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Abstract—The problem of detecting a subspace signal is studied
in colored Gaussian noise with an unknown covariance matrix. In
the subspace model, the target signal belongs to a known subspace,
but with unknown coordinates. We first present a new derivation
of the Rao test based on the subspace model, and then propose a
modified Rao test (MRT) by introducing a tunable parameter. The
MRT is more general, which includes the Rao test and the gener-
alized likelihood ratio test as special cases. Moreover, closed-form
expressions for the probabilities of false alarm and detection of the
MRT are derived, which show that the MRT bears a constant false
alarm rate property against the noise covariance matrix. Numer-
ical results demonstrate that the MRT can offer the flexibility of
being adjustable in themismatched case where the target signal de-
viates from the presumed signal subspace. In particular, the MRT
provides better mismatch rejection capacities as the tunable pa-
rameter increases.
Index Terms—Adaptive detection, constant false alarm rate,

mismatched signal rejection, Rao test, subspace signal detection.

I. INTRODUCTION

I N recent years, there have been a large number of investi-
gations on the signal detection problem in colored Gaussian

noise with an unknown covariance matrix [1]–[9]. Typically, a
set of training (secondary) data is assumed to be available to
estimate the unknown noise covariance matrix. Many classic
detectors have been proposed. For instance, Kelly proposed a
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generalized likelihood ratio test (GLRT) detector in [10] by re-
placing the unknown parameters by their maximum likelihood
(ML) estimates in the likelihood ratio. To alleviate the compu-
tational complexity of the GLRT detector, an adaptive matched
filter (AMF) was developed by using a two-step procedure in
[11]. Specifically, in the first step of the AMF, it is assumed that
the noise covariance matrix is known, and a GLRT is obtained
by maximizing the likelihood functions over other unknown pa-
rameters. Then, the ML estimate of the noise covariance matrix
using the training data alone is substituted into the resulting test
obtained from the first step. Another classic detector is the adap-
tive coherence estimator (ACE) [12], [13] which was obtained
by taking into account power non-homogeneity between the test
and training data. Note that the GLRT, AMF and ACE are de-
veloped for the matched case where the target signal is perfectly
matched to the assumed steering vector.
In practice, mismatch of the signal steering vector may exist

due to many factors such as wavefront distortions, calibration
and pointing errors, and imperfect antenna shape [14]. In [15],
Pulsone et al. proposed an adaptive beamformer orthogonal re-
jection test (ABORT) by adding a fictitious signal under the null
hypothesis. This fictitious signal is assumed to be orthogonal to
the target signal in the whitened observation space. It is shown
that the ABORT exhibits better mismatch discrimination capa-
bilities than both the GLRT and AMF. Such capabilities are de-
sired in some practical scenarios. For example, when a target
is outside the antenna main beam but is picked up by the side-
lobe, it is often desirable to reject the sidelobe target (for the
purpose of target localization) and wait until the target enters
into the main beam. An ABORT-like detector with improved
selectivity for distributed target detection was proposed in [16]
and analyzed in [17]. De Maio derived a Rao test in [14], which
achieves better rejection capacities of strong mismatched sig-
nals than the ABORT. Note that none of the above mentioned
detectors can adjust their rejection capabilities of mismatched
signals.
In [18], [19], an adaptive sidelobe blanker (ASB) consisting

of a cascade of the AMF and ACE was introduced, which can
trade a slight loss of detection performance of matched signals
for better rejection capabilities of mismatched signals. This cas-
cade approach was also employed in [20]–[23]. Specifically,
Pulsone et al. developed a computationally efficient two-stage
detector consisting of the AMF test followed by the GLRT test
[20]. It can achieve a detection and sidelobe rejection perfor-
mance commensurate with the GLRT, but works in a lower com-
putational complexity. By introducing a multi-rank subspace
model for target signals to take into account an uncertainty of the
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signal model, Bandiera et al. presented a subspace-based adap-
tive sidelobe blanker (S-ASB) in [21], and a whitened ABORT
subspace-based ASB (WAS-ASB) in [22]. The former consists
of the subspace-version GLRT followed by the ACE, whereas
the latter is the cascade of the subspace-version GLRT and the
whitened ABORT. The selectivity of these two-stage detectors
can be adjusted by choosing different threshold pairs. Note that
in the S-ASB and WAS-ASB, the subspace model is adopted
only in the first stage (i.e., the subspace-version GLRT), which
can lead to an improvement in robustness. Another approach on
addressing target uncertainty is to employ convex constraints
for the target steering vector, as used in [24]–[26] to seek detec-
tion robustness.
In the above detectors, the target steering vector is a rank-one

signal. It is noted that the usage of a multi-rank subspace model
in the first stage of the S-ASB or WAS-ASB aims to account
for an uncertainty of the actual signal steering vector; how-
ever, the target signal is still rank-one. In some applications,
the signal of interest is naturally multi-rank. For example, the
data collected from multiple polarimetric channels in polariza-
tion radars can be formulated as a subspace model for target
detection [27]–[34]. It should be stressed that in such cases,
the subspace model is not intended to account for target uncer-
tainty. The subspace signal model was also employed for mul-
tiuser detection [35]–[37], and signal estimation in multipath
environments [38], [39]. The subspace signal detection problem
has been extensively studied in, e.g., [40]–[43]. The GLRT and
AMF were extended to a rank-two subspace model in [27] and
[29], respectively. In [44], the performance of the GLRT and
AMF was evaluated analytically for the subspace model where
the subspace dimension is arbitrary. An adaptive subspace de-
tector (ASD) was proposed in [45] as a generalization of the
ACE. Recently, Liu et al. generalized the Rao test from the
rank-1 to rank- subspace signal model, and obtained
a subspace version of the Rao test in [46]. However, the the-
oretical performance of the subspace-version Rao test was not
examined. Moreover, one common issue in the detectors men-
tioned above is that the detection performance for matched sig-
nals and rejection performance for mismatched signals cannot
be adjusted when the target signal has multi-rank. In practice, it
is desired to offer a tradeoff between the two performance met-
rics for matched and, respectively, mismatched signals.
In this paper, we examine the subspace signal detection

problem whereby the signal of interest is constrained to a
multi-rank subspace with unknown coordinates. Our main
contributions are listed as below:
1) We provide a simple derivation of the subspace Rao test

by using both the test and training data in the estimation of
the noise covariance matrix. This derivation offers an addi-
tional insight that the detection probability of the subspace
Rao test does not necessarily increase with the signal-to-
noise ratio (SNR).

2) A new modified Rao test (MRT) with a tunable parameter
is proposed, which includes the GLRT and Rao test as spe-
cial cases. Our proposed MRT is notably different from the
two tunable detectors introduced in [23], [47], which were
designed for rank-one signal detection but cannot be used
for multi-rank subspace signal detection. Numerical results

show that the mismatched signal rejection performance of
the proposed MRT improves as the tunable parameter in-
creases. Remarkably, the MRT with a large tunable param-
eter can better reject mismatched signals than existing de-
tectors.

3) We develop theoretical results pertaining to the statis-
tical properties of the MRT for both the matched and
mismatched cases. In the matched case, the target signal
belongs to a presumed subspace, whereas in the mis-
matched case the target signal deviates from the presumed
subspace. Closed-form expressions for the probabilities
of false alarm and, respectively, detection of the MRT are
derived under a non-fluctuating as well as a fluctuating
target model. Our theoretical results are confirmed by
Monte Carlo (MC) simulations. It is found that the MRT
has a constant false alarm rate (CFAR) with respect to the
noise covariance matrix. These theoretical expressions
facilitate the performance evaluation of the MRT in prac-
tical scenarios.

The remainder of this paper is organized as follows.
Section II contains the signal model. In Section III, the Rao
test is introduced, and a simple derivation of the Rao test is
provided. A modified Rao test is proposed, and its performance
analysis is included in Section IV. Simulation results are
presented in Section V, and finally the paper is concluded in
Section VI.
Notation: Vectors (matrices) are denoted by boldface lower

(upper) case letters. Superscripts , and denote trans-
pose, complex conjugate and complex conjugate transpose, re-
spectively. The notation means “is distributed as,” and
denotes a circularly symmetric, complex Gaussian distribution.

denotes the mean of a random argument. means equiv-
alence in distribution. denotes the central Chi-squared dis-
tribution with degrees of freedom, while denotes the
non-central Chi-squared distribution with degrees of freedom
and a non-centrality parameter . represents the modulus of
a complex number, and . is the binomial coeffi-
cient. is the identity matrix of dimension , and is the
trace of a matrix.

II. SIGNAL MODEL

Consider the following model of the test data:

(1)

where is a known full-rank matrix of dimension whose
columns span the subspace containing target signals; is a de-
terministic but unknown coordinate vector of dimension , ac-
counting for the target reflectivity and channel propagation ef-
fects; the noise is assumed to have a circularly symmetric,
complex Gaussian distribution, i.e., , where
is a positive definite covariance matrix of dimension . In
practice, the noise covariance matrix is usually unknown. A
standard assumption is that there exists a set of homogeneous
training data free of target signal components, i.e., {

, and }, which can be used
to estimate .
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Example: The model (1) is often employed in polarimetric
radars where the data received in multiple polarimetric channels
are combined for target detection [27]–[29]. More specifically,
assume that a polarimetric radar transmits a train of radar
pulses alternatively at each of two linear polarizations (i.e., H
and V) and receives in both. The available polarimetric channels
are HH, VV, VH, and HV. In the th polarimetric channel, the
received data is denoted by

(2)

where is the complex target amplitude, and is the signal
steering vector represented by

(3)

with being the normalized target Doppler frequency. Sup-
pose that we use the data collected from polarimetric channels
for target detection (e.g., HH and VV channels are employed if

). Stacking these data into a longer column
vector of dimension , we have

(4)

where with ,
, and . The covariance matrix of

has the block structure

...
. . .

... (5)

where each block matrix de-
notes the correlation property of a pair of polarimetric channels.
When ,

(6)

where denotes the noise power in the HH or VV polarimetric
channel, is a fraction accounting for the cross-correlation be-
tween the two copolarized noise, and is the normalized noise
covariance matrix [28].
Let the null hypothesis be that the test data are target

signal free and the alternative hypothesis be that the test
data contain the target signal. Hence, the detection problem is
to decide between the null hypothesis

(7a)

and the alternative one

(7b)

It has to be emphasized here that for the target signal in
the received data intrinsically belongs to a subspace spanned
by the columns of , and this multi-rank subspace model is not
for the purpose of accounting for the uncertainty on the signal

steering vector as in [21], [22]. As such, the two-stage detectors
such as the S-ASB and WAS-ASB developed therein cannot be
applied to the multi-rank subspace detection problem with
in (7), since they are all designed for rank-one signal detection.

It is worth noting that the second test in the S-ASB (or WAS-
ASB) is the ACE (or whitened ABORT) which is for rank-one
signal detection. In addition, the tunable detectors proposed in
[23], [47] cannot either be used in the detection problem (7) with

.

III. RAO TEST
For the above detection problem (7), several adaptive detec-

tors have been proposed, such as the subspace-version GLRT in
[27], subspace-version AMF in [29], and subspace-version Rao
test in [46]. Here, we reconsider the Rao test. We first briefly
review the standard approach leading to the Rao test, and then
give a new and simpler derivation for the Rao test, which offers
some useful insight into the detector. In the next section, we will
propose a new tunable detector which includes the GLRT and
Rao test as special cases.

A. Prior Work
Let be the parameter vector partitioned as

(8)

where and . Usually, and are called
the relative and nuisance parameters, respectively. Denote by
and the joint probability density functions (PDFs) of and

under and , respectively. The Fisher
information matrix associated with can be expressed
as

(9)

According to [48], the Rao test for complex-valued signals is
given as

Ξ (10)

where is the ML estimate of under , and
is

(11)

evaluated at .
Define

(12)

As derived in [46], the Rao test for the detection problem in (7)
can be expressed as

(13)
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where

(14)
(15)

with denoting the inverse of the Hermitian square root
of a matrix, and

(16)

(17)

B. A Simple Derivation of the Rao Test
Here, we give a new derivation of the Rao test (13) by modi-

fying the classic AMF detector which is given by

(18)

where is the detection threshold, and is defined in (12).
We first form an estimate of the noise covariance matrix by

exploiting both the test and training data,

(19)

Then, a modified AMF detector is obtained by using to re-
place in the classic AMF, i.e.,

Ξ (20)

where is a detection threshold. In the sequel, we prove the
equivalence between (13) and (20).
According to the matrix inversion lemma [49, p. 1348], we

have

(21)

Therefore,

(22)

and

(23)

Taking (22) and (23) into the test statistic Ξ of (20), we ob-
tain

Ξ

(24)

where

(25)

Applying the matrix inversion lemma to (25), we have

(26)

Substituting (26) into (24) leads to

Ξ

(27)

where is given in (18). Using the notations in (14)-(17),
we have

(28)

and

(29)

Thus, Ξ in (27) can be rewritten as the Rao test defined
in (13). This shows that the detector in (20) is equivalent to the
Rao test in (13), even though they have different forms.
The above new derivation reveals that in the Rao test, the

estimate of the noise covariance matrix is obtained by using the
training data and as well the test data. Note that the test data
may include the target signal, in which case it leads to the signal
contamination in the noise covariance matrix estimate. When
the number of training data is limited, the effect of the signal
contamination on the noise covariance matrix estimate is more
severe. It is expected that the detection performance of the Rao
test degrades in the case of limited training data. This prediction
will be confirmed by simulation results in Section V.
It is worth noting that in practice, the Rao test in the form of

(20) has considerably less computational complexity than that
in (13) when running the detector continuously over a block
of range bins. Specifically, for (20), the covariance matrix es-
timate (19) is computed only once by using all data inside the
data block. To the contrary, (13) requires a different covariance
matrix to be computed for each range bin, by removing the test
data and using the rest of the data block along with (12) for co-
variance matrix estimation.

IV. MODIFIED RAO TEST
As shown above, the Rao test has the following form:

Ξ

(30)
Recall that the GLRT detector proposed in [27], [44] can be
written as

(31)
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where is the detection threshold. Note that the only dif-
ference between the Rao test and the GLRT is the second term

in the denominator of (30). Based on this
observation, we propose a modified Rao test (MRT) involving
a tunable parameter as follows:

Ξ

(32)

where is a detection threshold, is a tunable parameter.
Obviously, the MRT contains the GLRT and Rao test as special
cases of and , respectively.
It should be pointed out that the analytical performance of the

Rao test is not examined in [46]. In the sequel, we first investi-
gate the statistical properties of the proposed MRT, and then de-
rive closed-form expressions for its probabilities of false alarm
and detection. Apparently, by setting we also fill the gap
on the analytical performance of the Rao test that is missing in
[46].
Similar to [40], it can be shown that

Ξ (33)

where is a loss factor whose PDF is

(34)

After an equivalent transformation, we have

(35)

Similar to [50, eq. (B39)], we can derive that

under

under
(36)

with

(37)

Note that to guarantee the positiveness of the right-hand side of
(35), the value of the random variable is now restricted to the
range

(38)

Define

(39)

and

under
under (40)

Then, we obtain

(41)

A. Probability of False Alarm

Based on (35), we can obtain the probability of false alarm
conditioned on as

(42)

Therefore, the probability of false alarm of the Rao test can be
obtained by averaging over , i.e.,

(43)

where is given in (34). This integral expression for the
probability of false alarm can be written as a finite-form form,
i.e.,

(44)

It follows that the MRT exhibits the desirable CFAR property
against the noise covariance matrix, since the probability of
false alarm in (44) is irrelevant to the noise covariance matrix.

B. Detection Probability

In this subsection, we will derive the detection probability
of the MRT both in matched and mismatched cases. In the
matched case the target signal exactly lies in the nominal
subspace, whereas in the mismatched case the target signal
does not belong to the nominal subspace.
1) Matched Case: We first consider the matched case. Let

(45)
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where the loss factor is temporarily fixed. The PDF of con-
ditioned on is

(46)

where . Using (41) and (45), we can rewrite (35) as

(47)

As a result, the probability of detection conditioned on can be
obtained as

(48)

Furthermore, the detection probability of the MRT is obtained
by averaging over , i.e.,

(49)

where is given in (34).
For the Rao test (i.e., ), we can simplify the integral in

(49) as a finite-sum form as follows

(50)

where

(51)

and

(52)

with denoting the incomplete Gamma function defined
by [51, p. 899]

(53)

for arbitrary positive integer . Up to now, we have derived the
finite-sum expressions for the probabilities of false alarm and
detection of the Rao test proposed in [46].
Note that the above analysis is based on the un-fluctuating

target model where the target signature is assumed to be de-
terministic. In the following, we derive the detection probability
of the MRT in the fluctuating target model where the target sig-
nature is stochastic and has a complex circular Gaussian dis-
tribution with zero mean and covariance matrix , i.e.,

.
The probability of false alarm of the MRT in the fluctuating

target model is the same as that in the un-fluctuating target
model, since it is assumed that the target echoes do not exist
under . The randomness of the target signature affects the
detection probability of the MRT through the non-centrality pa-
rameter in (37). Hence, we need to derive the PDF of , which
can be obtained in a way similar to that in [52, eq. (27)].
As an example, we give an explicit expression for the detec-

tion probability of the MRT with in the fluctuating target
model. In the case of , we can decompose as

(54)

where and are the th eigenvalue and the corresponding
unit-norm eigenvector of , respectively, and it is as-
sumed that . Let

(55)

Then,

(56)
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where

(57)

It follows that the PDF of is

(58)
Further, the detection probability of the MRT with in the
fluctuating target model is

(59)

where

(60)

2) Mismatched Case: Here we consider the mismatched case
where the actual target signal subspace deviates from the pre-
sumed subspace. To quantify the mismatching, we define the
angle between the actual signal steering vector and the
nominal subspace as follows [46]

(61)

Note that corresponds to the case where the actual signal
belongs to the nominal subspace. For the case of . the
subspace matrix reduces to a steering vector denoted by ,
and the coordinate vector becomes a scalar denoted by . The
angle between the actual signal steering vector and the
nominal subspace becomes

(62)

In the following, we derive a closed-form expression for the
detection probability of the MRT for the mismatched case with

. It is obtained in [53] that the PDF of in the mismatched
case is

(63)

where

(64)

and

(65)

with . According to (48), the detection probability
conditioned on in the case of becomes

(66)

where the non-centrality parameter in the mismatched case
becomes

(67)

Therefore, the detection probability of the MRT with can
be expressed as

(68)

where and are given in (66) and (63), respectively.
For the fluctuating target model where with
denoting the target power, the detection probability of the

MRT can be expressed as

(69)

where , and the PDF of is

(70)

Using (63), (66) and (70), we can obtain

(71)

where

(72)
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Fig. 1. Probability of false alarm of the MRT versus the detection threshold
for . The symbols “ ” are MC simulation results, and the lines denote the
results obtained with the finite-sum expression in (44).

and

(73)

with .
It should be pointed out that the detection probability of the

MRT is unavailable for the case of , since it is difficult to
derive the PDF of for the multi-rank subspace case.

V. NUMERICAL RESULTS
In this section, numerical simulations are conducted to con-

firm the validity of the above theoretical results. The data model
(4) for the polarimetric radar system is used.We choose ,

, and . The normalized noise covariance ma-
trix is Gaussian shaped with one-lag correlation coefficient
0.9, i.e., . Assume that the complex target am-
plitude vector has a circular complex Gaussian distribution,
i.e., , where is the target power. Define the
SNR in decibel as

(74)

where is the noise power defined in (6).
The probability of false alarm of the MRT with as a

function of the detection threshold is shown in Fig. 1, where the
lines denote the results obtained with the finite-sum expression
in (44), and the symbols “ ” represent the results obtained with

MC simulations. The number of independent trials used in each
case is . It can be seen that the theoretical results are in good
accordance with the simulation results.

A. Matched Case
Here, we examine the detection performance of the proposed

MRT with in the matched case where the target signal
belongs to the nominal subspace. The probability of false alarm
is set to be throughout the following simulations.
In Fig. 2, the detection probability of the proposed MRT as a

function of SNR is plotted for different . Here, we choose
. Note that the proposed MRT with corresponds to

the Rao test derived in [46] for point-like targets. The solid line
denoting the detection probability of the proposed MRT is ob-
tained from the theoretical expression derived in Section IV-B,
while the symbols “ ” represent the results obtained from MC
simulations to provide an independent confirmation of the the-
oretical results. It is shown that the theoretical results match the
MC simulation results pretty well.
For comparison, we consider the AMF (18), the GLRT de-

tector (31), and the ASD given by [45]

(75)

Note that comparisons between the proposed MRT and the two-
stage (or tunable) detectors in [20]–[23], [47] are not made for
the case of , since these detectors are designed for ,
and cannot be applied to the case of .
We can observe in Fig. 2 that when the number of training

data is limited (e.g., in Fig. 2(a) or in Fig. 2(b)),
the detection performance of the Rao test is the worst. This ob-
servation is consistent with the analysis in Section III. Interest-
ingly, there exists a ceiling for the detection performance of the
Rao test in the case of limited training data. This phenomenon
is due to the fact that the estimate of the noise covariance ma-
trix in the Rao test is contaminated by the target signal. Never-
theless, this phenomenon can be alleviated by using sufficient
training data (e.g., in Fig. 2(c)). This is as expected,
since the more the secondary data, the less the negative effect
of the signal contamination on the noise covariance matrix es-
timate. When the number of training data is large, the Rao test
provides detection performance similar to the counterparts.
Fig. 3 shows the detection probability of the proposed MRT

as a function of the tunable parameter for the case of .
It can be seen that as the tunable parameter increases, the de-
tection probability decreases. Note that and cor-
respond to the GLRT detector and the Rao test, respectively. It
implies that the proposed MRT provides detection performance
no better than the GLRT detector.

B. Mismatched Case
In the above simulations, we assume that there is nomismatch

in the signal model. In practice, the signal may not belong to
the presumed subspace, due to many factors such as calibra-
tion errors, and wavefront distortions. We first consider the mis-
matched case of where the actual signal subspace denoted
by is not aligned with the nominal subspace . The amount
of mismatch between and is measured by (61).
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Fig. 2. Detection probability versus SNR with , , and in
the matched case. The symbols “ ” denote the results obtained by MC simula-
tions, and the lines denote the results obtained with the theoretical expression
in (59). (a) ; (b) ; (c) .

In Fig. 4, the detection probability curves of the MRT with
with different tunable parameters are plotted with respect

to for and 15 dB. All the curves are obtained
with MC simulations. We can observe that the selectivity of the
proposed MRT can be flexibly controlled by adjusting the tun-
able parameter . Specifically, the rejection capabilities of mis-
matched signals of the MRT increase as the tunable parameter
increases.

Fig. 3. Detection probability versus the tunable parameter for in the
matched case. The symbols “ ” denote the results obtained by MC simulations,
and the lines denote the results obtained with the theoretical expression in (59).

Fig. 4. Detection probability versus for and in the
mismatched case. (a) ; (b)

Interestingly, the MRT with (i.e., the Rao test) has
better rejection of mismatched signals than the ASD for the con-
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sidered scenario. It is also shown that when the tunable param-
eter increases from 0 to 1, the selectivity of the MRT dra-
matically improves. Further increase in the tunable parameter
appears to lead to a slight improvement in the capability of re-
jecting mismatched signals. In addition, it is observed that the
mismatched rejection capability of the AMF is the worst, which
was also observed in [11], [15].
Next, we examine the mismatched case of , where the

subspace matrix reduces to a steering vector denoted by .
Fig. 5 shows the contour of constant detection probability of
the MRT with respect to for . Note that the ex-
isting two-stage detectors and tunable detectors can be applied
to the case of . For comparison purposes, we consider
two tunable detectors (i.e., the KWA [23] and the tunable de-
tector in [47]) and three two-stage detectors (i.e., the WAS-ASB
[22], S-ASB [21], and the AMF-GLRT detector [20]). In the
WAS-ASB and S-ASB, the subspace used in the first stage for
taking into account the uncertainty in the signal steering vector
is chosen as

(76)

where is defined in (3), and

(77)

For fair comparisons, the threshold pair for each two-stage de-
tector (or the tunable parameter in each tunable detector) is
chosen to ensure about 1 dB SNR loss with respect to Kelly’s
GLRT detector for matched signals at . It can be
seen that in this parameter setting the selectivity of the proposed
MRT is slightly better than the KWA and WAS-ASB at the re-
gion of high SNR, and significantly better than the other detec-
tors.
Note that all the curves in Fig. 5 are obtained by MC simu-

lations. We also used the closed-form expression in (69) to cal-
culate the contour of the constant detection probability of the
MRT, and found that the theoretical results are consistent with
the MC ones. For clarity of exposition, the theoretical results
are not presented in Fig. 5.

VI. CONCLUSION
In this paper, we examined the multi-rank subspace signal

detection problem. A simple derivation of the Rao test was pre-
sented by using both the test and training data in the noise cor-
relation estimation. Moreover, we proposed the MRT by intro-
ducing a tunable parameter. It subsumes the GLRT and Rao test
as particular cases. The performance of the proposed MRT is
evaluated in terms of the probabilities of false alarm and de-
tection. It is shown that the MRT has the CFAR property with
respect to the noise covariance matrix. In practice, the detection
threshold of the MRT can be easily set by using the closed-form
expression for the probability of false alarm. Simulation results
reveal that the mismatched signal rejection capabilities of the
proposed MRT can be flexibly adjusted. Specifically, the mis-
matched signal rejection capabilities improve as the tunable pa-
rameter increases. When the tunable parameter is sufficiently
large, the rejection performance of the proposed MRT is better
than that of its counterparts.

Fig. 5. Contour of constant detection probability for and in the
mismatched case.
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