direction, distortions in signal waveform or array geometry.
Obviously, the mismatch in the signal steering vector would
lead to a performance loss for the CFAR-MF.
To the best of our knowledge, the detection performance of

the CFAR-MF has not been studied in the presence of signal
steering vector mismatch. In this study, we derive a closed-form
expression for the detection probability of the CFAR-MF in the
mismatched case where the actual signal steering vector is mis-
aligned with the nominal one. This theoretical expression is ver-
ified by Monte Carlo (MC) simulations. In practice, we can use
this theoretical expression to facilitate the performance evalua-
tion of the CFAR-MF in the mismatched case.
Notation: Vectors (matrices) are denoted by boldface lower

(upper) case letters. Superscripts , and denote
transpose, complex conjugate and complex conjugate trans-
pose, respectively. is the binomial coefficient.
stands for an identity matrix, and is the Gamma function

defined as . represents the modulus
of a complex number, denotes the Frobenius norm of a
vector, and . stands for a circularly symmetric,
complex Gaussian distribution. denotes a central real
Chi-squared distribution with degrees of freedom , and
denotes a noncentral real Chi-squared distribution with degrees
of freedom and noncentrality parameter .
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II. PROBLEM FORMULATION

In the detection problem we take into consideration, the re-
ceived -dimensional data is constrained to be of the form

(1)

where is a signal steering vector; is a determin-
istic but unknown complex scalar accounting for the target re-
flectivity and channel propagation effects; is a noise data
vector and is assumed to have a complex circular Gaussian dis-
tribution with zero mean and covariance matrix , i.e.,

, where is the noise power. Notice that if the
noise covariance matrix is originally where is a known
and positive definite matrix, we can use to whiten the re-
ceived data, and then obtain the data model (1). This data model
is often used in spatial and/or temporal signal processing.
The decision on the signal presence can be formulated into

a hypothesis test that distinguishes between the noise-only
hypothesis ( ) and the signal-plus-noise hypothesis ( ),
namely,

(2)

A. Prior Work
As derived in [8, eq. (11)], a generalized likelihood ratio test

solution to the detection problem in the case of unknown noise
power can be derived as

Ξ (3)

where is a detection threshold,

(4)

As obtained in [9], the probability of false alarm is

(5)

and the detection probability is

(6)

where

(7)

B. CFAR Matched Filter in Mismatched Case
The above results are obtained on the assumption that the ac-

tual steering vector is exactly known. In practice, there may
exist mismatch between the actual steering vector and the
nominal steering vector , i.e., . In such a case, a detector
can be obtained by replacing with in (3), i.e.,

(8)

where is a detection threshold,

(9)

The mismatch between the actually and nominal steering vec-
tors is described by

(10)

Note that the amount of mismatch increases as decreases.
The signal steering vector mismatch does not affect the prob-

ability of false alarm, since the received data include no target
signal under . Therefore, the probability of false alarm of the
detector (8) is (5) with replaced by . It can be seen from (5)
that the detector (8) exhibits a CFAR property with respect to the
noise power. Hence, we refer to the detector (8) as a CFAR-MF.
It is worth noting that the signal steering vector mismatch

would have an obvious influence on the detection probability,
and the expression (6) for the detection probability is invalid
for the CFAR-MF in (8). In the following, we derive an exact
expression for the detection probability of the CFAR-MF in the
mismatched case.

III. DETECTION PROBABILITY IN THE MISMATCHED CASE
Define

(11)

The CFAR-MF in (8) can be rewritten as

(12)

It is easy to show that under ,

(13)

where

(14)

Using (7) and (10), we can write (14) as

(15)

The probability density function of under is [17, eq.
(29.4)]

(16)

where is the modified Bessel function of the first kind of
order . From [17, eq. (29.2)], we can obtain that the cumulative
distribution function (CDF) of under is

(17)
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According to [18, eq. 3.351.1], we have

(18)

Plugging (18) into (17) yields

(19)

where we have used the equality . Further, the
complementary CDF (tail distribution) of under is

(20)

Before proceeding, we introduce an integral formula as fol-
lows:

(21)

The derivation of (21) is given in Appendix A.
From (12), we can obtain the detection probability of the

CFAR-MF in the mismatched case as

(22)

where

(23)

Define . Then, we can rewrite as

(24)

where the second equality is obtained by using (21). Applying
(24) to (22) leads to

(25)

It can be seen that the detection performance of the CFAR-MF
is affected by the signal steering vector mismatch through the
noncentrality parameters and .

IV. NUMERICAL RESULTS
In this section, numerical simulations are conducted to check

the validity of the above theoretical result. Assume that a radar
system transmitting coherent pulses is used. Here, we select

. The normalized Doppler frequency of the target is as-
sumed to be 0.1, namely, the actual signal steering vector is

(26)

The signal-to-noise ratio (SNR) in decibel is defined as
.

Note that (25) is an infinite sum expression which is incon-
venient for numerical calculation of the detection probability.
In practice, we can use the first finite terms to approximate the
detection probability. Denote

(27)

Obviously, is obtained by replacing the notation in
the first summation of (25) by .
Fig. 1(a) shows relative errors defined as

(28)

The probability of false alarm is , and the nominal
Doppler frequency is selected to be 0.12 (different to the ac-
tual Doppler frequency 0.1), namely, the nominal signal steering
vector is

(29)
It implies that mismatch occurs between the actual and nominal
steering vectors, i.e., and . It can be seen
in Fig. 1(a) that as increases, the relative error decreases.
Fig. 1(b) plots the curves of as a function of .

For comparison, we also provide the detection probability ob-
tained by MC simulations. The numbers of independent trials
used for simulating the probabilities of false alarm and detec-
tion are and 10 000, respectively. We can observe that

approaches the MC result as increases. Specifically,
the number of terms (i.e., ) required in the chosen parameter
setting is 30 (or 50) when the SNR is 12 (or 15) dB.
Now we comment on how to choose a proper value of

in the calculation of the detection probability. The results in
Fig. 1 highlight that the approximate detection probability

is very close to the true value when the relative error
is less than . As a rule of thumb, is selected in practice
when the relative error is less than . Such a rule is adopted
for the detection probability calculation in the following
simulations.
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Fig. 1. Approximation errors.

Fig. 2. ROC curves of the CFAR-MF.

In Fig. 2, we depict the receiver operating characteristic
(ROC) curves of the CFAR-MF in both matched and mis-
matched cases where the parameters are the same as those
in Fig. 1. It is illustrated in Fig. 2 that the theoretical results
obtained with the first finite terms match the MC results pretty
well. Additionally, the mismatch in the signal steering vector
results in an obvious loss in the detection performance of the
CFAR-MF.
Fig. 3 shows the detection performance of the CFAR-MF

under different degrees of signal mismatch. It can be observed
that the increase in the mismatch leads to the increase in perfor-
mance loss. Note that in the region , the de-
tection probability for dB is slightly lower than that
for dB. This is because the mismatch may result in a
leakage of the signal energy. As the SNR increases, the amount
of the leaked signal energy may grow in the mismatched case,
which leads to a decrease in the detection probability. Similar
phenomena can be found in [13], [15], [19].

V. CONCLUSIONS
We have investigated the performance of the CFAR-MF

which is designed for the detection problem in white Gaussian
noise with unknown noise power. The exact expression for the
detection probability of the CFAR-MF has been derived for the
mismatched case where the nominal signal steering vector is
misaligned with the actual one. Numerical examples show that
the theoretical results match the MC results. This theoretical
expression can serve as a mathematical tool for facilitating the
performance evaluation of the CFAR-MF in practical applica-
tions when signal mismatch exists and cannot be neglected.

Fig. 3. Detection probability of the CFAR-MF with respect to .

APPENDIX

It is shown in [20, eq. (81)] that

(30)

where is the confluent hypergeometric function de-
fined by

(31)

with being the Pochhammer symbol [21]. Let
and , then we have

(32)

From (30) and (32), we have

(33)

Setting , , and in (33) yields

(34)

Using [22], we obtain

(35)
Substituting (35) into (34) results in (21).
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