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a b s t r a c t 

This paper examines a target detection problem in colored Gaussian disturbance with an unknown co- 

variance matrix. In many classic adaptive detectors, the covariance estimator is formed by using only 

the training data. This necessitates calculating a new covariance estimator for each cell under test (CUT) 

during the cell-by-cell target search process. We consider herein an alternative approach that forms the 

covariance matrix estimate by using both test and training data for detection in homogeneous environ- 

ments. This approach is computationally much more efficient since the covariance matrix estimator is 

computed only once and can be applied for target detection at each CUT. Using this estimator, we propose 

a new detector with two tunable parameters, which includes several existing detectors as special cases. 

Closed-form expressions for the probabilities of false alarm and detection are derived in the matched 

and mismatched cases for both non-fluctuating and fluctuating target models. Simulation results reveal 

that the rejection capability of mismatched signals of the proposed detector can be flexibly controlled 

by adjusting its tunable parameters. In particular, the proposed detector can achieve the same detection 

performance as the generalized likelihood ratio test (GLRT) detector derived by Kelly, but has a much 

lower computational burden. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Target detection in Gaussian disturbance with unknown co-

ariance matrix has been a topic of long-standing interest in

adar/sonar signal processing [1–19] . Typically, the presence of tar-

et is sought in a (range) cell under test (CUT). The data collected

rom the CUT is referred to as the test (primary) data. A set of

ndependent and identically distributed training (secondary) data

amples, which contain disturbance only, are employed to esti-

ate the unknown disturbance covariance matrix. In radar prac-

ice, these training data samples are usually collected from range

ells adjacent to the CUT. 

Several classic detection algorithms have been proposed in the

ast. Specifically, Kelly proposed a generalized likelihood ratio test

GLRT) detector through replacing all unknown parameters with

heir maximum likelihood (ML) estimates under each hypothesis in
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ne step [1] . Meanwhile, an adaptive matched filter (AMF) detector

as derived with an ad hoc two-step procedure [3] . In particular,

t first assumes the disturbance covariance matrix is known and

btains a GLRT by maximizing over other unknown parameters;

hen a test statistic is obtained by substituting the disturbance co-

ariance matrix with its ML estimate based on the training data

lone. In [4] , an adaptive coherence estimator (ACE) was proposed

o handle a non-homogeneity between the test and training data.

 prominent feature of the above three detectors is that they all

chieve constant false alarm rate (CFAR) with respect to the un-

nown disturbance covariance matrix. Note that the performance

f the GLRT, AMF and ACE cannot be flexibly adjusted. In the last

wo decades, researchers have proposed many tunable detectors

ncluding parametric [10] and two-stage receivers [20–23] . 

Since the location of the target to be detected is generally un-

nown in practice, a grid search is often resorted to, which divides

he desired radar surveillance area into many (range) cells or bins.

e need to test each cell one by one to decide whether the in-

erested target is present or not. For target detection in a specific

ell, a standard approach is to employ the data collected from cells

djacent to the CUT as training data, and then use these training
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data to estimate the disturbance covariance matrix. Obviously, the

training data are different for different CUTs, which implies that a

new estimate of the disturbance covariance matrix has to be cal-

culated for a distinct CUT in the detectors mentioned above. This

operation entails heavy computational complexity, particularly in

space-time adaptive processing [24,25] , where the data dimension

is the product of the number of array elements and the number

of taps of the Doppler filters which can be quite high even with a

moderate number of array antennas and filter taps. 

For target detection in homogeneous environments, Gerlach in

[26] introduced a new covariance matrix estimator to avoid calcu-

lating a large number of covariance matrices and their inverses by

employing both the test and training data. Note that the idea of us-

ing the whole data block for estimation is similar to the mean level

adaptive detector (MLAD) with scalar data [27,28] . Once the dis-

turbance covariance matrix estimate is calculated with the whole

data block, it can be applied for detection in each cell. Apparently,

this approach is computationally much more efficient. It should

be pointed out that the whole data might contain a target signal,

which can lead to some performance loss, but at the benefit of sig-

nificantly reducing the computational complexity. The performance

loss is considered negligible when the training size is sufficiently

large and targets are rare. 

Based on the covariance estimator using both the test and train-

ing data, we propose in this paper a new detector with two tun-

able parameters a and b , which includes the detector in [26] as

a special case. In particular, the proposed detector with a = 1 and

b = −1 provides the same detection performance as Kelly’s GLRT

detector. It should be emphasized that the proposed detector has a

much lower computational burden than the conventional detectors

(i.e., Kelly’s GLRT, the AMF, and the ACE). The statistical properties

of the proposed detector are investigated for both the matched and

mismatched cases depending on whether the actual steering vector

is aligned with the nominal one. It should be pointed out that the

mismatched case is not studied in [26] . Closed-form expressions

for the probabilities of false alarm and detection of the proposed

detector are derived for both non-fluctuating and fluctuating tar-

get models. In the non-fluctuating model, the target amplitude is

considered to be deterministic, while in the fluctuating model, the

target amplitude is assumed to have a generalized Chi distribution

which includes the Rayleigh distribution as a special case. These

theoretical results are confirmed by using Monte Carlo (MC) simu-

lations. Numerical results demonstrate that the selective capability

of the proposed detector can be flexibly adjusted by changing the

tunable parameters. 

The remainder of this paper is organized as follows.

Section 2 formulates the problem to be studied. In Section 3 ,

a detector with tunable parameters is proposed, and performance

analysis is provided in detail. Simulation results are illustrated in

Section 4 and finally the paper is summarized in Section 5 . 

Notation. Vectors (matrices) are denoted by boldface lower (up-

per) case letters. Superscripts ( ·) T , ( ·) ∗ and ( ·) † denote transpose,

complex conjugate and complex conjugate transpose, respectively.

The notation ∼ means “is distributed as,” and CN denotes a cir-

cularly symmetric, complex Gaussian distribution. 
d = means the

former and latter random quantities have the same distribution.

χ2 
n denotes a real central Chi-squared distribution with n degrees

of freedom, while χ ′ 2 
n (ζ ) denotes a real non-central Chi-squared

distribution with n degrees of freedom and a non-centrality pa-

rameter ζ . | · | represents the modulus of a complex number and

j = 

√ −1 . C 

m 

n = 

n ! 
m !(n −m )! 

and �( ·) are the binomial coefficient and

the Gamma function, respectively. 
. Data model 

Consider the following model of the received data in a CUT: 

 = α s + n , (1)

here s is a known steering vector of dimension N × 1; α is a de-

erministic but unknown complex scalar accounting for the target

eflectivity and the channel propagation effects; the disturbance n

s assumed to have a circularly symmetric, complex Gaussian dis-

ribution, i.e., n ∼ CN (0 , R ) , where R is a positive definite covari-

nce matrix of dimension N × N . These data may be temporal sam-

les, spatial samples (obtained with an array), or any mix of the

bove. 

In practice, the disturbance covariance matrix R is usually un-

nown. To estimate it, we impose a standard assumption that there

xists a set of homogeneous secondary data free of target signal

omponents, i.e., { y k | y k ∼ CN (0 , R ) , k = 1 , 2 , . . . , K and K ≥ N} . In

rray signal processing, this set of secondary data are usually col-

ected from the range cells adjacent to the CUT. Let the null hy-

othesis ( H 0 ) be that the target signal is free in the test data and

he alternative hypothesis ( H 1 ) be that the test data contain the

arget signal. Hence, the detection problem is to decide between

he null hypothesis 

 0 : 

{
x ∼ CN (0 , R ) 
y k ∼ CN (0 , R ) , k = 1 , . . . , K, 

(2a)

nd the alternative one 

 1 : 

{
x ∼ CN (αs , R ) 
y k ∼ CN (0 , R ) , k = 1 , . . . , K. 

(2b)

It is easy to show that based on these secondary data, the ML

stimate of the disturbance covariance matrix (up to a scaling fac-

or) is 

ˆ 
 = 

K ∑ 

k =1 

y k y 
† 

k 
. (3)

sing this disturbance covariance matrix estimate, several classic

daptive detectors were proposed, including, e.g., the GLRT [1] ,

MF [3] , and ACE [4] : 

 GLRT = 

| s † ˆ R 

−1 x | 2 
(s † ˆ R 

−1 s )(1 + x 

† ˆ R 

−1 x ) 

H 1 
≷ 

H 0 

t GLRT , (4)

 AMF = 

| s † ˆ R 

−1 x | 2 
s † ˆ R 

−1 s 

H 1 
≷ 

H 0 

t AMF , (5)

 ACE = 

| s † ˆ R 

−1 x | 2 
(s † ˆ R 

−1 s )( x 

† ˆ R 

−1 x ) 

H 1 
≷ 

H 0 

t ACE . (6)

n the applications of the above three detectors, we need to cal-

ulate a new covariance estimator for a different CUT in the grid

earch stage, which incurs heavy computational burdens, especially

hen the data dimension is high (e.g., in space-time adaptive pro-

essing [24,25] ), and/or the number of cells to be tested is large

e.g., in high-resolution radar). 

. Detector with tunable parameters 

To alleviate the computational burden stated above, we esti-

ate the disturbance covariance matrix by using both the test and

raining data, i.e., 

˜ 
 = 

ˆ R + xx 

† . (7)
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sing this estimator, we propose a new detector with two tunable

arameters as follows 

= 

| s † ˜ R 

−1 x | 2 
(s † ˜ R 

−1 s )(a + b x 

† ˜ R 

−1 x ) 

H 1 
≷ 

H 0 

λ, (8) 

here λ denotes a detection threshold, a and b are tunable param-

ters. 

Note that the whole data block including both the test and

raining data are used to calculate the disturbance covariance ma-

rix estimate. Signal contamination affects the accuracy of the dis-

urbance covariance matrix estimate through 

˜ R in (7) . If multiple

argets appear in the training data, the accuracy of the disturbance

ovariance matrix estimate is likely to be further reduced, and so

s the detection performance of the proposed detector. Neverthe-

ess, the performance loss is small when the training size is large

nd targets are rare. 

It should be emphasized that the proposed detector using ˜ R in

7) instead of ˆ R in (3) has the benefit of lower computational bur-

en. Assume that the total number of cells under test in the grid

earch is M which is usually much larger than N , i.e., M � N . The

ominant complexity in the classical detectors (4) –(6) or the pro-

osed detector (8) is the matrix inversion. The complexity of the

roposed detector is O(N 

3 ) flops, because that once the estimate
˜ 
 in (7) is obtained, we can use it for target detection in all CUTs

uring the stage of grid search. In contrast, the complexity of the

lassical detectors (4) –(6) is O(MN 

3 ) flops, due to the requirement

f calculating a different estimate of the disturbance covariance

atrix for each CUT in the grid search. 

Note that the two parameters a and b in (8) cannot be simul-

aneously zero, and a ≥ 0. Since scaling the test statistic gives

n equivalent one in the sense that the detection performance is

he same, the term (a + b x † ˜ R 

−1 x ) in the denominator of the test

tatistic � in (8) can be equivalently transformed as (1 + 

b 
a x 

† ˜ R 

−1 x )

y scaling 1 
a (if a � = 0). Nevertheless, we keep both parameters in

8) so that two special cases of interest are included: 1) a = 0 and

 � = 0; 2) a � = 0 and b = 0 . The detector in (8) is very general, which

ncludes several existing detectors as special cases. 

• For a = 1 and b = −1 , it has the same detection performance as

Kelly’s GLRT detector 1 [1] ; however, the proposed detector (8) in

this case has a form different from Kelly’s GLRT detector, and

is computationally simpler to implement, since the former just

needs to calculate one covariance matrix and its inverse in the

grid search stage, while the latter has to calculate a new covari-

ance matrix and its inverse for a distinct CUT; 
• For a = 1 and b = 1 , it corresponds to Kelly’s GLRT with 

ˆ R re-

placed by the new covariance matrix estimator ˜ R ; 
• For a = 1 and b = 0 , it is the Rao test in [8] ; 
• For a = 0 and b = 1 , it is the ACE with 

ˆ R replaced by ˜ R . 

In some practical scenarios, the true target steering vector s 0 
ay not be aligned with the nominal one s , due to many factors

uch as array calibration and/or position errors, imperfect antenna

hape, and wavefront distortions. Denote by φ the angle between

he actual and nominal steering vectors, i.e., 

os 2 φ = 

| s † 
0 
R 

−1 s | 2 
(s † R 

−1 s )(s † 
0 
R 

−1 s 0 ) 
. (9) 

n the following, we investigate the statistical properties of the

roposed detector in both the matched ( φ = 0 ) and mismatched
1 As derived in (45) of Appendix A, the proposed detector (8) with a = 1 and 

 = −1 can be rewritten as � = 

T GLRT 

1 −T GLRT 
. It is known that any monotonic transfor- 

ation on the statistic test does not change the detection performance. Hence, the 

roposed detector (8) with a = 1 and b = −1 is equivalent to Kelly’s GLRT detector 

n terms of detection performance. 

P

S

P

 φ � = 0 ) cases, and then derive closed-form expressions for its

robabilities of false alarm and detection in non-fluctuating and

uctuating target models. 

Define 

 ̄GLRT = 

T GLRT 

1 − T GLRT 

(10) 

nd 

= 

T GLRT 

T AMF (1 − T GLRT ) 
, (11) 

here T GLRT and T AMF are given in (4) and (5) , respectively. As

hown in Appendix A, the proposed tunable detector in (8) can be

quivalently written as 

 ̄GLRT 

H 1 
≷ 

H 0 

ξ , (12) 

here 

= 

λ(a + b) − bρλ

ρ − λ(a + b) 
. (13) 

.1. Non-fluctuating target model 

First, we consider the non-fluctuating model where the target

mplitude α is deterministic. According to [29] , the distribution of

 ̄GLRT conditioned on ρ can be expressed as 

 ̄GLRT 
d = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

χ2 
2 

χ2 
2(K−N+1) 

, under H 0 

χ ′ 2 
2 (2 δρ) 

χ2 
2(K−N+1) 

, under H 1 

(14) 

here 

= | α| 2 s † 
0 
R 

−1 s 0 cos 2 φ. (15)

oreover, the PDF of ρ is [29] 

p ρ (ρ) = exp (−ρ�φ) 
K−N+2 ∑ 

n =0 

C 

n 
K−N+2 

K! 

(K + n )! 

× �n 
φ f K−N +2 ,N + n −1 (ρ) , 

(16) 

here 

φ = | α| 2 s † 
0 
R 

−1 s 0 sin 

2 φ, (17)

nd 

f k,m 

(x ) = 

(k + m − 1)! 

( k − 1)!(m − 1)! 
x k −1 ( 1 − x ) m −1 (18)

ith 0 < x < 1. Under H 0 , we have �φ = 0 . Then, the PDF of ρ
educes to 

p ρ (ρ) = 

K! 

(K − N + 1)!(N − 2)! 
ρK−N+1 (1 − ρ) N−2 . (19)

imilar to the derivation in [30] , the probability of false alarm can

e obtained as 

 FA = 

∫ 1 

(a + b) λ
P FA | ρ p ρ (ρ) d ρ, (20)

here p ρ ( ρ) is given in (19) , and 

 FA | ρ = 

[
ρ(1 − bλ) 

ρ − (a + b) λ

]−(K−N+1) 

. (21) 

ubstituting (19) and (21) into (20) yields 

 FA = 

K!(1 − bλ) −(K−N+1) 

(K − N + 1)!(N − 2)! 
J, (22) 
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where 

J = 

∫ 1 

(a + b) λ
(1 − ρ) N−2 [ ρ − (a + b) λ] K−N+1 d ρ. (23)

According to [31, Eq. (3.196.3)] , we obtain 

J = [ 1 − (a + b) λ] 
K (K − N + 1)!(N − 2)! 

K! 
. (24)

Substituting (24) into (22) results in 

P FA = 

[ 1 − (a + b) λ] 
K 

(1 − bλ) K−N+1 
. (25)

It is obvious that the probability of false alarm is not related to

the disturbance covariance matrix. Hence, the proposed detector

has the CFAR property with respect to the disturbance covariance

matrix. Furthermore, the detection probability of the proposed de-

tector can be calculated by 

P D = 

∫ 1 

(a + b) λ
P D | ρ p ρ (ρ) d ρ, (26)

where p ρ ( ρ) is given in (16) , and 

P D | ρ = 1 −
[

ρ(1 − bλ) 

ρ − λ(a + b) 

]−(K−N+1) K−N+1 ∑ 

j=1 

C 

j 
K−N+1 

×
[
λ(a + b) − bρλ

ρ − λ(a + b) 

] j 

exp 

[
−δρ − δλ(a + b) 

1 − bλ

]

×
j−1 ∑ 

m =0 

1 

m ! 

[
δρ − δλ(a + b) 

1 − bλ

]m 

. 

(27)

Note that (27) is obtained in a way similar to that in [30, Eq. 15] . 

3.2. Fluctuating target model 

In the above analysis we assume that the amplitude α is de-

terministic. However, in many practical scenarios α may be bet-

ter described with a fluctuating model where α is random [32] .

Therefore, it is of interest to examine how the proposed detector

performs with the fluctuating target model. 

Let α = | α| exp (j θ ) . The phase θ is often assumed to be uni-

formly distributed within the interval [0, 2 π ), while many distri-

butions have been used to describe the statistical characterization

of the amplitude | α|. We consider that | α| has a generalized Chi

distribution [33–35] , namely, the PDF of | α| is 

p | α| (x ) = 

2 Q 

Q x 2 Q−1 

σ 2 Q 
α �(Q ) 

exp 

(
−Qx 2 

σ 2 
α

)
, x > 0 , (28)

where the scale parameter Q controls the fluctuation span, and σ 2 
α

denotes the target power. Note that the above generalized Chi dis-

tribution in (28) includes the Rayleigh distribution as a spacial case

with Q = 1 . In this special case, α is a complex Gaussian variable,

i.e., α ∼ CN (0 , σ 2 
α ) . 

Define 

r = σ−2 
α | α| 2 , (29)

�̄φ = σ 2 
α s † 

0 
R 

−1 s 0 sin 

2 φ, (30)

and 

δ̄ = σ 2 
α s † 

0 
R 

−1 s 0 cos 2 φ, (31)

Then, we have 

�φ = r ̄�φ and δ = r ̄δ. (32)
rom (28) and (29) we can derive the PDF of r as 

p r (r ) = 

Q 

Q r Q−1 

�(Q ) 
exp ( −Qr ) , r > 0 . (33)

herefore, the detection probability of the proposed detector in the

uctuating model can be expressed as 

 D = 

∫ 1 

(a + b) λ

∫ + ∞ 

0 

P D | ρ p ρ (ρ) p r (r) d r ︸ ︷︷ ︸ 
W ρ

d ρ. (34)

aking (16), (27), (32) and (33) into W ρ defined in (34) , and after

ome algebra, we obtain 

 ρ = W 1 − W 2 , (35)

here 

W 1 = 

K! Q 

Q 

�(Q ) 

K−N+2 ∑ 

n =0 

C 

n 
K−N+2 �̄

n 
φ

(K + n )! 
f K−N +2 ,N + n −1 (ρ) 

×
∫ + ∞ 

0 

exp [ −(ρ�̄φ + Q ) r ] r n + Q−1 d r 

= 

K! Q 

Q 

�(Q ) 

K−N+2 ∑ 

n =0 

C 

n 
K−N+2 

�(n + Q ) 

(K + n )! 
�̄n 

φ

× (Q + ρ�̄φ) −(n + Q ) f K−N +2 ,N + n −1 (ρ) 

(36)

ith �̄φ defined in (30) , and the second equation obtained from

31, eq. (3.351.3)] , and 

W 2 = 

K! Q 

Q 

�(Q ) 

[
ρ(1 − bλ) 

ρ − λ(a + b) 

]−(K−N+1) K−N+1 ∑ 

j=1 

C 

j 
K−N+1 

×
[
λ(a + b) − bρλ

ρ − λ(a + b) 

] j j−1 ∑ 

m =0 

1 

m ! 

[
δ̄ρ − δ̄λ(a + b) 

1 − bλ

]m 

×
K−N+2 ∑ 

n =0 

C 

n 
K−N+2 �̄

n 
φ

(K + n )! 
f K−N +2 ,N + n −1 (ρ) 

×
∫ + ∞ 

0 

r n + Q+ m −1 exp 

[
−
(

Q + ρ�̄φ + 

δ̄ρ − δ̄λ(a + b) 

1 − bλ

)
r 

]
d r

= 

K! Q 

Q 

�(Q ) 

[
ρ(1 − bλ) 

ρ − λ(a + b) 

]−(K−N+1) K−N+1 ∑ 

j=1 

C 

j 
K−N+1 

×
[
λ(a + b) − bρλ

ρ − λ(a + b) 

] j j−1 ∑ 

m =0 

1 

m ! 

[
δ̄ρ − δ̄λ(a + b) 

1 − bλ

]m 

×
K−N+2 ∑ 

n =0 

C 

n 
K−N+2 

�(m + n + Q ) 

(K + n )! 
�̄n 

φ

×
[

Q + ρ�̄φ + 

δ̄ρ − δ̄λ(a + b) 

1 − bλ

]−(m + n + Q ) 

× f K−N +2 ,N + n −1 (ρ) , 

(37)

ith δ̄ defined in (31) , and the second equation obtained from [31,

q. (3.351.3)] . Applying (35) to (34) , we obtain a one-dimensional

ntegral expression for the detection probability of the proposed

etector in the fluctuating model. 

. Numerical results 

In this section, numerical simulations are conducted to confirm

he validity of the above theoretical results. A uniform linear ar-

ay of N = 8 elements with a half-wavelength spacing is used. The
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Fig. 1. Probability of false alarm versus the detection threshold for K = 16 . The lines denote the results obtained with the theoretical expression (25) , while the symbols 

denote the MC results. (a) b = −1 ; (b) b = −0 . 5 ; (c) b = 0 ; (d) b = 1 . 
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robability of false alarm is set to be 10 −3 . The nominal steering

ector is supposed to be 

 (θ ) = 

1 √ 

N 

[
1 , · · · , exp 

(
−j π(N − 1) sin 

(
θ π

180 

))]T 

(38) 

ith θ = 10 ◦. Assume that the actual signal comes from the angle

f θ0 , namely, the actual steering vector is s ( θ0 ). Define the angle

ismatch by 

θ = θ0 − θ . (39) 

hen �θ = 0 ◦, the nominal steering vector is aligned with the ac-

ual one, while �θ � = 0 ° corresponds to the case of mismatch in

he steering vector. 

Suppose that the disturbance consists of three jammers and

hermal noise, and the jammers come from the angles θ1 = −40 ◦,
2 = −10 ◦ and θ3 = 20 ◦. The disturbance covariance matrix can be

ritten as 

 = 

3 ∑ 

k =1 

σ 2 
k s (θk ) s 

† (θk ) + σ 2 
n I , (40)

here σ 2 
k 

and σ 2 
n are the jammer power and thermal disturbance

ower, respectively, and I is the identity matrix. In the follow-

ng simulations, we assume the interference-to-noise ratio (INR) is

0 dB for each jammer. 
Unless otherwise specified, we fix a = 1 in the following simu-

ations. The parameter b is adjusted to obtain different detectors.

t is shown in (44) that 0 < x † ˜ R 

−1 x < 1 . When a is chosen to be 1,

he value of b has to be no less than −1 (i.e., b ≥ −1 ) to ensure the

ositiveness of the detection statistic �. 

Fig. 1 plots the probability of false alarm with respect to the

hreshold for different values of the tunable parameter b . Here, we

elect K = 2 N = 16 . The line represents the results obtained with

25) , while the symbol denotes the results obtained using MC sim-

lation techniques. The number of independent trials used in each

ase is 100/ P FA . It can be seen that the theoretical results match

he MC results pretty well. 

In Fig. 2 , the detection performance of the proposed detector

ersus the tunable parameter b is presented for both matched and

ismatched cases in the non-fluctuating target model. Define the

ignal-to-noise ratio (SNR) as SNR = 10 log 10 
| α| 2 
σ 2 

n 
. Here, we choose

 = 16 and SNR = 0 dB. The line represents the results obtained

ith (26) , while the symbol denotes the MC results. The number

f independent trials used in each case is 10 4 . It is shown that the

esults obtained by using the analytical expression are in agree-

ent with the MC results. 

Inspection of these results in Fig. 2 highlights that the detection

robability of the proposed detector decreases as the tunable pa-

ameter b increases in both the matched and mismatched cases. It
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Fig. 2. Detection probability versus the tunable parameter b with K = 16 with the 

non-fluctuating target model. The lines denote the results obtained with the theo- 

retical expression (26) , while the symbols denote the MC results. 
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Fig. 3. Detection probability versus mismatched angle with SNR = 0 dB and K = 16 

with the non-fluctuating target model. The lines denote the results obtained with 

the theoretical expression (26) , while the symbols denote the MC results. 
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should be pointed out that the proposed detector with a = 1 and

b = −1 has the same detection performance as Kelly’s GLRT de-

tector. However, the former has considerably lower computational

burden than the latter, since the former only needs to calculate

only one covariance estimator in the grid search stage. 

In practice, we can choose the tunable parameters as a = 1 and

b = −1 in order to achieve a high detection probability. However, a

high detection probability is not always desired in the mismatched

case (e.g., radar systems work in the target-tracking stage). As

noted in [5] , a detection is considered unsuccessful if the presence

of target is declared while the beam is not aligned with the tar-

get direction. This is to say, the rejection capability of mismatched

signal may be desired in the mismatched case. 

In the next figure, the selective property of the proposed detec-

tor is illustrated for different tunable parameters. Fig. 3 presents

the detection performance of the proposed detector as a function

of the actual target direction θ , where the SNR is 0 dB and K = 16 .

It can be observed that for a = 1 the selective capability of the
roposed detector increases as the tunable parameter b increases.

hen b is large enough (e.g., b = 50 in this example), the detec-

or performs similarly to that with a = 0 . This is because the pa-

ameter a = 1 can be neglected in the case of large b . Based on

he above results in Figs. 2 and 3 , we can select the minimal value

 = −1 to achieve good detection performance for the matched sig-

al, and choose a larger b to obtain stronger rejection capability of

he mismatched signal. These numerical results highlight that the

electivity of the proposed detector can be flexibly adjusted. 

It is worth noting that the selective capability is obtained at the

ost of a loss in the detection performance in the matched case,

hich is shown in the following. In Fig. 4 , the detection probability

f the proposed detector as a function of SNR is demonstrated for

ifferent b and K with a non-fluctuating target. Here, we assume

hat no mismatch exists in the steering vector. We can observe that

s the tunable parameter b increases, the detection performance of

he proposed detector becomes worse. The performance gap be-

ween the case of b = −1 and the other cases is notable, especially

hen the training data size is limited (e.g., K = 12 in this example).

his is due to the fact that target signal contamination significantly

eteriorates the accuracy of the disturbance covariance matrix es-

imate obtained with limited training data. Note that the tunable

etector with b = −1 is statistically equivalent to Kelly’s GLRT de-

ector, whose performance is not affected by target signal contam-

nation. Nevertheless, it is shown in Fig. 4 (c) that the effect of the

ignal contamination can be alleviated by using sufficient training

ata (e.g., K = 24 in this example). In addition, we can observe that

 ceiling exists for the detection performance of the proposed de-

ector with b > −1 in the case of limited training data. This is also

aused by the target signal contamination in the estimate of the

isturbance covariance matrix. 

Fig. 5 depicts the detection performance of the proposed detec-

or with a non-fluctuating target for the mismatched case where

0 = 11 ◦, i.e., �θ = 1 ◦. The other parameters are the same as those

n Fig. 4 . We can see that the mismatch in the steering vector sig-

ificantly degrades the detection performance. An interesting phe-

omenon observed is that the detection performance of the pro-

osed detector with b > −1 is not a monotone function of the SNR

n the mismatched case. In particular, the detection performance

ecreases dramatically in the region of high SNR. The observed

henomenon is consistent with that in [36,37] . This is because that

he signal contamination with high SNR in the mismatched case

ignificantly damages the accuracy in the disturbance covariance

atrix estimate which is obtained by both the test and training

ata. For the case of b = −1 , we have proved that the proposed

etector in such a case is equivalent to Kelly’s GLRT detector, as

hown in Section 3 . Therefore, the detection probability in this case

oes not decrease as the SNR increases. 

In Fig. 6 , we compare the detection performance of the pro-

osed detector in the presence of a fluctuating target with differ-

nt Q . Here we select K = 16 and define SNR = 10 log 10 
σ 2 
α

σ 2 
n 

. One can

bserve that as Q decreases, the detection performance improves

n the low SNR region (e.g., SNR ∈ [ −20 , −10] dB in this exam-

le), but decreases in the high SNR region. This phenomenon can

e explained as follows. The depth of the amplitude fluctuation is

uled by the scale parameter Q . The lower the scale parameter Q ,

he wider the fluctuation span. Wide fluctuation spans can result

n a gain in the detection performance for a low SNR, but lead to

 loss in the detection performance for a high SNR. 

The mismatched case with a fluctuating target is examined in

ig. 7 , where �θ = 1 ◦. It is shown that in the mismatched case the

etection performance of the proposed detector is not a monotone

unction with respect to the SNR. This observation with the fluctu-

ting model is similar to that made for the non-fluctuating model

n Fig. 5 . 
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Fig. 4. Detection probability versus SNR with different b for the matched case with 

the unfluctuating target model. The lines denote the results obtained with the the- 

oretical expression (26) , while the symbols denote the MC results. (a) K = 12 ; (b) 

K = 16 ; (c) K = 24 . 
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Fig. 5. Detection probability versus SNR with different b for the mismatched case 

with the non-fluctuating target model. The lines denote the results obtained with 

the theoretical expression (26) , while the symbols denote the MC results. (a) K = 

12 ; (b) K = 16 ; (c) K = 24 . 
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Fig. 6. Detection probability versus SNR with different Q for the matched case with the fluctuating model. The lines denote the results obtained with the theoretical 

expression (34) , while the symbols denote the MC results. (a) b = −1 ; (b) b = −0 . 5 ; (c) b = 0 ; (d) b = 1 . 
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5. Conclusion 

We investigated the adaptive detection problem in colored

Gaussian disturbance with an unknown covariance matrix. Both

the test and training data are used to form an estimate of the dis-

turbance covariance matrix. This scheme is considerably less com-

plex to implement than the conventional ML estimate which only

uses the training data. Based on the new estimator, we proposed

a detector with two tunable parameters a and b . In particular, the

proposed detector with a = 1 and b = −1 has the same detection

performance as Kelly’s GLRT detector, but has a much lower com-

putational burden. The statistical properties of the proposed detec-

tor were investigated in the general case where the practical target

steering vector may not be aligned with the nominal one. Closed-

form expressions for the probability of false alarm and the prob-

ability of detection of the proposed detector was derived for both

unfluctuating and fluctuating target models. It is indicated that the

proposed detector has the CFAR against the disturbance covariance

matrix. The mismatched signal rejection capability of the proposed

detector can be flexibly adjusted. More specifically, this selective

property of the proposed detector can be improved by increasing

the value of b (with fixed a ). 
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ppendix A. Equivalent transformation of �

Applying the Sherman–Morrison–Woodbury formula [38] to (7) ,

e have 

˜ 
 

−1 = 

ˆ R 

−1 −
ˆ R 

−1 xx 

† ˆ R 

−1 

1 + x 

† ˆ R 

−1 x 

. (41)

s a result, 

 

† ˜ R 

−1 s = s † ˆ R 

−1 s − | s † ˆ R 

−1 x | 2 
1 + x 

† ˆ R 

−1 x 

, (42)

 

† ˜ R 

−1 x = 

s † ˆ R 

−1 x 

1 + x 

† ˆ R 

−1 x 

, (43)

nd 

 

† ˜ R 

−1 x = 

x 

† ˆ R 

−1 x 

1 + x 

† ˆ R 

−1 x 

. (44)

ubstituting (42) –(44) into (8) , and after some algebra, we obtain 

= 

| s † ˆ R −1 x | 2 
(1+ x † ˆ R −1 x )(s † ˆ R −1 s ) [ 

1 − | s † ˆ R −1 x | 2 
(1+ x † ˆ R −1 x )(s † ˆ R −1 s ) 

] [
a + (a + b) x 

† ˆ R 

−1 x 

]
= 

T GLRT 

[ 1 − T GLRT ] 
[
a + (a + b) x 

† ˆ R 

−1 x 

] . (45)

http://dx.doi.org/10.13039/501100001809
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Fig. 7. Detection probability versus SNR with different Q for the mismatched case with the fluctuating model. The lines denote the results obtained with the theoretical 

expression (34) , while the symbols denote the MC results. (a) b = −1 ; (b) b = −0 . 5 ; (c) b = 0 ; (d) b = 1 . 
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bviously, when a = 1 and b = −1 , the decision statistic � in

45) is equivalent to the Kelly’s GLRT in [1] . According to (4) and

5) , we have 

 

† ˆ R 

−1 x = 

T AMF 

T GLRT 

− 1 . (46)

aking (4) and (46) into (45) leads to 

= 

T 2 GLRT 

(1 − T GLRT )[(a + b) T AMF − b T GLRT ] 
. (47) 

rom (10) and (11) , we have 

 GLRT = 

T̄ GLRT 

1 + T̄ GLRT 

, (48) 

nd 

 AMF = 

T̄ GLRT 

ρ
. (49) 

nserting (48) and (49) into (47) yields 

= 

T̄ 2 GLRT 

(1+ ̄T GLRT ) 2 

1 

1+ ̄T GLRT 

[ 
(a + b) T̄ GLRT 

ρ − b T̄ GLRT 

1+ ̄T GLRT 

] 

= 

ρT̄ GLRT 

(a + b)(1 + T̄ GLRT ) − bρ

H 1 
≷ 

H 0 

λ. (50) 

fter an equivalent transformation, we can obtain (12) . 
eferences 

[1] E.J. Kelly , An adaptive detection algorithm, IEEE Trans. Aerosp. Electron. Syst.

22 (1) (1986) 115–127 . 
[2] E.J. Kelly , K. Forsythe , in: Adaptive Detection and Parameter Estimation for

Multidimensional Signal Models, Lincoln Laboratory, MIT, 1989 . Technical Re-
port 848 

[3] F.C. Robey , D.R. Fuhrmann , E.J. Kelly , R. Nitzberg , A CFAR adaptive matched

filter detector, IEEE Trans. Aerosp. Electron. Syst. 28 (1) (1992) 208–216 . 
[4] S. Kraut , L.L. Scharf , R.W. Butler , The adaptive coherence estimator: A

uniformly-most-powerful-invariant adaptive detection statistic, IEEE Trans. Sig-
nal Process. 53 (2) (2005) 417–438 . 

[5] N.B. Pulsone , C.M. Rader , Adaptive beamformer orthogonal rejection test, IEEE
Trans. Signal Process. 49 (3) (2001) 521–529 . 

[6] A. De Maio , G. Ricci , A polarimetric adaptive matched filter, Signal Process. 81

(12) (2001) 2583–2589 . 
[7] F. Bandiera , D. Orlando , G. Ricci , CFAR detection of extended and multiple

point-like targets without assignment of secondary data, IEEE Signal Process.
Lett. 13 (4) (2006) 240–243 . 

[8] A. De Maio , Rao test for adaptive detection in Gaussian interference with un-
known covariance matrix, IEEE Trans. Signal Process. 55 (7) (2007) 3577–3584 .

[9] F. Bandiera , A. De Maio , G. Ricci , Adaptive CFAR radar detection with conic

rejection, IEEE Trans. Signal Process. 55 (6) (2007) 2533–2541 . 
[10] F. Bandiera , D. Orlando , G. Ricci , Advamced Radar Detection Schemes Under

Mismatched Signal Models, Morgan & Claypool, 2009 . 
[11] Q. He , N.H. Lehmann , R.S. Blum , A.M. Haimovich , MIMO radar moving target

detection in homogeneous clutter, IEEE Trans. Aerosp. Electron. Syst. 46 (3)
(2010) 1290–1301 . 

[12] A . De Maio , A . Farina , G. Foglia , Knowledge-aided Bayesian radar detectors &
their application to live data, IEEE Trans. Aerosp. Electron. Syst. 46 (1) (2010)

170–183 . 

[13] C. Hao , D. Orlando , X. Ma , C. Hou , Persymmetric Rao and Wald tests for
partially homogeneous environment, IEEE Signal Process. Lett. 19 (9) (2012)

587–590 . 

http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0001
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0001
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0002
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0002
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0002
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0002
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0003
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0003
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0003
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0003
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0003
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0004
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0004
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0004
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0004
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0005
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0005
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0005
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0006
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0006
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0006
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0007
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0007
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0007
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0007
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0008
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0008
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0009
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0009
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0009
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0009
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0010
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0010
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0010
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0010
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0011
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0011
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0011
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0011
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0011
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0012
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0012
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0012
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0012
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0013
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0013
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0013
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0013
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0013


318 J. Liu et al. / Signal Processing 137 (2017) 309–318 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

[  
[14] A . Aubry , A . De Maio , L. Pallotta , A . Farina , Radar detection of distributed tar-
gets in homogeneous interference whose inverse covariance structure is de-

fined via unitary invariant functions, IEEE Trans. Signal Process. 61 (20) (2013)
4 94 9–4 961 . 

[15] S. Lei , Z. Zhao , Z. Nie , Q.-H. Liu , A CFAR adaptive subspace detector based on a
single observation in system-dependent clutter background, IEEE Trans. Signal

Process. 62 (20) (2014) 5260–5269 . 
[16] C. Hao , D. Orlando , G. Foglia , X. Ma , S. Yan , C. Hou , Persymmetric adaptive

detection of distributed targets in partially-homogeneous environment, Digital

Signal Process. 24 (2014) 42–51 . 
[17] S. Lei , Z. Zhao , Z. Nie , Q.-H. Liu , Adaptive polarimetric detection method for tar-

get in partially homogeneous background, Signal Process. 106 (2015) 301–311 . 
[18] M.S. Greco , A. De Maio , Modern Radar Detection Theory, IET, 2015 . 

[19] A . Aubry , A . De Maio , G. Foglia , D. Orlando , Diffuse multipath exploitation for
adaptive radar detection, IEEE Trans. Signal Process. 63 (5) (2015) 1268–1281 . 

[20] N.B. Pulsone , M.A. Zatman , A computationally efficient two-step implementa-

tion of the GLRT, IEEE Trans. Signal Process. 48 (3) (20 0 0) 609–616 . 
[21] F. Bandiera , D. Orlando , G. Ricci , One- and two-stage tunable receivers ∗ , IEEE

Trans. Signal Process. 57 (8) (2009) 3264–3273 . 
[22] F. Bandiera , D. Orlando , G. Ricci , A subspace-based adaptive sidelobe blanker,

IEEE Trans. Signal Process. 56 (9) (2008a) 4141–4151 . 
[23] F. Bandiera , O. Besson , D. Orlando , G. Ricci , An improved adaptive sidelobe

blanker, IEEE Trans. Signal Process. 56 (9) (2008b) 4152–4161 . 

[24] J. Ward , Space-Time Adaptive Processing for Airborne Radar, Technical Report
1015, Lincoln Laboratory, MIT, December 1994 . 

[25] A. Cameron , The jindalee operational radar network: Its architecture and
surveillance capability, in: Proceedings of IEEE Radar, 1995, pp. 692–697 . 

[26] K. Gerlach , A comparison of two adaptive detection schemes, IEEE Trans.
Aerosp. Electron. Syst. 30 (1) (1994) 30–40 . 

[27] B.O. Steenson , Detection performance of a mean-level threshold, IEEE Trans.

Aerosp. Electron. Syst. (4) (1968) 529–534 . 
28] G.M. Dillard , Mean-level detection of non uctuating signals, IEEE Trans. Aerosp.
Electron. Syst. (6) (1974) 795–799 . 

[29] E.J. Kelly , Adaptive Detection in Nonstationary Interference–Part III, Technical
Report 761, Lincoln Laboratory, MIT, 1987 . 

[30] J. Liu , Z.-J. Zhang , Y. Yang , H. Liu , A CFAR adaptive subspace detector for
first-order or second-order Gaussian signals based on a single observation,

IEEE Trans. Signal Process. 59 (11) (2011) 5126–5140 . 
[31] I.S. Gradshteyn , I.M. Ryzhik , Table of Integrals, Series, and Products, seventh,

Academic Press, San Diego, 2007 . 

[32] A . De Maio , A . Farina , G. Foglia , Target fluctuation models and their application
to radar performance prediction, IEE Proc. Radar Sonar Navig. 151 (5) (2004)

261–269 . 
[33] A. De Maio , Robust adaptive radar detection in the presence of steering vector

mismatches, IEEE Trans. Aerosp. Electron. Syst. 41 (4) (2005) 1322–1337 . 
[34] G. Cui , A. De Maio , M. Piezzo , Performance prediction of the incoherent radar

detector for correlated generalized Swerling-Chi fluctuating targets, IEEE Trans.

Aerosp. Electron. Syst. 4 9 (1) (2013) 356–36 8 . 
[35] G. Cui , A. De Maio , A. Aubry , A. Farina , L. Kong , Advanced SLB architec-

tures with invariant receivers, IEEE Trans. Aerosp. Electron. Syst. 49 (2) (2013)
798–818 . 

36] K.J. Sohn , H. Li , B. Himed , Parametric GLRT for multichannel adaptive signal
detection, IEEE Trans. Signal Process. 55 (11) (2007) 5351–5360 . 

[37] D. Sengupta , S.M. Kay , Parameter estimation and GLRT detection in colored

non-Gaussian autoregressive processes, IEEE Trans. Acoust. Speech Signal Pro-
cess. 38 (10) (1990) 1661–1676 . 

38] M. Woodbury , Inverting Modified Matrices, Memorandum Report 42, Statistical
Research group, Princeton, 1950 . 

http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0014
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0014
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0014
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0014
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0014
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0015
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0015
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0015
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0015
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0015
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0016
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0016
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0016
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0016
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0016
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0016
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0016
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0018
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0018
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0018
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0019
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0019
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0019
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0019
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0019
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0020
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0020
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0020
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0021
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0021
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0021
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0021
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0022
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0022
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0022
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0022
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0024
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0024
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0025
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0025
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0026
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0026
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0027
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0027
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0028
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0028
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0029
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0029
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0030
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0030
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0030
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0030
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0030
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0031
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0031
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0031
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0032
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0032
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0032
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0032
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0033
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0033
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0034
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0034
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0034
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0034
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0035
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0035
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0035
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0035
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0035
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0035
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0036
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0036
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0036
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0036
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0037
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0037
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0037
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0038
http://refhub.elsevier.com/S0165-1684(17)30027-0/sbref0038

	Adaptive detection using both the test and training data for disturbance correlation estimation
	1 Introduction
	2 Data model
	3 Detector with tunable parameters
	3.1 Non-fluctuating target model
	3.2 Fluctuating target model

	4 Numerical results
	5 Conclusion
	 Acknowledgments
	Appendix A Equivalent transformation of 
	 References


