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A B S T R A C T

We consider a multiple-input multiple-output (MIMO) radar equipped with a colocated nested array for both
transmit and receive. A novel transmit subaperturing (TS) approach that decomposes the nested array into
unequal subarrays is proposed to take the advantage of the degrees of freedom (DOF) provided by the nested
array but without resorting to spatial smoothing. Phased-array and the conventional MIMO with omni-
directional transmission (omni-MIMO) are also extended to the nested array scenario, which utilize spatial
smoothing to improve their DOF. Simulation results show that with sufficient training data, the omni-MIMO
with nested array achieves the highest output signal-to-interference-plus-noise ratio (SINR), while the TS-
MIMO scheme outperforms the other methods when training is limited when the radar operates in a non-
homogeneous environment.

1. Introduction

Multiple-input multiple-output (MIMO) radar has been the subject
of intensive research in recent years, due to the fact that it can extend
the array aperture by virtual sensors and thereby provide higher spatial
resolution, better parameter identifiability and more degrees of free-
dom (DOF) than its phased-array counterpart [1–8]. However, the
advantages offered by MIMO radar come at the price of losing the
directional gain and spatial selectivity offered by the phased-array
radar. To overcome these disadvantages, intermediates between the
MIMO and phased-array have been investigated to seek benefits of
both. Particularly, a transmit subaperturing (TS) approach was pro-
posed in [9] for MIMO radar with a uniform linear array (ULA) to form
multiple transmit beams steered toward the same direction in order to
obtain a transmit array gain. The resulting system is referred to as the
TS-MIMO radar. In [10,11], the authors proposed a phased-MIMO
technique, which enjoys the advantages of MIMO without sacrificing
the directional gain of phased-array. All these works divided the
transmit array into subarrays of equal length. The authors of [12]
presented a phased MIMO radar with unequal subarrays named
HPMR-US, which divides the whole transmit array into overlapping
and variable-sized partitions. It was shown that HPMR-US can provide
a better directional gain than its equal-sized subarray counterpart. An
extension of the transmit subaperturing strategy to frequency diverse

arrays was considered for range and angle estimation in [13]. All the
above works have focused on the case when ULA is employed for both
transmit and receive.

Meanwhile, nested array (NA) constructed by combining two or
more ULAs has recently received considerable attention due to its
potential to increase the DOF [14–16]. Specifically, [14] proposed a NA
based on the concept of difference coarray (DC), which can offer O N( )2

DOF from only N physical sensors. An extension of NA to the case
involving vector-sensor arrays was investigated in [15]. Inspired by the
phased-MIMO configuration [9,10], and the NA structure [14], a
phased-MIMO system using a ULA for transmit and a different NA
for receive was proposed in [17] to increase the DOF of the whole
system.

In order to seek benefits such as additional DOF and more directional
gain, we consider a MIMO radar using an NA for both transmit and
receive. To the best of our knowledge, NA has not been explored for
transmit in MIMO radar. Using an NA for both transmit and receive helps
to expand the effective array aperture resulting from both sum coarray
and DC processing. A novel transmit subaperturing approach with
unequal subarrays is proposed to take the advantage of the DOF provided
by the nested array without resorting to spatial smoothing. Phased-array
and omni-MIMO transmission [9] are also extended to the NA scenario.
The advantages of the proposed MIMO radar with NA for both transmit
and receive are illustrated via numerical examples.
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2. Problem formulation

Consider a colocated MIMO system consisting of N antennas wi-
th a NA used for both transmit and receive. These N antennas form
an optimal two-level NA, which is a concatenation of an inner ULA with
J = ⌊ ⌋N

2 elements, and an outer ULA with K N J= − elements [14].
The spacing between two adjacent elements of the inner arr-
ay is d λ= /2 (half wavelength), while the counterpart for the ou-
ter array is Jd . The corresponding sensor locations are given
by the union of the sets S jd j J= { , = 0, 1, …, − 1}in and
S J k d k K= {(( + 1) − 1) , = 1, 2, …, }out . Nested array provides an effec-
tive approach to increase the DOF at the receiver side. An optimal two-
level NA attains K J2 ( + 1) − 1 DOF in the coarray using only J K+
elements. It is noted that NA is a receive processing technique
originally introduced for passive sensing. In this paper, we discuss
new transmit approaches for NAs in active sensing and explore the
associated benefits in terms of DOF and interference cancellation
capability with limited training data.

3. Proposed schemes

We introduce three different transmit schemes, which are exten-
sions of those in [9] to the case of NAs. The extensions are non-trivial,
especially for the transmit subaperturing scheme, due to the non-
uniform structure of the nested array.

3.1. Transmit schemes

3.1.1. Transmit subaperturing (TS) with unequal subarrays
The main idea is to construct multiple subarrays of unequal sizes

for transmission. On one hand, it is desirable to include large
subarrays, since beamforming over large subarray offers large direc-
tional gain; on the other hand, it is also beneficial to have as many
subarrays as possible, since each subarray transmits a different wave-
form, leading to larger DOF. Taking both into consideration, we
propose the following design criteria:

(i) The subarrays should cover all possible spacings provided by the DC of
an optimal two-level NA, namely md m K J{ , = 1, 2, …, ( + 1) − 1};

(ii) Each spacing is employed exclusively by only one subarray as its
maximum spacing.

In general, a transmit subarray consists of a unique number of
antennas ranging from 1 to N such that no two subarrays have the
same size. This is different from the traditional TS-MIMO [9] or
phased-MIMO [10] system, which groups the array elements of a ULA
into equal-sized transmit subapertures. Following the above criteria,
one can come up with different forms of TS. Next, we present a simple
construction.

Fig. 1 shows an illustrating example of the proposed TS scheme
with unequal subarrays for N=4 antennas. A total of
M K J= ( + 1) − 1 = 2 × (2 + 1) − 1 = 5 subarrays are constructed,
which cover all possible spacings from d to d5 . These subarrays can
be classified into 2 groups:

• Group I has J subarrays of aperture size md m J, = 1, 2, …, . The
mth subarray is a ULA with elements positions given by

A pd p m= { , = 0, …, }.m (1)

For the example shown in Fig. 1, Group I contains 2 subarrays given by
A d= {0, }1 and A d d= {0, , 2 }2 .

• Group II consists of J K( + 1)( − 1) subarrays of aperture size
md m J K J, = + 1, …, ( + 1) − 1. The mth subarray is an array with
elements positions given by

⎧⎨⎩
⎫⎬⎭A p J d p m

J
= ( ( + 1) − 1) , = 1, 2, …,

+ 1
+ 1m

(2)

for m q J q K∈ { ( + 1), = 1, …, − 1}, and

⎧⎨⎩
⎡
⎢⎢

⎤
⎥⎥

⎫⎬⎭A A m
J

J m= ∪
+ 1

( + 1) − 1 −m m−1
(3)

for m q J q K∉ { ( + 1), = 1, …, − 1}. For the system in Fig. 1, Group II
contains 3 subarrays given by A d d= {2 , 5 }3 , A d d d= { , 2 , 5 }4 , and
A d d d= {0, , 2 , 5 }5 .

Following the above guideline, one can easily form transmit subaper-
tures for any other NAs.

Assume that all the M transmit subapertures are engaged in the TS
transmission, each modulating a different waveform. Let θb ( )m denote
the steering vector associated with the mth transmit subaperture,
which is an A| | × 1m sub-vector extracted from the transmit steering
vector θa ( )t for the entire array, where A| |m denotes the cardinality of
Am. For the configuration shown in Fig. 1, θa ( )t and θb ( )4 are:

θ e e ea ( ) = [1 ]t
jπ θ j π θ j π θ− sin − 2 sin − 5 sin (4)

θ e e eb ( ) = [ ]jπ θ j π θ j π θ
4

− sin − 2 sin − 5 sin (5)

On the other hand, the receive array employs one single aperture
consisting of all N elements. Suppose there is a target located at the
look direction θ0 and I uncorrelated interference sources located at
look directions θ θ i I≠ , = 1, …,i 0 . By assuming orthogonal waveforms,
matched filtering and vectorizing can be applied on the received signal,
which gives [9]

∑κα θ κ α θy a a n= ( ) + ( ) +
i

I

i its 0 ts 0
=1

ts
(6)

where α0 and αi are the complex amplitudes of the target and the ith
interference after the matched filter, respectively, n denotes the
additive Gaussian noise vector with zero mean and covariance matrix
σ In

2 , and

ζθ κ θ θa a( ) = ( ) ⊗ ( )rts (7)

denotes the MN × 1 effective array manifold and θa ( )r the receive
steering vector, which is the same as θa ( )t since the NA is shared for
transmit and receive. ζ θ( ) is an M × 1 vector with the mth element
given by ζ θ θ θb b( ) ≜ ( ) *( )m m m

T
0 . κ is an amplitude scaling parameter

κ N
A

=
∑ | |m m (8)

which is used to ensure identical total transmitted energy for different
transmit schemes.

3.1.2. Phased-array
For the NA radar system, a phased-array like transmission employs

one transmit aperture consisting of all N elements forming a direc-
tional transmit beam pointing toward some look direction θ0. The
received signal is processed by a matched filter, which outputs

∑α θ α θy a a n= ( ) + ( ) +
i

I

i ipa 0 pa 0
=1

pa
(9)

Subarray 1
Subarray 2
Subarray 3
Subarray 4
Subarray 5

Fig. 1. Proposed TS scheme with N=4 antennas.
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The N × 1 vector

θ θ θ θa a a a( ) = ( ) *( ) ( )t
T

t rpa 0 (10)

is referred to as the joint transmit-receiving steering vector.

3.1.3. Omni-directional transmission
For the NA radar system, an omni-directional transmission em-

ploys all N elements, each transmitting an orthonormal waveform.
Applying matched filtering and vectorizing on the received signals
yields

∑α θ α θy a a n= ( ) + ( ) +
i

I

i iod 0 od 0
=1

od
(11)

where

θ θ θa a a( ) = ( ) ⊗ ( )t rod (12)

denotes the N × 12 joint transmit-receive steering vector.

3.2. Adaptive beamforming

We now consider adaptive beamforming for the three transmit
schemes. For notational convenience, we drop subscripts “pa”, “od”
and “ts”. The target and interference scatterers are assumed to be
spatially distributed objects which are independent of each other. As a
result, the target/interference complex amplitudes are mutually un-
correlated [2]. In this case, the autocorrelation matrix of the matched
filter output y in (6), (9), or (11) is given by

E α θ θR yy a a R= [ ] = | | ( ) ( ) +H
0

2
0

H
0 d (13)

where Rd denotes the covariance matrix of the disturbance signal
α θd a n= ∑ ( ) +i i i . Due to the different structures of the received signal,

beamforming is different for the TS-MIMO from that for the other two,
which is discussed separately.

3.2.1. Phased-array and omni-MIMO
The phased-array and omni-MIMO can obtain additional DOF by

DC processing. Specifically, we vectorize the correlation matrix R as
follows:

∑α θ θ α θ θ σr R a a a a e= vec( ) = | | [ *( ) ⊗ ( )] + | | [ *( ) ⊗ ( )] +
i

I

i i i n0
2

0 0
=1

2 2

(14)

where e e e= [ ⋯ ]T
L
T T

1 with ei
T being a column vector of all zeros except a

1 at the ith position. The corresponding L for the phased-array and
omni-MIMO are N2 and N4, respectively. Note that the DC manifold

θ θa a*( ) ⊗ ( )0 0 is a vector with redundancy. After removing the repeated
elements and sorting, we get a filled virtual array with Nsyst distinct
elements, which denotes the dimension of the DC manifold for the
phased-array and omni-MIMO, given by

N K J= 2 ( + 1) − 1pa (15)

N K J= 4 ( + 1) − 3.od (16)

Applying the same redundancy removal and sorting procedure to r
yield

α θx u v= | | ( ) +0
2

0 (17)

where θu( )0 and v are the corresponding N × 1syst virtual array steering
vector and disturbance signal which includes contributions from the
interference and the e vector. Note that the equivalent source signal
vector α α αp = [| | | | ⋯ | | ]I0

2
1

2 2 for the coarray in (14), consists of the
powers of the target and interferences. Spatial smoothing can be used
to form a covariance matrix by dividing the Nsyst element DC into
N( + 1)/2syst subarrays, each with N( + 1)/2syst elements. We denote the
observation vector of the ith subarray by ri. The spatial smoothed
covariance matrix Rss can be obtained by (see [14] for further detail):

∑
N

R rr= 1
( + 1)/2 i

N

i i
H

ss
syst =1

( +1)/2syst

(18)

Using the subarray with elements at md m, = 0, 1, N…, ( − 1)/2syst ,
as the reference subarray, whose steering vector we denote as θu ( )1 0 , the
minimum-variance distortionless response (MVDR) beamformer can
be derived as

θ
θ

θ θ
w

R u
u R u

( ) =
( )

( ) ( )0
ss
−1

1 0

1
H

0 ss
−1

1 0 (19)

3.2.2. TS-MIMO with unequal subarrays
Note that the virtual array manifold θa ( )ts in (7) is not a

Vandermonde vector, implying the virtual array of the TS-MIMO is
non-uniform. Hence, DC processing and spatial smoothing are inap-
plicable. The MVDR beamformer can be implemented by directly using
the covariance matrix (13), which leads to

θ
θ

θ θ
w

R a
a R a

( ) =
( )

( ) ( )
.0

−1
ts 0

ts
H

0
−1

ts 0 (20)

3.2.3. Adaptive estimation and DOF
In practice, the covariance matrix R is unavailable. For adaptive

implementation, the sample covariance matrix

∑
T

R yy= 1

t

T

t t
H

=1 (21)

can be used in (14), where y{ }t t
T
=1 are signal-free homogeneous training

data collected from the range bins adjacent to the range bin of interest.
By assuming a homogeneous environment, the training data are
supposed to share similar interference characteristics as the test signal
[1]. In practice, training data is usually limited when the radar operates
in a non-homogeneous (e.g., urban, dense target) environment.

For the TS-MIMO, the observation y is filtered by the weight vector
w. The output SINR can be expressed as

γ
α θ θ

θ θ

a R a

a R RR a
=

| | [ ( ) ( )]

( ) ( )
0

2
ts
H

0
−1

ts 0

2

ts
H

0
−1 −1

ts 0 (22)

Similarly, for the phased-array and omni-MIMO, we have

γ
α θ θ

θ θ

u R u

u R RR u
=

| | [ ( ) ( )]

( ) ( )͠
ss

ss ss

0
4

1
H

0
−1

1 0

2

1
H

0
−1 −1

1 0 (23)

where R͠ denotes the covariance matrix of the disturbance signal after
DC processing and spatial smoothing.

Now consider the DOF of the 3 transmit schemes. For the omni-
MIMO or phased array, the virtual array as represented by (17) is a
filled ULA with Nsyst elements. However, their DOF is decreased by
spatial smoothing. Specifically, with ri of size N[( + 1)/2] × 1syst used in
spatial smoothing, the DOF reduces to N( + 1)/2syst . That is,

K JDOF = 2 ( + 1) − 1.od (24)

K JDOF = ( + 1).pa (25)

The DOF of TS-MIMO is upper and lower bounded by (24) and (25).
Nevertheless, as shown in Section 4, the TS-MIMO provides a better
trade-off between the DOF and convergence when T, the number
training signals used to estimate the covariance matrix R [see (21)], is
limited. The phased-array and omni-MIMO require spatial smoothing
and, in fact, they need estimate the 4th moment of the observed signal.
As a result, they converge much more slowly than the TS-MIMO.
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4. Numerical results

To illustrate the benefits of using NA in the proposed transmit
schemes, namely, the phased-array, omni-MIMO and TS-MIMO, we
compare their application in the following array configurations: (a)
ULA for both transmit (TX) and receive (RX); (b) ULA for TX and, NA
for RX; (c) NA for both TX and RX. For each configuration, we have
N=4 antennas with half wavelength separation between two adjacent
elements for both the ULA and the inner array of the NA. The TS-
MIMO employs 3 equal transmit subarrays for Configurations (a) and
(b). Meanwhile, for Configuration (c), the TS-MIMO uses 5 unequal
subarrays as described in Fig. 1. Configuration (a) is basically what was
considered in [9]. Note that in the following simulations, DC processing
is employed only for phased-array and omni-MIMO in Configuration
(c); with ULA for TX as in (a) and (b), it can be shown that DC
processing cannot improve the DOF for the omni-MIMO. For all 3
configurations, the received signal contains a target located at direction
10°. The target power, interference power and the noise variance are
equal to 0.1, 1 and 0.01, respectively.

First, we consider a case with I=5 interferences located at directions
[ − 30°, − 15°, 0°, 20°, 30°]. Fig. 2 depicts the mean output SINR versus
the number of training, which are calculated as (22) for TS-MIMO, and
(23) for phased-array/omni-MIMO. With sufficient training, higher
SINRs can be achieved by each method in Figs. 2(b) and 2(c) than
those in Fig. 2(a), indicating that all schemes benefit from using NA. It

is noted that the performances of omni-MIMO and TS-MIMO are
similar with ULA for TX and NA for RX. This is because they have
similar degrees of freedom (DOF). In Configuration (b), the DOF is 8
for TS-MIMO and 9 for omni-MIMO. Therefore, both of them are able
to suppress I=5 interferences in Fig. 2(b). However, neither of them
can handle I ≥ 9 interferences, which is the case considered in the next
example. It is also seen from Fig. 2(c) that the TS-MIMO converges
faster and achieves higher SINR than the phased-array and omni-
MIMO for the considered training size. This is because the latter
employ spatial smoothing to estimate the 4-th moment of the observed
signal, which led to the lower convergence.

We next increase I=9 interferences located at directions
[ − 60°, − 45°, − 30°, − 15°, 0°, 20°, 30°, 45°, 60°]. The mean output
SINR and beampatterns are shown in Figs. 3 and 4. It is seen that
Configurations (a) and (b) now fail with negative SINR because I has
exceeded their capability. Meanwhile, Configuration (c) employs NA for
both receive and transmit, which affords additional DOF, allowing the
omni-MIMO and TS-MIMO to adequately mitigate the interferences
and achieve notable improvement in their SINR. In particular, consider
the omni-MIMO in Configurations (b) and (c). It is easy to show that
the DOF for Configuration (b) is K J N( + 1) + − 1, while the DOF for
Configuration (c) is given by (24). Plugging in the simulation para-
meters, the DOFs are 9 and 11, respectively. Therefore, Configuration
(b) has fewer DOF and cannot handle all the 9 interference. In turn, the
output SINR for (b) is significantly degraded. On the other hand,
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Configuration (c) achieves a good output SINR because it can ade-
quately mitigate all 9 interferences. It is also seen that for small to
moderate training size (T < 1000), the TS-MIMO has the highest SINR
due to its faster convergence. With sufficient training, the omni-MIMO
is able to surpass the TS-MIMO, due to more DOF. Fig. 4 depicts the
beampatterns of the different schemes with T=500, where the vertical
dashed lines indicate the locations of the interferences. It is seen that
only the TS-MIMO is able to place nulls at all interference locations,
corroborating its higher SINR shown in Fig. 3(c). We next show the
benefits of using NAs in direction of arrival (DOA)
estimation for a case of D=9 sources located at directions
[ − 60°, − 45°, − 30°, − 15°, 0°, 20°, 30°, 45°, 60°] with identical power
of 1 in the presence of white noise with zero mean and variance 0.01.
Fig. 5 depicts the spectrum obtained by using MUSIC estimator applied
to all configurations except the phased-array2 with T=100. Clearly, only
the proposed TS-MIMO and omni-MIMO in (c) can resolve all 9
sources. It is also observed that the peak locations and amplitudes of
the omni-MIMO spectrum in Configuration (c) are inaccurate for some
sources. This is due to the fact that T=100 is small for omni-MIMO,
which is unable to attain convergence. Then we compare the DOA
estimation accuracy in Configuration (c) in terms of the root mean
squared error (RMSE), defined as

∑ ∑
D Q

θ θRMSE = 1 1 ( − )
d

D

q

Q

d
q

d
=1 =1

( ) 2

(26)

where Q is the number of Monte Carlo runs and θd
q( )
is the estimate of

the dth target θd at the qth trial. Fig. 6 shows the performance of the
two methods versus the number of training signals T, averaged over

Q=100 Monte Carlo runs. It is seen that TS-MIMO converges fast and
exhibits better precision than omni-MIMO.

5. Conclusion

We investigated three transmit schemes for MIMO radars with a
colocated NA. A novel transmit subaperturing approach with unequal
subarrays was proposed. Phased-array and omni-MIMO were also
extended to the NA scenario. TS-MIMO was shown to outperform the
other methods when training is limited, while omni-MIMO with
difference coarray processing achieved the highest output SINR with
sufficient training.
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Fig. 6. RMSE versus the training size T with D=9 sources.

2 Note that the plot of phased-array is not shown in Fig. 5, due to the fact that the
number of targets exceeds the dimension of the phased-array covariance matrix, which
results in a null noise subspace. As a result, the MUSIC estimator cannot be applied.
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