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Exact Reconstruction Analysis of Log-Sum
Minimization for Compressed Sensing
Yanning Shen, Jun Fang, Member, IEEE, and Hongbin Li, Senior Member, IEEE

Abstract—The fact that fewer measurements are needed
by log-sum minimization for sparse signal recovery than the
-minimization has been observed by extensive experiments.

Nevertheless, such a benefit brought by the use of the log-sum
penalty function has not been rigorously proved. This paper
provides a theoretical justification for adopting the log-sum as
an alternative sparsity-encouraging function. We prove that
minimizing the log-sum penalty function subject to is
able to yield the exact solution, provided that a certain condition
is satisfied. Specifically, our analysis suggests that, for a properly
chosen regularization parameter, exact reconstruction can be
attained when the restricted isometry constant is smaller
than one, which presents a less restrictive isometry condition than
that required by the conventional -type methods.

Index Terms—Compressed sensing, iterative reweighted algo-
rithms, log-sum minimization.

I. INTRODUCTION

T HE problem of compressed sensing involves the recovery
of a high dimensional sparse signal from a small number

of measurements [1], [2]. The canonical form of this problem
can be presented as

(1)

where denotes the acquired measurements,
is the sampling matrix with , and stands for the
number of the nonzero components of . It is well-known that
any -sparse vector can be exactly recovered via (1) if
, where is the restricted isometry constant associated with
the measurement matrix , which is defined as the smallest con-
stant such that

(2)

holds for all -sparse vectors [1]. The optimization (1), how-
ever, is a non-convex and NP-hard problem that has computa-
tional complexity growing exponentially with the signal dimen-
sion . Thus, alternative sparsity-promoting functionals which
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are more computationally efficient in finding the sparse solu-
tion are desirable. The most popular alternative is to replace the
-norm in (1) with -norm, which leads to a convex optimiza-

tion problem that can be solved efficiently. Over the past decade,
the use of the -norm as a sparsity-promoting functional for
sparse signal recovery has been extensively studied [1]–[6]. It
has been shown that minimization allows recovery of sparse
signals from only a few measurements. Nevertheless, as com-
pared with (1), -type methods generally require a more re-
strictive condition for exact signal reconstruction. It is therefore
natural to seek an alternative which can bridge the gap between
the and minimization. One such alternative is the log-sum
penalty function. Replacing the -norm with this sparsity-en-
couraging functional leads to:

(3)

where is a positive parameter to ensure that the function
is well-defined. Such a log-sum penalty function was originally
introduced in [7] for basis selection and has gained increasing
attention recently. It was shown in [8], [9] that by resorting
to the bound optimization technique, minimizing (3) can be
formulated as an iterative reweighted -minimization process
which iteratively minimizes a reweighted function. In a series
of experiments [8], the iterative reweighted algorithm presents
uniform superiority over the conventional -type methods in
the sense that substantially fewer measurements are needed for
exact recovery. In fact, is was shown in [10] that when
, the log-sum penalty function is essentially the same as the
-norm. Hence it can be expected that the above regularized

log-sum penalty function behaves like the -norm when is
small. Nevertheless, such a benefit brought by the use of the
regularized log-sum penalty function in sparse signal recovery
has not been rigorously proved so far. In the following, we
conduct an in-depth investigation of the optimization (3). Our
study will provide a rigorous justification for (3) and the itera-
tive reweighted method.
In addition to the log-sum minimization being considered in

this paper, another effective sparsity-promoting strategy is to
replace the -norm with the -norm ( ). The-
oretical analyses conducted in [11]–[13] prove that -mini-
mization enjoys a nice theoretical guarantee: -minimization
requires fewer measurements than -type methods for sparse
signal exact reconstruction. We show that a similar theoretical
guarantee is available for the minimization of log-sum penalty
function as well.

II. CONDITION FOR EXACT RECONSTRUCTION

We provide theoretical analysis concerning a sufficient con-
dition under which the solution to (3) equals to the true signal
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. Our analysis reveals a relation between the restricted isom-
etry constant and the regularization parameter . The main
result is summarized as follows.
Theorem 1: Let be an matrix, and be a

sparse vector with non-zero entries. Define

(4)

where is the support of , , denotes the
ceiling operator that gives the smallest integer no smaller than ,
and is the restricted isometry constant of the measurement
matrix . If we have

(5)

where

(6)

then the global minimizer of (3) is exactly equal to .
Remark 1: The above condition (5) involves a search of

over the region . Notice that the first term inside the max
(one out of two) operator in (6) tends to infinity when ,
while the second term becomes arbitrarily large when .
Hence the value of minimizing should lie somewhere in
between. Nevertheless, when we are trying to select an appro-
priate parameter to satisfy (5), an arbitrary value of
can be considered. As long as is satisfied for a
particular choice of , we can guarantee that the con-
dition (5) is automatically satisfied since

(7)

For example, if we select , then we only need to
choose an to ensure

(8)

We would like to emphasize that the condition (5) is a sufficient
condition for exact reconstruction. When becomes arbitrarily
large, the condition (5) will not be satisfied. Nevertheless, in this
case, exact reconstruction is still possible. Note that when im-
plementing the iterative reweighted -minimization algorithm,
all weights are roughly identical. Hence the log-sum penalty
function behaves like -minimization for an arbitrarily large .
Remark 2: Theorem 1 provides a sufficient condition which

guarantees an exact reconstruction via solving (3). A close ex-
amination of the condition (5) reveals that the regularization pa-
rameter has an inverse relationship with the restricted isom-
etry constant , that is, a larger results in a smaller and
vice versa. In particular, when , accordingly we should
have in order to ensure the condition (5) is met. One the
other hand, for any , we can always find a suffi-
ciently small such that the condition (5) is satisfied. Hence we
can ensure that, when , any -sparse signal can be ex-
actly recovered via (3) for a properly chosen . Recalling that for
-minimizationmethods, the condition for exact reconstruction

is given by (see [3]). Since we have ,
the condition implies . We see that our

result presents a less restrictive isometry condition than that of
the -minimization methods. This also explains why the use of
the log-sum penalty function turns out to be a better alternative
to the than the -norm.
Remark 3: We note that (3) is a non-convex optimization

problem and there is no guarantee that the iterative reweighted
algorithm will converge to a global minimum of (3). Neverthe-
less, we can improve the probability of finding a global mini-
mizer by starting from a number of different initialization points
and choosing the converged point that achieves the minimum
objective function value. Also, empirical studies suggest that
the iterative reweighted algorithm is more likely to converge
to an undesirable local minimum when . To address
this issue, similarly to [14], we can use a monotonically de-
creasing sequence in updating the weighting parameters.
For example, at the very first beginning, can be set to a rel-
atively large value, say 1, in order to provide a stable coeffi-
cient estimate. We then gradually reduce the value of in the
subsequent iterations until attains a value such that (5) is
met. Such a process actually amounts to solving the following
optimization

(9)

Previous iterations that use can be considered a pro-
cedure looking for a good initialization point. Numerical results
demonstrate that this approach significantly improves the ability
of avoiding undesirable local minima.

III. PROOF OF THEOREM 1

Suppose that is the solution of (3). Let . Clearly,
the residual vector lies in the null space of , i.e.

(10)

Meanwhile, since is the global minimizer of (3), we have

(11)

We wish to prove that, given (5), there does not exist a nonzero
vector which satisfies conditions (10)–(11) simultaneously.
Otherwise the global minimizer of (3) is unequal to the original
sparse signal, i.e. .
Let us first examine (10). Write .

We decompose the residual vector into a sum of a set of vec-
tors , where is a vector with its th entry equal to
for and zero otherwise. The index set is the support of
. Also, we use to denote the complement of the index set .
Without loss of generality, we assume that the index set con-
tains the indices associated with the largest (in magnitude)
coefficients of , corresponds to the indices of the next

largest (in magnitude) coefficients of , and so on. Ob-
viously are -sparse vectors (possibly except ).
Our analysis will reveal the relation between and the largest

entries of . The results are summarized as follows.
Lemma 1: Suppose is a vector in the null space of ,

then the largest (in magnitude) coefficients in are lower
bounded by

(12)

Proof: See Appendix A
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The above result suggests that for any nonzero vector in the
null space of , the largest entries in cannot be made
arbitrarily small relative to .
Now let us consider the second condition (11). Decomposing

the indices into two sets, the condition can be re-expressed as

(13)

Based on (12) and (13), we now derive a new condition has
to satisfy. Define

The term on the left-hand side (LHS) of (13) can be lower
bounded by

(14)

while the term on the right-hand side (RHS) of (13) can be upper
bounded as

(15)

where holds valid as all terms in the summation are non-
positive, and follows from Lemma 1:

(16)

Combining (13)–(15), we arrive at the following inequality

(17)

We now prove that given (5), the above inequality (17) holds
only when (note that the inequality (17) only involves
entries in ). To this objective, it suffices to prove that the
converse, i.e.

(18)

always holds for given (5). Define
and divide the set into two subsets:

(19)

where is a parameter of our own choice. Here we confine
to be a value between 0 and 1, i.e. , to facilitate our
following analysis. Clearly, we have , and

. Let denote the cardinality of the set , and
the cardinality of is . The term on the LHS of (18)

can be decomposed into a product of two terms associated with
the two subsets and :

(20)

Examine the term associated with the first subset . Since
for , we have . For any , it can be

readily verified the following inequality holds

(21)

if (that is, ) and

(22)

Noting that , the above condition (22) is guaran-
teed when

(23)

From (21)–(23), we see that given the condition (23), the fol-
lowing inequality holds

(24)

Consider the term associated with the subset in (20). In Ap-
pendix B, we proved that the following inequality holds

(25)

when the following condition is met

(26)

If satisfies both conditions (23) and (26), i.e.

(27)

by combining (24)–(25), we obtain the inequality (18). There-
fore we conclude that the inequality (17) holds only when
(note that the inequality becomes an equality when ).

Substituting back into (13), we can quickly reach that
as well. Also, notice that the parameter in (27) can

take any value in . Therefore as long as

(28)

we have , which implies the global minimizer of (3), ,
is exactly equal to . The proof is completed here.

IV. CONCLUSIONS

We presented a sufficient condition which guarantees that
the global minimizer of (3) yields the exact reconstruction.
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Analyses show that when , any -sparse signal can be
exactly reconstructed (3) for a properly chosen .

APPENDIX I
PROOF OF LEMMA 1

Define a new index set . For any vector in
the null space of , we have

(29)

By decomposing , we reach the following inequality

(30)

where is a result of the restricted isometry property of ,
follows from the fact and the decreasing order of

, comes from , is the first
(meanwhile the largest in magnitude) entry in . Rearranging
(30), we get

(31)

Since are arranged in descending order of magnitude,
we have

(32)

The proof is completed here.

APPENDIX II
PROOF OF THE INEQUALITY (25)

We relax the terms on both sides of (25) as follows:

(33)

(34)

where , comes from the fact:
and the cardinality of is equal to , and in

, we replace with as we have . To prove
(25), it suffices to show the following inequality holds valid

(35)

Rearranging (35), we get

(36)

Note that and

(37)

where the above inequality comes from the fact that and
. Hence defined in (36) is upper bounded by

(38)

where the last inequality comes by noting that (c.f.
(4)), , and . Therefore the following

(39)

is a sufficient condition for the inequality (36) (consequently
(25)) to hold valid. Moreover, note that the condition (39) im-
plies that . Therefore we have
, in which case the condition (39) can be further relaxed as

(40)

The proof is completed here.
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