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Abstract—Rooted in the compressed sensing theory, sub-Nyquist
spectrum sensing (SNSS) has been considered as a promising ap-
proach to dealing with difficulties and limitations of conventional
wideband spectrum sensing in cognitive radio (CR) networks. Most
existing SNSS methods require some prior knowledge of the mon-
itored frequency bands, such as the spectrum occupancy/sparsity
level and/or the noise power, to determine a termination condi-
tion used by an underlying iterative signal recovery process. How-
ever, such prior knowledge may be difficult to acquire in practical
CR scenarios. To address this problem, we propose a blind SNSS
algorithm, referred to as the residual energy ratio based detec-
tor (RERD), which bypasses the need for the above-mentioned
prior knowledge and performs spectrum sensing in a more au-
tonomous way. The RERD algorithm, which is based on the mod-
ulated wideband converter (MWC) sub-Nyquist sampling frame-
work, employs energy ratios of adjacent channels of the MWC as
test statistics. We derive closed-form expressions of the decision
threshold and the false alarm probability following the Neyman–
Pearson criterion. Simulation results show that, without requiring
the aforementioned prior knowledge, the RERD algorithm can
accurately determine the support of a multiband signal contami-
nated by background noise in a wide range of signal-to-noise ratio.
Moreover, the RERD algorithm is shown to be robust to a range of
sparsity orders and different number of sampling channels.

Index Terms—Blind spectrum sensing, cognitive radio, multi-
band signal, modulated wideband converter, sub-Nyquist sam-
pling.

I. INTRODUCTION

NOWADAYS, cognitive radio (CR) [1], [2] has been widely
investigated as a promising solution to deal with the in-

creasing demand for wireless access and the scarcity of available
spectrum. Spectrum sensing [3]–[5] which aims to distinguish
the presence and absence of primary users (PUs) in certain fre-
quency bands, is one of the fundamental techniques to make
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CR possible. With the explosive growth of wireless devices
and services that require higher data rate in the past few years,
wideband spectrum sensing (WSS) has been of interest to seek
vacant frequency bands for opportunistic spectrum access [6]–
[8]. Conventional WSS methods use signal samples at or above
the Nyquist rate to detect and locate spectrum vacancies across
a large bandwdith. However, the implementation of such con-
ventional WSS techniques for CR users has encountered some
main challenges, namely, the high cost and high power con-
sumption of high-rate analog-to-digital converter (ADC) in the
front end, limited memory size, and speed constraint of digital
signal processing, etc. [9]. To address these challenges, the re-
cently introduced compressed sensing theory [10], [11], which
allows a signal to be sampled at a sub-Nyquist rate and recov-
ered from a significantly reduced number of non-adaptive, linear
measurements, can be leveraged for WSS implementation. This
has motivated interest in sub-Nyquist spectrum sensing (SNSS)
to overcome the the limitations of conventional WSS techniques
[12], [13].

Built on several sub-Nyquist sampling frameworks, e.g., the
analog-to-information converter (AIC) [14], [15], the multi-
cosets (MC) sampling [16], [17], the multi-rate asynchronous
sub-Nyquist sampling (MASS) [18], and the modulated wide-
band converter (MWC) [19], [20], a number of SNSS methods
have been introduced [21]–[33]. Specifically, in [21]–[23], the
input signal to AIC is mixed with a high-speed pseudorandom
chip sequence, and compressed samples are obtained via inte-
grating and sampling the mixed output at sub-Nyquist sampling
rate. AIC-based SNSS methods are usually implemented in two
stages. In the first stage, the power spectrum of the original sig-
nal is reconstructed from compressed samples using an l1-norm
minimization method. In the second stage, wideband spectrum
sensing is performed to determine the locations of the occupied
frequency bands. However, l1-norm minimization methods, e.g.,
the LASSO algorithm and the GPSR algorithm [24], [25], need
to accurately set a termination condition of the underlying itera-
tion process, which is determined from knowledge of the noise
power and the sparsity level of the PU signals [23]. In [26], the
SNSS algorithm uses the local database to compute the max-
imum allowable equivalent isotropic radiated power and other
revelent prior knowledge, which reduces the required sampling
rate and the complexity of signal recovery. This algorithm is ap-
plicable in the case where the spectrum of the PU signal changes
slowly. If the spectrum is highly dynamic, large computational
cost is required to update and maintain the local database. More-
over, it has been found that the AIC framework can be affected
by some input signal model mismatch problems [6].
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In [27]–[28], compressed samples for wideband spectrum
sensing are acquired by the MC sampling framework, which
uses parallel ADC branches and uniformly discretizes the signal
at a decimated rate in a time interleaving fashion. Although idea
behind the MC framework is intuitive, its application is limited
by two issues: (1) the difficulty to synchronize the interleaved
ADCs; (2) the signal distortions caused by insufficient band-
width of commercial ADCs [19]. To relax the strict requirement
for time synchronization in the MC sampling framework, the
MASS framework which contains multiple ADC branches with
different under-sampling rate is designed in [18]. Based on the
MASS framework, the SNSS algorithm proposed in [29] is able
to determine the presence/absence of the multiple PU signals in
a wideband spectrum by only analyzing the statistical properties
of the energy of the sub-Nyquist DFT spectrum. The wideband
spectrum sensing can be performed without the requirement of
spectral recovery in use of this algorithm. However, the decision
threshold for the detection process relies on the noise power as
a prior knowledge. Meanwhile, the MWC sampling framework
[30], which regards the input signal as a sparse union of shift-
invariant subspaces, pre-processes the analog signal in multiple
channels simultaneously. In each channel, the input signal is
multiplied by a periodic random binary sequence, filtered by a
lowpass filter, and then sampled by a low-rate ADC. MWC is
able to deal with different signal types and can be implemented
with off-the-shelf ADCs. With such advantages, MWC-based
SNSS methods have drawn increasingly more attention [31]–
[33]. In MWC-based SNSS methods, the goal is to find the
locations (support set) of the occupied frequency bands by the
PU signals, which can be achieved by frame construction and
solving a multiple measurement vector (MMV) problem [27],
[34] without fully recovering the original signal. The MMV
problem can be solved by using either convex relaxation meth-
ods or the matching pursuit with a residual-based termination
criterion [35]-[38]. In addition, the MMV problem can also be
solved by the orthogonal matching pursuit (OMP) with a preset
number of iterations, which is estimated either in advance or
estimated on the spot [39]–[41].

As mentioned above, most existing SNSS methods need the
prior knowledge of the background noise power and the sparsity
of primary users to ensure the performance of support recovery
in noisy environment [42]. However, in practical CR scenarios
with PUs continuously entering and leaving the radio environ-
ment, such information can hardly be obtained. Hence, we pro-
pose a blind sub-Nyquist spectrum sensing algorithm, referred
to as the Residual Energy Ratio based Detector (RERD), which
aims to determine the support set of the signal without requir-
ing the aforementioned prior knowledge. The proposed RERD
algorithm, in each iteration, employs the ratio of the sample
energies of adjacent channels of the MWC as the test statistic to
determine whether further iteration of signal recovery is needed.
Compared with existing SNSS methods, the contributions of the
RERD algorithm are as follows:

1) Based on the MWC compressed sampling framework, the
SNSS is performed by solving a series of binary hypoth-
esis detection problems. The RERD algorithm is able to
control the iterative process of support recovery and find
the support set of the PU signals in a more autonomous
way relative to the aforementioned SNSS methods.

2) Energy ratios between adjacent channels are employed as
the test statistics, whose cumulative distribution function
is derived. Closed-form expressions of the false alarm
probability and decision threshold are provided.

3) Theoretical and numerical results show that, the conven-
tional SNSS algorithm, when the sparsity order is known,
outperforms the proposed RERD algorithm. However, our
RERD algorithm can accurately determine the support of
a multiband signal even in low SNR and without requiring
knowledge of the sparsity level of the PU signals and noise
variance. This makes the proposed algorithm effectively
a blind sub-Nyquist spectrum sensing method.

In this paper, boldface letters are used to represent a matrices,
e.g. X. XT and XH denote the transpose and the conjugate
transpose of X, respectively. X−1 represents the matrix inverse
of a square matrix X. X† denotes the matrix pseudo-inverse.
Xk corresponds to the kth column vector of X, and ‖Xk‖2

is the l2-norm of Xk . E[·] and D[·] represent the statistical
mean and variance, respectively. Cov[·, ·] denotes the covariance
of two random variables, and �[·] and �[·] take the real and
imaginary parts, respectively. The rest of this paper is organized
as follows. Section II-A briefly introduces compressed sampling
and support recovery using the MWC framework, followed by
the system model for the considered SNSS problem in Section
II-B. In Section III, the RERD algorithm is presented and closed-
form expressions for the false alarm probability and the decision
threshold are derived. Section IV provides simulation results to
verify the performance of our proposed algorithm. Finally, we
conclude our study in Section V.

II. MWC-BASED SNSS AND PROBLEM FORMULATION

To facilitate the presentation and analysis of the proposed
method in subsequent sections, we first briefly review the con-
ventional MWC-based SNSS framework and then introduce the
blind sub-Nyquist spectrum sensing problem.

A. The MWC-Based SNSS

Fig. 1 depicts the flow of the conventional MWC-based SNSS
framework [16], [23], [27]. As shown in the Fig. 1(a), the spec-
trum of a wideband signal x(t), which is bandlimited in the
frequency range of F = [−fNYQ/2, fNYQ/2], is divided into a
number of subbands with identical bandwidth B. The received
signal x(t) at the CR contains a multiband signal s(t) (the
PU signal) and a Gaussian white noise w(t) with zero mean
and power spectrum density σ2

w . The PU signal s(t) comprises
of Ms disjoint bandpass signals sm (t),m = 1, 2, . . . ,Ms , with
bandwidth Bm and central frequency fcm

. Each signal sm (t)
with bandwidth Bm may be located in one or more observation
subbands B. Note that, the sparsity order [23], denoted by M ,
of the input signal in this case is defined as the number of occu-
pied subbands, which is related to the bandwidth of subband B,
the signal bandwidth Bm and the central frequency fcm

, where
m = 1, 2, . . . , Ms . The set S, whose elements are the indexes of
these occupied subbands, is regarded as the frequency support
of x(t).

In the compressed sampling stage of the conventional MWC-
based SNSS as sketched in Fig. 1(b), the received signal x(t)
passed through G channels of the MWC simultaneously, and
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Fig. 1. The conventional MWC-based SNSS. (a) Power spectrum of the re-
ceived signal x(t). (b) Compressive measurements acquisition and support
recovery.

multiplied by a Tp−periodic sequence pg (t) in the gth channel,
which contains J chips alternating between levels ±1. After-
wards, the mixed signal of each channel is filtered by a low-pass
filter (LPF) q(t) with pass band [−fs/2, fs/2]. Mathematically,
the output of the LPF can be expressed as

yg (t) =
∫ ∞

−∞
x (ζ) pg (ζ) q (t − ζ) dζ, g = 1, 2, . . . , G. (1)

The compressive measurements yg (n) can be obtained by
discretizing yg (t) with a sampling interval Ts = 1/fs ,

yg (n) = yg (t)|t=nTs
, n = 0, 1, . . . . (2)

The discrete-time Fourier transform (DTFT) of yg (n) is given
by

Yg

(
ej2πf /fs

)
=

∞∑
n=−∞

yg (n)e−j2πnf /fs

=
L0∑

ι=−L0

cgιX (f − ιfp), f ∈ Fs , (3)

where X(f) is the Fourier transform of x(t), cgι = 1
Tp

∫ Tp

0

pg (t)e
−j 2π

T p
ιt
dt are the coefficients of the Fourier expansion

of pg (t), and fp = 1/Tp . L0 = � fN Y Q +fs

2fp
� − 1 is chosen as

the smallest integer such that the summation in (3) contains
all the subbands of X(f) within Fs = [−fs/2, fs/2]. Without
loss of generality, we set fp = fs and fp = B. In this case,
if we define L = 2L0 + 1, J equals to L. Since the discrete
Fourier transform (DFT) is obtained by uniformly sampling the
corresponding DTFT, it follows from (3) that

Yg (k) =
L0∑

ι=−L0

cgιX (k − ιN), (4)

where g = 1, 2, . . . , G, k = 0, 1, . . . , N − 1, N is the number
of samples in the frequency band F and X (k − ιN) is the DFT
of the input signal x(t).

Note that Yg (k) is a linear weighted combination of the
DFT of all the subbands in F . Define vector Yk = [Y1(k), . . . ,
Yg (k), . . . , YG (k)]T and vector Zk = [Z1(k), . . . , Zl(k), . . . ,
ZL (k)]T with Zl(k) = X(k + (l − L0 − 1)N). Then, (4) can
be rewritten as Yk = AZk , where A ∈ CG×L is the measure-
ment matrix with elements Ag l = cg,−l+L0+1, 1 ≤ l ≤ L and
L = 2L0 + 1. Collecting the vectors Yk and Zk in matrices Y
and Z, respectively, a more compact form of the compressed
samples can be expressed as

Y = AZ. (5)

In the stage of support recovery, the autocorrelation matrix Q̂
is firstly computed and decomposed as

Q̂ =
N −1∑
n=0

ynyT
n (6)

Q̂ = vvH (7)

where compressive measurements vector yn = [y1(n), · · · ,
yg (n), · · · , yG (n)]T , g = 1, 2, . . . , G, n = 0, 1, · · · , N − 1,
and v is the Hermitian square root of Q̂. As a result, a mul-
tiple measurement vectors (MMV) problem can be formed by
the measurement matrix A and the frame v:

v = Au. (8)

It has been shown that if x(t) is sparse (i.e., M 
 L), (8)
has a unique solution matrix ū with the fewest nonzero rows,
the indexes of which are consistent with the support set of Zk

[34]. Therefore, the support of the vector Zk can be obtained
as Ŝ = supp (ū), where ū can be found by a greedy algorithm
[36].

It is necessary to point out that greedy algorithms are imple-
mented in an iterative fashion, where a termination condition
of the iterative process should be determined in advance. Most
existing greedy algorithms require knowledge of the sparsity or-
der of the received signal or the power level of the background
noise to set a termination condition [38], [39]. However, it is
often difficult to acquire such prior knowledge in practical CR
scenarios due to the time-varying nature of spectrum usage and
dynamic fluctuations of the wireless channel. Therefore, accu-
rate termination of the iterative process for these methods is
difficult due to lack of such prior knowledge, which may lead
to either under-recovery, i.e., the recovered support is only a
subset of the true support or over-recovery, i.e., the recovered
support is a superset of the true support. The former will in-
crease the missing detection rate while the latter will enlarge the
false alarm rate.

B. The Problem

To address the above issue, a blind sub-Nyquist spectrum
sensing method referred to as the residual energy ratio based
detector (RERD) is proposed in this paper. Specifically, rather
than using the aforementioned priori knowledge, the RERD
algorithm aims to accurately control the iterative process by
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blind residual detection, which performs a decision on the ab-
sence/presence of the multiband signal in the residual signal af-
ter each iteration and cancellation of a detected subband signal.
The decision result is used to determine whether convergence
is reached or a further iteration is needed. Mathematically, this
process can be formulated as a set of binary hypothesis test
problem as

Yτ =
{

Aτ W, H0,τ

Aτ (S + W), H1,τ
, (9)

In (9), Yτ is called the residual matrix, containing the resid-
ual of the input signal after the τ th iteration, and Aτ is the
equivalent measurement matrix after the τ th iteration, both of
which are given in the subsequent section. S and W ∈ CL×N

are composed with elements Sl,k = S(k + (l − L0 − 1)N) and
Wl,k = W (k + (l − L0 − 1)N), which are formed by the DFT
of the multiband signal s(t) and background noise w(t), respec-
tively. H0,τ denotes the hypothesis that the residual contains
only a noise component after the τ th iteration, which implies
that the iterative process of the greedy algorithm should be
terminated. Meanwhile, H1,τ indicates that there exists a signal
component in the residual after the τ th iteration and the iterative
process should continue. The problem of interest is to design
a suitable decision rule for this sequential residual detection
problem. By sequential residual detection, the iterative process
is controlled on-line and adaptively rather than by a fixed termi-
nation condition that requires additional prior information.

Following the proposed paradigm, the iterative process of
support recovery is terminated once H0,τ is declared. In turn, an
estimated support Ŝ of the input multiband signal is obtained.
To evaluate the performance of the proposed RERD algorithm,
several performance metrics are defined as follows

Pd = Pr{Ŝ = S}, (10a)

Pm = Pr{Ŝ ⊂ S}, (10b)

Pf = Pr{Ŝ ⊃ S}, (10c)

where S is the true support of the input signal. If the recovered
support equals the true one, the associated probability is called
the probability of correct detection Pd . Meanwhile, the proba-
bility of missed detection Pm and the probability of false alarm
Pf refer to the probability associated with under-recovery and
over-recovery, respectively.

III. THE PROPOSED RERD ALGORITHM

In this section, we first present the proposed RERD algo-
rithm, then examine the stochastic properties of the DFT of the
compressive samples and channel energy, and finally derive an
asymptotical expression of the false alarm probability as well
as a closed-form expression of the decision threshold for each
iteration in the RERD.

A. The RERD Algorithm

As illustrated in Fig. 2, similar to the SNSS methods based
on greedy pursuit, the proposed RERD algorithm also conducts
an iterative process consisting of the following steps: select the
column of the measurement matrix that is most correlated with

Fig. 2. A schematic of the RERD algorithm.

the compressive measurement, add the column index to the re-
covery support, and update the residual matrix by subtracting
the estimated signal associated with the current recovered sup-
port. However, the RERD algorithm significantly differs from
existing greedy pursuit based SNSS methods in the control of
the iterative process. Instead of using a preset number of iter-
ations or a stop criterion based on the l2-norm of the residual
matrix [35], the residual detection threshold of our proposed
algorithm is adaptively adjusted based on a given false alarm
probability. The pseudocode of the proposed RERD is presented
in Algorithm 1 which provides more details of Fig. 2.

In line 2, the residual matrix in the τ th iteration Yτ−1 is
projected onto each column of the measurement matrix A and
the column that is most correlated with the current residual is
selected. In line 3, the signal support Ŝτ is updated by adding
column indices Iτ and L + 1 − Iτ (due to spectrum symme-
try of real input signal). The operations in line 2 and line 3
correspond to the column selection block in Fig. 2. In line 4
and line 5, the intermediate projector AŜ τ is used to compute
the occupied subbands X̂τ , and the residual r̂τ is then updated
by subtracting the projection of X̂τ onto AŜ τ from Y0. These
operations correspond to the residual update block in Fig. 2.

In line 6, the residual matrix Yτ is calculated by multiplying
r̂τ with a diagonal correction matrix Mτ , whose elements are
determined by matrixBτ = (E − AŜ τ A†

Ŝ τ
)A. MatrixE in this

line is a G × G identity matrix. This matrix correction operation
keeps the energy of the row vectors in Aτ to be equal to 1 in
the τ th iteration. Under H0,τ , this operation makes the statistic
characteristic of the channel energy T τ

g in different iterations
unchanged. T τ

g , g = 1, 2, . . . , G is a channel energy and Aτ is
an equivalent measurement matrix, which are defined in line 7
and line 8, respectively.

In line 7, G branch test statistics are constructed, and the
test statistic corresponding to the gth branch detection is given
by oτ

g = T τ
g /T τ

g+1, g = 1, 2, . . . , G, where T τ
g = 1

N

∑N −1
k=0

|Yτ
g ,k |2 and T τ

G+1 = T τ
1 . In line 8, a pair of decision thresh-

olds γτ ,f
g and γτ ,b

g for the gth branch detection are defined, and
their expressions are derived in the subsequent subsection. From
line 9 to line 13, each branch detection is performed by com-
paring the energy ratio oτ

g , g = 1, 2, . . . , G, with the decision
thresholds γτ ,f

g and γτ ,b
g . The residual detection in the τ th it-

eration is a collaborative detection scheme which fuses all the
G branch detection results with an “OR” rule. The residual de-
tection result is utilized to determine whether a further iteration
is needed. In comparison with the conventional MWC-based
SNSS [31], [40], [41], the proposed RERD algorithm does not
require any prior knowledge of the sparsity level of the PU signal
nor the noise power. It can work blindly by employing residual
detection to determine the termination condition of the support
recovery process.
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Algorithm 1: The Proposed RERD.
Input: measurement matrix A; false alarm probability of

residual detection Pf ;
compressive measurements y = [y0, . . . ,yn , . . . ,yN −1].

Initialize:
signal support Ŝ0 = ∅; iteration index τ = 1;
residual matrix Y0

G×N with elements Y0
g ,k =∑N −1

n=0 yg ,n e−j2πkn/N .
1: Repeat:
2: Iτ = arg max

l
‖AT

l Yτ−1‖2/‖AT
l ‖2;

3: Ŝτ = Ŝτ−1 ⋃{Iτ , L + 1 − Iτ };
4: X̂τ = A†

Ŝ τ
Y0; A†

S τ = (AT
Ŝ τ

AŜ τ )−1AT
Ŝ τ

;

5: r̂τ = Y0 − AŜ τ X̂τ ;
6: Yτ = Mτ r̂τ ; Mτ = diag(Mτ

1 ,. . . ,Mτ
g ,. . . ,Mτ

G);
Bτ

G×L = (E − AŜ τ A†
Ŝ τ

)A;

Mτ
g = 1

/√∑L
l=1|Bτ

g ,l |2;

7: oτ
g = T τ

g

T τ
g + 1

; T τ
g = 1

N

N −1∑
k=0

|Yτ
g ,k |2; g = 1, 2, . . . , G;

T τ
G+1 = T τ

1 ;
8: γτ ,f

g , γτ ,b
g = Ψ(Aτ , P τ

f ,N)§; Aτ = Mτ

(E − AŜ τ A†
Ŝ τ

)A;

9: if ∃ oτ
g s.t. oτ

g ≥ γτ ,f
g or oτ

g ≤ γτ ,b
g then

10: choose H1,τ ; τ = τ + 1;
11: else
12: choose H0,τ ; Ŝ = Ŝτ ;
13: end if
14: until stopping criterion H0,τ is met.
Output: Sparse signal support Ŝ.

B. False Alarm Probability

In Line 8 of the RERD algorithm, the false alarm probability
of residual detection in the τ th iteration can be expressed as

Pτ
f = 1 −

G∏
g=1

(1 − Pτ
f,g ), (11)

where Pτ
f,g is the false alarm probability of the gth branch de-

tection. Note that, since energy ratio is employed as the test
statistic, it is reasonable to compare oτ

g with a lower threshold
γτ ,f

g and an upper threshold γτ ,b
g to achieve better performance.

The branch detection is thus a bidirectional decision process,
whereby Pτ

f,g is the sum of the forward false alarm probabil-

ity Pτ ,f
f ,g and backward false alarm probability Pτ ,b

f ,g , which are
defined as

Pτ ,f
f ,g = Pr{oτ

g ≥ γτ ,f
g |H0,τ }, (12a)

Pτ ,b
f ,g = Pr{oτ

g ≤ γτ ,b
g |H0,τ }. (12b)

Consequently, the expression for Pτ ,f
f ,g and Pτ ,b

f ,g should be
deduced first to obtain the Pτ

f in the τ th iteration. Under H0,τ ,

§The function Ψ is given in the following section. Note that it is related to
the measurement matrix, the false alarm probability of residual detection and
the number of compressive measurement vectors.

the contribution from the occupied spectrum subbands has been
removed from the original signal Y0, and the entries of the
residual matrix Yτ is the DFT of the idle spectrum subbands
which consists of white noise only. In this case, based on the
statistical analysis on the entries of the residual matrix Yτ , and
the channel energy T τ

g , the distribution of the test statistics oτ
g

and expressions for Pτ ,f
f ,g and Pτ ,b

f ,g can be derived progressively.
The final result is given in the following theorem.

Theorem 1: Under H0,τ , when the sample number N is suf-
ficiently large, the false alarm probability Pτ ,f

f ,g and Pτ ,b
f ,g corre-

sponding to preset decision thresholds γτ ,f
g and γτ ,b

g are

Pτ ,f
f ,g = Pr

(
T τ

g

T τ
g+1

≥ γτ ,f
g

∣∣∣∣H0,τ

)

= 1 − Φ

⎛
⎝

√
Nγτ,f

g −√
N√

1 − 2γτ ,f
g ρτ

g + (γτ ,f
g )2

⎞
⎠ , (13a)

Pτ ,b
f ,g = Pr

(
T τ

g

T τ
g+1

≤ γτ ,b
g

∣∣∣∣H0,τ

)

= Φ

⎛
⎝

√
Nγτ,b

g −√
N√

1 − 2γτ ,b
g ρτ

g + (γτ ,b
g )2

⎞
⎠ , (13b)

where Φ(x) = 1√
2π

∫ x

−∞ e−
η 2

2 dη is the Gaussian cumulative dis-
tribution function (CDF) and the correlation coefficient is given
by

ρτ
g �

(ρτ ,0
g )2 + (ρτ ,1

g )2 + (ρτ ,2
g )2 + (ρτ ,3

g )2

2
, (14)

where

ρτ ,0
g =

L∑
l=1

[�(Aτ
g ,l)�(Aτ

g+1,l) −�(Aτ
g+1,l)�(Aτ

g ,l)], (15a)

ρτ ,1
g =

L∑
l=1

[�(Aτ
g ,l)�(Aτ

g+1,l) −�(Aτ
g ,l)�(Aτ

g+1,l)], (15b)

ρτ ,2
g =

L∑
l=1

[�(Aτ
g ,l)�(Aτ

g+1,l) + �(Aτ
g+1,l)�(Aτ

g ,l)], (15c)

ρτ ,3
g =

L∑
l=1

[�(Aτ
g ,l)�(Aτ

g+1,l) + �(Aτ
g+1,l)�(Aτ

g ,l)], (15d)

and Aτ = Mτ (E − AŜ τ A†
Ŝ τ

)A is the equivalent measure-
ment matrix in the τ th iteration.

Proof: To prove Theorem 1, we start from Line 6

Yτ = Mτ r̂τ = Mτ (Y0 − AŜ τ X̂τ )

= Mτ (Y0 − AŜ τ A†
Ŝ τ

Y0)

= Mτ (E − AŜ τ A†
Ŝ τ

)AZ, (16)

where E ∈ CG×G is an identity matrix. If we define Aτ =
Mτ (E − AŜ τ A†

Ŝ τ
)A as an equivalent measurement matrix,
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γτ ,f
g =

N − ρτ
g

[
Φ−1

(
1 − Pτ ,f

f ,g

)]2
+ Φ−1

(
1 − Pτ ,f

f ,g

)√
(ρτ

g
2 − 1)

[
Φ−1

(
1 − Pτ ,f

f ,g

)]2
+ 2N(ρτ

g −1)

N −
[
Φ−1

(
1 − Pτ ,f

f ,g

)]2 , (22a)

γτ ,b
g =

N − ρτ
g

[
Φ−1

(
Pτ ,b

f ,g

)]2
− Φ−1

(
Pτ ,b

f ,g

)√
((ρτ

g )2 − 1)
[
Φ−1

(
Pτ ,b

f ,g

)]2
+ 2N(ρτ

g −1)

N −
[
Φ−1

(
Pτ ,b

f ,g

)]2 , (22b)

Yτ = Aτ Z can be regarded as a compressive sampling on the
matrix Z with a new measurement matrix Aτ . Under H0,τ ,
using the associative and distributive laws of matrix, it can be
shown that the columns with indexes taken from support Ŝτ

are identical in matrix A and AŜ τ (A†
Ŝ τ

A), while the columns

vectors Aτ
l , l ∈ Ŝτ are 0, where Ŝτ is the complete support of

multiband signal. Then Aτ acquires nothing from the occupied
subbands in this case. Hence, even if we replace the occupied
subbands with idle subbands, this will cause no changes in
the statistical properties of Yτ , and we can infer the statistical
characteristic of Yτ

g ,k form Yτ = Aτ W instead of Yτ = Aτ Z
for simplicity.

Considering the linearity of the DFT and the assumption that
the noise w(t) has zero mean and power spectrum density σ2

w ,
Wl,k is a complex Gaussian random variable with zero mean
and variance LNσ2

w . Since the sum of the modular square of the
row vector in Aτ is 1, Yτ

g ,k , which can be expressed as Yτ
g ,k =∑L

l=1 Ag ,lWl,k is also a complex Gaussian random variable
with zero mean and variance LNσ2

w . Based on the statistical
characteristic of Yτ

g ,k , Lemma 1 in Appendix indicates that
T τ

g is a sum of N independent random variables |Yτ
g ,k |2, k =

0, 1, . . . , N − 1 with identical mean and variance under H0,τ .
Thus, for large N and following the central limit theorem, T τ

g

is approximately a Gaussian variable with mean and variance
given by

E
[
T τ

g |H0,τ

]
=

1
N

N −1∑
k=0

E
[∣∣Yτ

g ,k

∣∣2] = LNσ2
w , (17a)

D
[
T τ

g |H0,τ

]
=

1
N

N −1∑
k=0

D
[∣∣Yτ

g ,k

∣∣2] = L2N 2σ4
w . (17b)

The covariance of different channel energies are

Cov
[
T τ

g , T τ
g+1

]

= Cov

[
1
N

N −1∑
k=0

∣∣Y τ
g (k)

∣∣2
,

1
N

N −1∑
k=0

∣∣Y τ
g+1 (k)

∣∣2

]

=
1

N 2

N −1∑
k=0

Cov
[∣∣Y τ

g (k)
∣∣2

,
∣∣Y τ

g+1 (k)
∣∣2
]

=
(ρτ ,0

g )2 + (ρτ ,1
g )2 + (ρτ ,2

g )2 + (ρτ ,3
g )2

2
L2N 2σ4

w , (18)

where ρτ ,0
g , ρτ ,1

g , ρτ ,2
g and ρτ ,3

g are defined in Theorem 1. The
last equality of (18) follows from (24) of Lemma 1. There-
fore, the correlation coefficient ρτ

g between T τ
g and T τ

g+1 can be

calculated as

ρτ
g =

Cov
[
T τ

g , T τ
g+1

]
√

D
[
T τ

g |H0,τ

]
D

[
T τ

g+1|H0,τ

]

=
(ρτ ,0

g )2 + (ρτ ,1
g )2 + (ρτ ,2

g )2 + (ρτ ,3
g )2

2
. (19)

According to the derivation above, the test statistics oτ
g under

H0,τ is the ratio of two statistically correlated Gaussian variables
whose statistics are given by (17), (18), and (19). To find the
CDF of oτ

g , we employ the following property.
Property 1: If the correlation coefficient between two Gaus-

sian random variable I1 and I2 is ρ, the CDF of R = I1/I2 is
[45]

FR (r) = Pr(R < r) = Φ

(
rμ2 − μ1√

σ2
1 − 2rρσ1σ2 + r2σ2

2

)
, (20)

where Φ(x) the Gaussian CDF defined in Theorem 1, μ1, μ2,
σ2

1, and σ2
2 are the mean and variance of I1 and I2, respectively

and they are all positive.
Eqn. (13) follows immediately by applying Property 1 to the

test statistic of branch detection oτ
g = T τ

g /T τ
g+1. �

C. Decision Threshold of Branch Detection

Suppose all the false alarm probabilities of branch detection
are identical, (11) can be simplified as

Pτ
f = 1 − (1 − Pτ

fg
)G. (21)

Following the Neyman-Pearson criterion, if the target false
alarm probability of residual detection Pτ

f is given, we can
calculate Pτ

fg
from (21), and then the decision thresholds γτ ,f

g

and γτ ,b
g for branch detection in the τ th iteration can be obtained

by inverting (13), where the expression at the right side of the
equal sign in (22), shown at the top of the page, is defined as
the function Ψ(·) and Φ−1(x) is the inverse function of Φ(x).
From the process of the RERD and the threshold expression,
we know that the threshold γτ ,f

g and γτ ,b
g are determined by the

compressive measurements number N , false alarm probability
Pτ

f , and the correlation coefficient ρτ
g which only depends on

the equivalent measurement matrix Aτ . Therefore, the RERD
threshold γτ ,f

g and γτ ,b
g can be accurately computed from these

parameters. Notably, the RERD threshold γτ ,f
g and γτ ,b

g are
not related to the noise variance σ2

w , and does not require any
prior knowledge about the noise w(t). Therefore, the RERD is
inherently a blind sub-Nyqusit spectrum sensing scheme.
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Fig. 3. Comparison between the correct detection probability of conventional
SNSS method and the RERD algorithm.

IV. PERFORMANCE SIMULATION AND ANALYSIS

In this section, we first discuss the performance simulation
setting, followed by several performance evaluation results.

A. Simulation Setup

In the following simulations, the system simulation param-
eters of the MWC are: the equivalent sampling rate fNYQ =
6GHz, the number of sampling channels G = 40, the period
of each random sequence Tp = 19.17ns with L = 115 chips of
random ±1 in each period, the sampling rate of single channel
fs = B = fp , and the cutoff frequency of LPF in each channel
equals to fs/2, where fp = 1/Tp = 52.2 MHz. The transmis-
sion signal of PU consists of Ms digital modulation signals. The
symbol rate sr of each signal is 20 MBaud (sr < fp ), and the
carriers frequency of each PU signal is l′fp , where l′ is an inte-
ger and can be randomly selected in the set [1, 2, . . . , L0] with
equal probability. It means that each PU signal will be located
at the center of two subband (due to spectrum symmetry of real
input signal). Thus M = 2Ms subbands have been occupied in
the frequency domain. The signal-to-noise ratio (SNR) used in
simulations is defined as SNR = (P/σ2

w ), where P is the total
power of Ms PU signals with identical power. According to the
rule of constant false alarm, Pτ

f is fixed, and false alarm prob-
ability of branch detection Pτ

f,g is computed from (21). We set

Pτ ,f
f ,g = Pτ ,b

f ,g = Pτ
f,g /2 in the simulations. The results as below

are all averaged over 104 Monte Carlo experiments.

B. Simulation Results

Fig. 3 compares the detection probability Pd of the RERD
algorithm with that of the conventional SNSS methods. In the
simulation, M = 6 bands are active, N = 1000 compressive
measurement vectors are used, and SNR ranges from −16dB
to 4dB. Three SNSS methods with different conditions of ter-
mination iteration are chosen as benchmarks. We named the
SNSS method in references [19], [39] as “SNSS I”, which ter-
minates the iteration of the support recovery according to a
known sparsity order. The SNSS method in reference [40] is
defined as “SNSS II”, which terminates the iteration of the

Fig. 4. False alarm probability of the RERD algorithm with different P τ
f .

support recovery according to an estimated sparsity order. The
SNSS method in reference [34] is termed as “SNSS III”, which
decides whether the next iteration is necessary according to the
l2-norm value of the residual matrix. In the RERD algorithm,
Pτ

f = [0.001, 0.005, 0.01] for each iteration are chosen, respec-
tively. As shown in the figure, the detection performance of
the RERD algorithm slightly improves with the increasing false
alarm probability of the RERD algorithm. Benefitting from the
priori knowledge [38], the detection performance of the SNSS
I method with known sparsity order is better than the that of
the RERD blind sub-Nyquist spectrum sensing method. Nev-
ertheless, when the sparsity order is unknown and difficult to
accurately estimate in practical scenarios [41], SNSS II method
suffers a significant performance loss in the detection proba-
bility. Meanwhile, the detection performance of the SNSS III
method with the stop criterion ‖r̂τ ‖ ≤ ε experiences notable
fluctuations. When ε = 4.65, its performance is slightly supe-
rior to that of the RERD method. When ε = 5 and ε = 5.5, their
performances decrease significantly and become inferior to that
of the RERD algorithm. The RERD holds an advantage over the
SNSS III method when it is difficult to set an appropriate value
ε due to uncertainty in the noise level. Our results show that,
even in the absence of a priori knowledge and at low SNR, the
proposed method can obtain good detection performance.

From Fig. 3, we can see that the RERD algorithm with a
preset Pτ

f is able to recover more elements of the true support
than the SNSS III with a certain ε, and the number of recovered
support elements of the RERD algorithm is less than or equal to
that of the SNSS I method. In reference [39], the convergence
of SNSS I and SNSS III have been analyzed, and the error
bound corresponding to these SNSS methods have been listed.
Hence, the error bound of the RERD algorithm lies between
that of SNSS I and SNSS III, and the convergence of the RERD
algorithm can be ensured.

The false alarm probability of the RERD algorithm obtained
by simulation is compared with its preset value in Fig. 4. It is
shown that the false alarm probability is around the preset value
with slight fluctuation in relatively large SNR region. From
(10c), the false alarm probability Pf of the RERD algorithm is
defined as the probability of over-recovery. The over-recovery
means excessive support recovery beyond the true signal
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Fig. 5. Correct detection probability of the RERD algorithm with different
sample number N .

Fig. 6. Correct detection probability of the RERD algorithm with different
numbers of occupied subbands M .

support set S. Hence, false alarm probability Pf is related to the
correct detection probability Pd and the false alarm probability
of excessive support recovery. When SNR is sufficiently large,
the correct detection probability Pd almost reaches 1, and Pf of
the RERD algorithm is determined by the false alarm probabil-
ity Pτ

f of excessive iteration. These results offer an intuition for
the definition of the false alarm probability.

Fig. 5 gives the correct detection probability of the RERD
when the number of compressive measurement vectors N is
set as 500, 1000, and 2000, respectively. It is seen that the
correct detection probability of the RERD algorithm is close to
99% with just 500 compressive samples at SNR = −4 dB, and
the detection performance can be improved by increasing the
number of samples.

Fig. 6 gives the correct detection probability of the RERD
when the number of occupied bands M is 4, 6, and 8, respec-
tively. In view of the simulation setting, there exists Ms = M/2
nonadjacent signals which possesses an identical signal power
P/Ms in the full band. As shown in the figure, the RERD algo-
rithm can provide stable detection performance with different
numbers of occupied bands. The fewer bands being occupied,
the better the detection performance. This is because when Ms

is larger, the power P/Ms of each signal decreases, the detection

Fig. 7. Correct detection probability of the RERD algorithm with different
numbers of channels G.

TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY BETWEEN THE RERD

AND THE SNSS I

probability of each signal in different iterations also decreases
because the signal is weaker, and so is the overall detection
performance. If the power of each signal remains unchanged,
the correct detection probability of the RERD will remain so as
well.

Fig. 7 shows the correct detection probability of the RERD
when the number of sampling channels G is set to be 30, 40, and
50, respectively. The number of occupied bands and compres-
sive measurement vectors are fixed as M = 6 and N = 1000,
respectively. It is shown that, when the condition G ≥ 2M is
fulfilled, the RERD algorithm has the ability to achieve good
correct detection performance. Note that the condition G ≥ 2M
is the sufficient condition for successful support recovery based
on the MWC in this simulation [19], [34]. The Pd of the RERD
algorithm is seen to improve with more sampling channels. Be-
sides, this simulation result offers some guideline in selecting
the number of sampling channels for the modulated wideband
converter.

Finally, we briefly compare the computational complexity
of the SNSS I method and the RERD algorithm in Table I.
The SNSS I method [19] involves the following steps: correla-
tion matrix construction (CMC), correlation matrix decompo-
sition (CMD) and orthogonal matching pursuit (OMP). CMC
and CMD have computational complexity O(NG2) and O(G3)
separately. In each iteration of the OMP, LG2 multiplications
are needed. If the sparsity order is known in advance, the com-
putational cost of the OMP can be estimated as MsLG2. The
RERD algorithm employs the FFT, OMP and residual detection
(RD) based iteration control to achieve blind spectrum sensing.
When performing N−point FFT on compressive measurements
from G channels simultaneously, the associated complexity is
O(GN log2N). As shown in line 2 of the RERD algorithm, the
computational complexity of the OMP in RERD is dominated
by the index selection, and O(MsNG2) multiplications are
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needed when indexes corresponding to occupied subbands are
all selected. Residual detection (RD) based iteration control uses
O(MsGN) multiplications to construct the test statistics. When
N � G, the computational cost of the SNSS I and the RERD
can be approximated asO(NG2) andO(MsNG2), respectively.
The computational complexity of the proposed RERD algorithm
is higher than the SNSS I method. Nonetheless, from (6) and Par-
seval’s theorem, we know that the gth, g = 1, 2, . . . , G diagonal
elements of autocorrelation matrix Q̂ is equal to frequency do-
main energy of the gth sampling channel. The RERD algorithm
can also use CMD and CMC operations to reduce computa-
tional complexity of the index selection in the OMP. Therefore,
the RERD algorithm can be implemented with a slight increase
in computational cost compared with the SNSS I methods to
ensure autonomous and appropriate iteration control.

V. CONCLUSIONS

In this paper, a blind sub-Nyquist spectrum sensing algo-
rithm, referred to as the Residual Energy Ratio based Detector
(RERD), is proposed. The RERD algorithm is an MWC-based
SNSS scheme, involving a series of binary hypothesis testing
and residual detection for support recovery. By exploiting the
stochastic properties of the discrete Fourier transform of com-
pressive measurements from the MWC, the expressions for the
false alarm probability and decision threshold of residual de-
tection are derived. Simulation results show that, even with no
prior knowledge, the RERD algorithm can achieve high correct
detection performance at low false alarm probability for a wide
range of SNR in additive white noise channel, as well as robust
recovery performance with different numbers of occupied bands
and undersampling rates.

APPENDIX

PROOF OF LEMMA 1

Lemma 1: Under H0,τ , the mean and variance of |Yτ
g ,k |2 are

E
[|Yτ

g ,k |2
]

= LNσ2
w ,D

[|Yτ
g ,k |2

]
= L2N 2σ4

w , (23)

respectively, where g = 1, 2, . . . , G, and k = 0, 1, . . . , N − 1.
The covariance of the power spectrum bins |Yτ

h,u |2 and |Yτ
i,v |2

for different values of (h, i) and (u, v) is

Cov[|Yτ
h,u |2, |Yτ

i,v |2] =

⎧⎨
⎩

0, h = g, i = g, u �= v
L2N 2σ2

w ρτ
g , h = g, i = g +1, u = v

0, h = g, i = g + 1, u �=v
(24)

where g = 1, 2, . . . , G, u, v = 0, 1, . . . ,K − 1, ρτ
g is defined in

Theorem 1.
Proof: Under H0,τ , according to the result E[�(Wl,k )] =

E[�(Wl,k )] = 0, D[�(Wl,k )] = D[�(Wl,k )] = NLσ2/2
and Cov[�(Wl,k ),�(Wl,k )] = 0 [46], the mean and variance
of �(Yτ

g ,k ) and �(Yτ
g ,k ) can be obtained easily as

E
[�(Yτ

g ,k )
]

= E
[�(Yτ

g ,k )
]

= 0, (25a)

D
[�(Yτ

g ,k )
]

= D
[�(Yτ

g ,k )
]

= LNσ2
w /2, (25b)

and the covariance of �(Yτ
g ,k ) and �(Yτ

g ,k ) can be calculated
as

Cov
[�(Yτ

g ,k ),�(Yτ
g ,k )

]
= E

[�(Yτ
g ,k )�(Yτ

g ,k )
]− E

[�(Yτ
g ,k )

]
E

[�(Yτ
g ,k )

]

= E

{[
L∑

l=0

(
� (

Aτ
g ,l

)� (Wl,k ) −� (
Aτ

g ,l

)� (Wl,k )
)]

×
[

L∑
l=0

(
� (

Aτ
g ,l

)� (Wl,k ) + � (
Aτ

g ,l

)� (Wl,k )
)]}

= 0. (26)

Hence, |Yτ
g ,k |2 =

[�(Yτ
g ,k )

]2 +
[�(Yτ

g ,k

]2
can be treated as

a sum of two independent and identically distributed Gaussian
random variables, and its mean and variance can be calculated
from a central chi-square distribution with degree 2,

E
[|Yτ

g ,k |2
]

= 2
(√

LNσ2
w /2

)2
= Nσ2

w , (27a)

D
[|Yτ

g ,k |2
]

= 4
(√

LNσ2
w /2

)4
= L2N 2σ4

w , (27b)

which is consistent with (23).
To prove (24), we need to analyze the covariance between

the power spectrum with different frequency bins from the
same channel, the covariance between power spectrum with
the same frequency bins from adjacent channels, and the
covariance between the power spectrum with different fre-
quency bins from adjacent channels. Since the DFT Wl,u and
Wl,v , u �= v are uncorrelated [47], Yτ

g ,k =
∑L

l=1 Ag ,lWl,k

and Yτ
g ,k =

∑L
l=1 Ag ,lWl,k are linear combinations of Wl,u

and Wl,v , separately, we can deduce that Cov[Yτ
g ,u ,Yτ

g ,v ] = 0.
Moreover, since |Yτ

g ,u |2 and |Yτ
g ,v |2 are continuous functions

of Yτ
g ,u and Yτ

g ,v , it can be directly verified that

Cov
[|Yτ

g ,u |2, |Yτ
g ,v |2

]
= 0, (28)

where g = 1, 2, . . . , G, and u, v = 0, 1, . . . , N − 1, u �= v.
Under H0,τ , the covariance between |Yτ

g ,k |2 and |Yτ
g+1,k |2

can be expanded as

Cov
[|Yτ

g ,k |2, |Yτ
g+1,k |2

]
=

Cov
[[� (

Yτ
g ,k

)]2 +
[� (

Yτ
g ,k

)]2
,
[� (

Yτ
g+1,k

)]2

+
[� (

Yτ
g+1,k

)]2
]

= Cov
[[� (

Yτ
g ,k

)]2[� (
Yτ

g+1,k

)]2
]

+ Cov
[[� (

Yτ
g ,k

)]2[� (
Yτ

g+1,k

)]2
]

+ Cov
[[� (

Yτ
g ,k

)]2[� (
Yτ

g+1,k

)]2
]

+ Cov
[[� (

Yτ
g ,k

)]2[� (
Yτ

g+1,k

)]2
]
. (29)
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For further simplification, we first compute the covariance
between �(Yτ

g ,k ) and �(Yτ
g+1,k )

Cov
[�(Yτ

g ,k ),�(Yτ
g+1,k )

]
= E

[�(Yτ
g ,k )�(Yτ

g+1,k )
]− E

[�(Yτ
g ,k )

]
E
[�(Yτ

g+1,k )
]

= E

[(
L∑

l=0

(� (
Aτ

g ,l

)� (Wl,k ) −� (
Aτ

g ,l

)� (Wl,k )
))

×
(

L∑
l ′=0

(� (
Aτ

g+1,l ′
)� (Wl ′,k ) −� (

Aτ
g+1,l ′

)� (Wl ′,k )
))]

=
LNσ2

w ρτ ,2
g

2
. (30)

As the variance of �(Yτ
g ,k ) and �(Yτ

g+1,k ) are LNσ2
w /2,

we can infer that the correlation coefficient of �(Yτ
g ,k ) and

�(Yτ
g+1,k ) is ρτ ,2

g , and then the correlation coefficient of
[�(Yτ

g ,k )]2 and [�(Yτ
g+1,k )]2 is (ρτ ,2

g )2[44]. Thus, the covari-
ance between [�(Yτ

g ,k )]2 and [�(Yτ
g+1,k )]2 is

Cov
[[� (

Yτ
g ,k )

)]2[� (
Yτ

g+1,k )
)]2

]
=

L2N 2σ4
w

2
(ρτ ,2

g )2,

(31)
Similarly, we can get

Cov
[[� (

Yτ
g ,k

)]2[� (
Yτ

g+1,k

)]2
]

=
L2N 2σ4

w

2
(ρτ ,0

g )2, (32)

Cov
[[� (

Yτ
g ,k

)]2[� (
Yτ

g+1,k

)]2
]

=
L2N 2σ4

w

2
(ρτ ,1

g )2, (33)

Cov
[[� (

Yτ
g ,k

)]2[� (
Yτ

g+1,k

)]2
]

=
L2N 2σ4

w

2
(ρτ ,3

g )2. (34)

Substituting equations (31)–(34) into equation (29), the equa-
tion (29) can be written as

Cov
[|Yτ

g ,k |2, |Yτ
g+1,k |2

]

=
(ρτ ,0

g )2 + (ρτ ,1
g )2 + (ρτ ,2

g )2 + (ρτ ,3
g )2

2
L2N 2σ4

w . (35)

For the case h = g, i = g + 1 and u �= v, in the same process,
it is easy to obtain

Cov
[[� (

Yτ
h,u

)]2[� (
Yτ

i,v

)]2
]

= 0, (36a)

Cov
[[� (

Yτ
h,u

)]2[� (
Yτ

i,v

)]2
]

= 0, (36b)

Cov
[[� (

Yτ
h,u

)]2[� (
Yτ

i,v

)]2
]

= 0, (36c)

Cov
[[� (

Yτ
h,u

)]2[� (
Yτ

i,v

)]2
]

= 0, (36d)

which leads to

Cov
[|Yτ

h,u |2, |Yτ
i,v |2

]
= 0. (37)

With the result in (28), (35) and (37), we finally obtain (24)
in Lemma 1.
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