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The parametric Rao test for a multichannel adaptive signal
detection problem is derived by modeling the disturbance signal
as a multichannel autoregressive (AR) process. Interestingly,
the parametric Rao test takes a form identical to that of the
recently introduced parametric adaptive matched filter (PAMF)
detector for space-time adaptive processing (STAP) in airborne
surveillance radar systems and other similar applications.

The equivalence offers new insights into the performance

and implementation of the PAMF detector. Specifically, the
Rao/PAMF detector is asymptotically (for large samples) a
parametric generalized likelihood ratio test (GLRT), due to an
asymptotic equivalence between the Rao test and the GLRT.

The asymptotic distribution of the Rao test statistic is obtained

in closed form, which follows an exponential distribution

under the null hypothesis H, and, respectively, a noncentral
Chi-squared distribution with two degrees of freedom under

the alternative hypothesis H,. The noncentrality parameter

of the noncentral Chi-squared distribution is determined by

the output signal-to-interference-plus-noise ratio (SINR) of a
temporal whitening filter. Since the asymptotic distribution
under H), is independent of the unknown parameters, the
Rao/PAMF asymptotically achieves constant false alarm rate
(CFAR). Numerical results show that these results are accurate in
predicting the performance of the parametric Rao/PAMF detector
even with moderate data support.

Manuscript received August 25, 2005; revised May 6, 2006;
released for publication August 26, 2006.

IEEE Log No. T-AES/43/3/908400.
Refereeing of this contribution was handled by M. Rangaswamy.

This work was supported by the Air Force Research Laboratory
(AFRL) under Contract FA8750-05-2-0001.

Part of this work was presented at the 39th Asilomar Conference on
Signals, Systems, and Computers, Pacific Grove, CA, Oct. 30-Nov.
2, 2005.

Authors’ current addresses: K. J. Sohn and H. Li, Dept. of
Electrical and Computer Engineering, Stevens Institute of
Technology, Hoboken, NJ 07030, E-mail: (hli@stevens.edu);

B. Himed, Signal Labs, Inc., 1950 Roland Clark Place, Suite 120,
Reston, VA 20191.

0018-9251/07/$25.00 © 2007 IEEE

I.  INTRODUCTION

Multichannel signal detection is encountered
in a wide variety of applications. In radar systems,
sensor arrays are often used to facilitate the so-called
space-time adaptive processing (STAP), which
offers enhanced target discrimination capability
compared with space- or time-only processing
[1, 2]. In remote sensing systems, multispectral and
hyperspectral sensors are used to collect spectral
information across multiple spectral bands, which can
be exploited for classification of different materials
or detection of man-made objects on the ground
[3, 4]. Other examples of applications include wireless
communications, geolocation, sonars, audio and
speech processing, and seismology [5-7].

STAP-based multichannel signal detectors have
been successfully used to mitigate the effects of clutter
and/or interference in radar, remote sensing, and
communication systems [1-5]. However, traditional
STAP detectors, including the well-known RMB
detector by Reed, Mallett, and Brennan [8], Kelly’s
generalized likelihood ratio test (GLRT) [9], the
adaptive matched filter (AMF) detector [10-12], and
the adaptive coherence estimator (ACE) detector
[13, 14], usually involve estimating and inverting
a large-size space-time covariance matrix of the
disturbance signal (viz., clutter, jamming, and noise)
for each test cell using target-free training data.

This entails high complexity and large training
requirement. While the first difficulty may create
real-time implementation burdens, the second implies
that such covariance matrix based techniques may not
be used in heterogeneous (due to varying terrain, high
platform altitude, bistatic geometry, conformal array,
among others) or dense-target environments, which
offer limited training data.

Addressing the above issues has become an
important topic in recent multichannel signal
detection research. One effective way to reduce the
computational and training requirement is to utilize
a suitable parametric model for the disturbance
signal and exploit the model for signal detection.

For example, multichannel autoregressive (AR)
models have been found to be very effective in
representing the spatial and temporal correlation of the
disturbance [15-18]. A parametric detector based on
such a multichannel AR model is developed in [15],
[16], which is referred to as the parametric adaptive
matched filter (PAMF). The PAMF detector has been
shown to significantly outperform the aforementioned
covariance matrix based detectors for small training
size at reduced complexity. Specifically, the PAMF
detector models the disturbance as a multichannel AR
process driven by a temporally white but spatially
colored multichannel noise. While traditional STAP
detectors perform joint space-time whitening (using
an estimate of the space-time covariance matrix),
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the PAMF detector adopts a two-step approach

that involves temporal whitening via an inverse
moving-average (MA) filter followed by spatial
whitening. The parameters that need to be estimated
are the AR coefficient matrices and the spatial
covariance matrix of the driving multichannel noise,
which are significantly fewer than what are involved
in estimating the space-time covariance matrix. This
is the essence behind the training and computational
efficiency of the PAMF detector. The relationship
and distinctions between the covariance matrix based
detectors and the PAMF detector are further discussed
in Section III.

Although intuitively sound, the PAMF detector
was obtained in a heuristic approach by modifying the
AMF test statistic. Specifically, it replaces the joint
space-time whitening incurred by the AMF detector
with two separate whitening procedures in time and
space as discussed above. The test threshold and false
alarm and detection probabilities were determined
primarily by computer simulation, due to limited
analysis available for the PAMF detector.

In the work presented here, we derive the
parametric Rao test for multichannel signal detection.
The generic Rao test is known to offer a standard
solution to a class of parameter testing problems. It
is easier to derive and implement than the GLRT, and
is also asymptotically (large-sample in the number
of temporal observations and/or training signals)
equivalent to the latter. The Rao test was recently
used to develop detectors for several other problems
[19, 20]. A detailed discussion on the attributes of a
generic Rao test can be found in [7].

Our parametric Rao test differs from the generic
one for multichannel signal detection in that we
make explicit use of a multichannel AR model for
the disturbance signal. We show that, interestingly,
the parametric Rao test takes a form identical to that
of the PAMF detector. The only difference is that
we use a maximum likelihood (ML) based estimator
that involves using both test and training signals
for parameter estimation, whereas the estimators
in [16] use only training signals for parameter
estimation. If the ML estimator is utilized, the
parametric Rao/PAMF detector is asymptotically a
parametric GLRT. Under the conditions stated in
Section II, the asymptotic distribution of the test
statistic under both hypotheses is obtained in closed
form, which can be used to set the test threshold
and compute the corresponding detection and false
alarm probabilities. Since the asymptotic distribution
under H,, is independent of the unknown parameters,
the parametric Rao/PAMF detector asymptotically
achieves constant false alarm rate (CFAR). Numerical
results are presented, which show that our asymptotic
results are accurate in predicting the performance of
the Rao/PAMF detector even when the data size is
modest.

The remainder of the paper is organized as
follows. Section II contains the data model and
problem statement. The covariance-matrix based
detectors and the PAMF detector are briefly reviewed
in Section III. Our main results are summarized
in Section IV. In particular, Section IVA contains
a summary of the parametric test statistic, while
Section IVB includes our asymptotic analysis. Details
of the technical developments of the results reported
in Section IV are found in Appendices A to C.
Numerical results are presented in Section V. Finally,
Section VI contains our concluding remarks.

Notation: Vectors (matrices) are denoted by
boldface lower (upper) case letters, all vectors are
column vectors, superscripts (-)T, (-)*, and (-)H
denote transpose, complex conjugate, and complex
conjugate transpose, respectively, CA/(u,R) denotes
the multivariate complex Gaussian distribution with
mean vector p and covariance matrix R, ® denotes
the Kronecker product, vec(-) denotes the operation
of stacking the columns of a matrix on top of each
other, C denotes the complex number field, R{-}
takes the real part of the argument, and 3{-} takes the
imaginary part.

II.  DATA MODEL AND PROBLEM STATEMENT

The problem under consideration involves
detecting a known multichannel signal with unknown
amplitude in the presence of spatially and temporally
correlated disturbance (e.g., [1]):

Hy: xy(n) =d(n), n=0,1,..
H,: xy(n) =as(n) +d(n),

LN =1
)]
n=0,1,..,N—-1

where all vectors are J x 1 vectors, J denotes the
number of spatial channels, and N is the number of
temporal observations. Henceforth, x,(n) is called
the test signal, s(n) is the signal to be detected with
amplitude «, and d(n) is the disturbance signal that
may be correlated in space and time. In addition to
the test signal, it is assumed that a set of target-free
training or secondary data vectors x,(n), k = 1,2,...,K
and n =0,1,...,N — 1, are available to assist signal
detection.

Define the following JN x 1 space-time vectors:

s = [s7(0),sT(1),....sT(N — D]T
d =[d"0),d"(1D),....d"w — D"

(2)
X, = [XF(0), X} (1).....xf(V — D]
k=0,1,....,K.
Equation (1) can be more compactly written as
Hy: x,=d
(3)

H : xy=as+d.
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Clearly, the composite hypothesis testing problem
(1) or (3) is also a two-sided parameter testing
problem that tests o = 0 against o # 0. The general
assumptions in the literature are ([1-4, 8—16]) the
following.

AS1: The signal vector s is deterministic and
known to the detector.

AS2: The signal amplitude « is complex valued,
deterministic, and unknown.

AS3: The secondary data {x, }X_, and the
disturbance signal d (equivalently, x, under H,)
are independent and identically distributed (IID)
with distribution CA/(0,R), where R is the unknown
space-time covariance matrix.

In particular, the above signal detection problem
occurs in an airborne STAP radar system with J
array channels and a coherent processing interval
(CPI) of N pulse repetition intervals (PRIs). The
disturbance d(n) consists of ground clutter, jamming,
and thermal noise, while s(n) is called the target
space-time steering vector. For a uniform equi-spaced
linear array,' the steering vector is given by [16]:

)

where s (w,) denotes the J x 1 spatial steering vector:

S(wg,wy) = 8,(wy) ®s,(w,)

&)

1 . .
s (w,) = _J[l,eM,...,eMJ*“]T

VI

and s,(w,) denotes the N x 1 temporal steering vector:

[1,e/,. .. eluN=D]T

1
s, (wy) = — 6
[( d ) \/]v ( )
where w; and w, denote the normalized target spatial
and Doppler frequencies, respectively.
While Assumptions AS1 to AS3 are standard (e.g.,
[1-4, 8-14]), we further assume the following:

AS4: The disturbance signal d(n) can be modeled
as a multichannel AR(P) process with known model
order P but unknown AR coefficient matrices and
spatial covariance (see Remark 1 below for additional
comments on this assumption).

Based on Assumption AS4, the secondary data
{x,}K_, are represented as

P
x,(n) = =Y _A"(px(n—p)+e ),  k=12,...K

p=1
(N

where {A"(p)}F_, denote the J xJ AR coefficient
matrices, and €, (n) denote the driving multichannel
spatial noise vectors that are temporally white but

INote that the results presented in this paper apply to any
array configurations, as long as the steering vector is known
(cf. Assumption AS1).
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spatially colored Gaussian noise: &,(n) ~ CN(0,Q),
where Q denotes the J x J spatial covariance matrix.
Meanwhile, the test signal x;, is given by

Xo(n) — as(n)

,
==Y A" {xy(n—p)—as(n—p)} +ey(n)
p=1
(8)

where o = 0 under H,, a # 0 under H,, and g,(n) ~
CN(0,Q). Let s(n) denote a regression on s(n) and
X,(n) a regression on x,(n) under H:

P
S(n) = s(n) + > A" (p)s(n— p)

)
p=1
P
Xo(n) = Xo() + Y _AM(p)xy(n—p).  (10)
p=1
Then, the driving noise in (8) can be alternatively
expressed as
go(n) =x,(n) — as(n). 11

The problem of interest is to develop a decision
rule for the above composite hypothesis testing
problem using the test and training signals as well as
exploiting the multichannel parametric AR model.

REMARK 1 We clarify that our goal here is not to
justify whether AR models are appropriate or not for
STAP applications. An answer to the question can

be found in [16], where it is shown that low-order
multichannel AR models are very powerful and
efficient in capturing the temporal and spatial
correlation of the disturbance and, hence, can greatly
help signal detection in airborne STAP systems. As
stated above, our problem is how to exploit such

a parametric model to solve the composite testing
problem. The assumption that the model order P is
known is only used to simplify our presentation. In
practice, the model order has to be estimated, and

a variety of model order selection techniques, such
as the Akaike information criterion (AIC) and the
minimum description length (MDL) based techniques
(e.g., [21] and references therein), are available for
this task. Since such techniques may overestimate

or underestimate the true model order, a relevant
problem is how the proposed detector performs when
overestimation or underestimation occurs (also see
[22]). This is investigated in Section V. Finally, it is
also possible to formulate the problem to include P as
another parameter to be estimated. We do not follow
such an approach in order to focus on the relations
between the parametric Rao test and the PAMF
detector, which also assumes that a prior estimate of
P is available.
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IlI.  PRIOR SOLUTIONS

A number of solutions to the above problem
have been developed. If the space-time covariance
matrix R is known exactly, the optimum detector that
maximizes the output SINR is the matched filter (MF)
[12]: Mo

s'R™x, |7 M
Tyvr = %%’WF (12)
where s denotes the MF threshold. The MF detector
is obtained by a GLRT approach (e.g., [7]), by which
the ML estimate of the unknown amplitude « is
first estimated and then substituted back into the
likelihood ratio to form a test statistic. It should be
noted that the MF detector cannot be implemented
in real applications since R is unknown. However, it
provides a baseline for performance comparison when
considering any realizable detection scheme.

In practice, the unknown R can be replaced by
some estimate, such as the sample covariance matrix
obtained from the secondary data:

. 1 &
R = E;xkx,lf.

Using R in (12) leads to the so-called AMF detector
[10-12]:

(13)

_ "R xg[? 1
e = iR
where v, denotes the AMF threshold.

Alternatively, one can treat both « and R as
unknowns and estimate them successively by ML.
Such a GLRT approach was pursued by Kelly [9],
which gives the following Kelly test:

Hp-ly |2 H
~ |S R XOIL ~ éVKelly
(sHR-1s)(K + x{R™x) Ho

(14)

TKelly = ( 15 )

where gy, denotes the corresponding threshold.

The AMF and Kelly tests are both CFAR
detectors, which is a desirable property in radar
systems. However, they also entail a large training
requirerpent. In particular, the sample covariance
matrix R has to be inverted, which imposes a
constraint on the training size

K>JN (16)

to ensure a full-rank R. The Reed-Brennan rule

[8] suggests that at least K > (2J N — 3) target-free
secondary data vectors are needed to obtain expected
performance within 3 dB from the optimum MF
detector. Such a training requirement may be

difficult to meet, especially in nonhomogeneous or
dense-target environments. Besides excessive training,
the computationa} complexity of these detectors is
also high, since R has to be computed and inverted
for each CPL

SOHN ET AL.: PARAMETRIC RAO TEST FOR MULTICHANNEL ADAPTIVE SIGNAL DETECTION

While the AMF and Kelly tests may be called
covariance matrix based techniqueis as they both
involve computing and inverting R, the recently
introduced PAMF detector [16] utilizes a multichannel
AR(P) model that allows spatial/temporal whitening to

be implemented in a multichannel time-series fashion
(see [16] for details):

2
~H A A
N-1% 13
’Zn:P sp (M)Qp " X( p(1) H
N_1H s I?VPAMF
Zn:P Sp (")QP Sp(n) 0

where Qp denotes an estimate of the spatial covariance

Toamr = 17)

matrix Q, X, p(n) and Sp(n) are the temporally
whitened test signal and steering vector, respectively;
these are whitened using an inverse AR(P) filter
(ie.,a multiAchannel MA filter) whose parameters,
along with Qp, are estimated from the secondary

data. In contrast to simultaneous spatio-temporal
whitening used in the AMF and Kelly tests, the PAMF
detector performs whitening in two distinct steps:
temporal whitening followed by spatial whitening. The
parametric approach offers savings in both training
and computation, since the parameters to be estimated
are significantly fewer, compared with covariance
matrix based approaches.

IV. PARAMETRIC RAO TEST
A. Test Statistic

The derivation of the parametric Rao test that takes
into account Assumptions AS1 to AS4 in Section II
is presented in Appendix B, which in turns relies on
the ML estimates of the nuisance parameters (i.e.,
parameters associated with the disturbance signal) that
are obtained in Appendix A. The test is given by?

No12H oA 2 2
2|88 Q%)

2 TRao

SV Q15

where g, denotes the test threshold, which can be

Troo =

ao

(18)

set by using the results in Section IVB, s(n) and X, (n)
denote, respectively, the steering vector and test signal
that have been whitened temporalAly, and additional
spatial whitening is provided by Q~!, which is the
inverse of the ML estimate of the spatial covariance
matrix to be specified next.

Specifically, the temporally whitened steering
vector and test signal in (18) are obtained as follows:

A P N
S(n) = s(m) + )_A"(p)s(n — p) (19)

p=1

2 Although the factor of 2 on the test statistic can be absorbed by the
test threshold, it is retained to keep the asymptotic distribution of
the test statistic more compact. See Section IVB.
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~ P ~
Xo(n) = xo(n) + Y A" (p)xy(n — p)

r=1

(20)

where AH(p) denotes the ML estimate of the AR
coefficient matrix AH(p).

To present the ML estimates more compactly, let
AM = [AP(D), AT Q),.... AMP) e P21

which contains all the coefficient matrices involved in
the Pth order AR model, and

yi(n) = [x{(n— 1),x{ (n —2),...,x; (n — P)]"

k=0,1,....K (22)

which contains the regression subvectors formed from
the test signal X, or the kth training signal x,. We first
compute the following correlation matrices:

" N-1 K

R, =D > xmxi(m (23)
n=P k=0

. N-1 K

R, =% vyl (24)
n=P k=0

R N-1 K

R, => > ymmx(m). (25)

3
Il
v
~
Il
=]

Then, the ML estimates of the AR coefficients AH
and the spatial covariance matrix Q are given by (see
Appendix A)

AW = _RURI (26)
N 1 A fa A
Q= m(kxx ~RERJR). (@27

REMARK 2 The PAMF detector also involves
estimating the AR coefficients A" and the spatial
covariance matrix Q [16]. Several estimators were
suggested, including the Strand-Nuttall algorithm and
the least-squares (LS) estimators. The LS estimator
was observed to yield better performance. Our ML
estimator is similar to the LS estimator except that
we use both the test and training signals to obtain
parameter estimates, whereas the latter utilizes only
the training signals for parameter estimation. A
subscript “P” is therefore used for the parameter
estimates in (17) to indicate the difference. Note

that with the ML estimator, it is possible to derive
parameter estimates exclusively from the test signal,
thus obviating the need for training. This could be
advantageous especially in highly heterogeneous
environments where it is difficult to obtain training
signals that are IID with respect to the disturbance

in the test signal. The detection performance of the
parametric Rao detector in the absence of training will
be explored elsewhere. We would like to point out that
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our approach is similar to Kelly’s GLRT [9], which
also employs both the test and training signals for
parameter estimation. However, we stress that Kelly’s
GLRT does not exploit the multichannel parametric
model as shown in (7) and (8).

REMARK 3 By comparing the parametric Rao test
statistic (18) and the PAMEF test statistic (17), we

can quickly see that if both detectors use the ML
estimator for parameter estimation, they are identical
except for a scaling factor of 2. Hence, under the
conditions stated in Section II, the PAMF detector is a
parametric Rao detector. Since the parametric Rao test
is asymptotically equivalent to the parametric GLRT,?
the PAMF detector, with the ML parameter estimates,
is also an asymptotic parametric GLRT. As we see

in Section IVB, the equivalence offers additional
insights into the performance and implementation of
the PAMF detector.

REMARK 4 It should be noted that similar to other
STAP detectors, the parametric Rao test is adaptive

in that the detector is data dependent, as evident in
(18)—(27), which is in contrast to data independent
detector (e.g., a correlator). This shall not be confused
with recursive adaptive implementation. Although
recursive adaptive implementation of the parametric
Rao test would be of interest in a real-time system, it
is beyond the scope of the current paper.

B. Asymptotic Analysis

As shown in Appendix C, the asymptotic
distribution of the Rao/PAMF test statistic is given

by
. { X35
L,
where 3 denotes the central Chi-squared distribution
with 2 degrees of freedom and X’zz()\) the noncentral

Chi-squared distribution with 2 degrees of freedom
and noncentrality parameter \:

under H,
(28)
under H,

N-1
A=2]al*) " m)Q '5(n)

n=P

(29)

where $(n) is the temporally whitened steering vector
given by (9). Note that X is related to the SINR at the
output of the temporal whitening filter. Recall that a
x5 random variable is equivalent to an exponential
random variable with probability density function
(pdf) given by

fa® =texp(=1n.  x=0. (30)

3The parametric GLRT is different from Kelly’s GLRT in that the
former takes into account the parametric model in Section II, while
the latter does not.
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The pdf of Y2(\) is given by [7]

x>0
(31)

where [(u) is the modified Bessel function of the first
kind and zeroth order defined by

Fzon®) = Sexpl-4x+ Ml (V).

1
= (zuz)k

1 [" ‘
Io(u) = — /0 exp(ucos0)df = T
k=0

(32)

The above distributions can be employed to set
the Rao test threshold for a given probability of false
alarm, as well as to compute the detection and false
alarm probabilities, etc. For a given threshold, the
probability of false alarm is given by

= [ fwdr=ewhi G
TRao
which can easily be inverted to find the test threshold

Yrao fOT @ given F;. In addition, the probability of
detection is given by

P = /oo Lexp[—L(x + M1, (\/E) dx (34

YRao

for a given test threshold ~g,,.

REMARK 5 The asymptotic distribution under H,
is independent of the unknown parameters. The
probability of false alarm in (33) depends only on
the test threshold, which is a design parameter. It
is evident that the Rao/PAMF test asymptotically
achieves CFAR.

REMARK 6 The above analysis holds under
Assumptions AS1 to AS4 of Section II with one
exception. In particular, since the ML parameter
estimates are asymptotically Gaussian irrespective
of the distribution of the observed data, the above
analysis still holds if the Gaussian assumption in
AS3 is dropped. This also explains why it has been
observed in several studies that the PAMF detector
obtains good performance even with non-Gaussian
observations (see, e.g., [15]).

V. NUMERICAL RESULTS

In the following, we present our numerical results
of the parametric Rao/PAMF detector obtained by
computer simulation and by the above asymptotic
analysis. In addition, the performance of the MF (12)
and AMF (14) detectors, which can be computed
analytically, is included for comparison. For easy
reference, Appendix D contains a brief summary
of relevant results that are used to compute the
performance of the two detectors. We reiterate that
the MF detector serves as a baseline only. We do not
consider Kelly’s GLRT since a detailed comparison
between the GLRT and AMF detectors can be

QQ plot
8 15— + _
b perty
© 10~ & -
3 -
> 51 —
0 | |

0 5 10 15
X Quantiles
40 T T T T B
§ %or e o T
20 -
>
(¢}
> 10 -
0 L L ! 1 l l l
0 5 10 15 20 25 30 35 40
X Quantiles

Fig. 1. Quantile-quantile plot of parametric Rao/PAMF test
statistic and its asymptotic distribution under H,, (upper plot) and
H, (lower plot), respectively, with J =4, N =32, K = 8.
Specifically, x-axis shows ordered samples of parametric
Rao/PAMF test statistic, while y-axis shows ordered samples of
asymptotic distribution.

found in [12]. In the following, the disturbance
signal is generated as a multichannel AR(2) process
with randomly generated AR coefficients A and a
spatial covariance matrix Q. In particular, A and Q
are selected to ensure that Q is a valid covariance
matrix and, furthermore, A is chosen to ensure that
the resulting AR process is stable. Once A and Q
are selected, they are fixed in all trials. The signal
vector s is generated as in (4) with randomly chosen
normalized spatial and Doppler frequencies. The
SINR is defined as

SINR = |af*s"R™!s (35)

where R is the JN x JN joint space-time covariance

matrix of the disturbance d, which can be determined
once A and Q are selected (the details are not shown
for simplicity). To numerically set the threshold for

the parametric Rao/PAMF detector, a total of 5 x 10*
trials are run. Meanwhile, to determine P, for a given
threshold, a total of 10* trials are run for each SINR.

First, we consider the asymptotic distribution of
the parametric Rao/PAMF test statistic obtained in
Section IVB. Fig. 1 depicts the quantile-quantile plot
of the Rao/PAMF test statistic under both hypotheses
against the corresponding asymptotic distribution
when J =4, N =32, and K = 8, a case with limited
training. It is seen that even with a relatively small
data size, the asymptotic distribution matches well the
sample test statistics, with only some minor deviation
at the tail portion.

Next, we examine the receiver operating
characteristic (ROC) [7] of the parametric Rao/PAMF
detector. The parameters used in the simulation are
J =4, N =32, and K = 256. Fig. 2 depicts the ROC
curves for the parametric Rao/PAMF test obtained by
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Rao/PAMF ROC Curves
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Fig. 2. ROC curves of parametric Rao/PAMF detector at various
input SINR when J =4, N =32, K =256.
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Fig. 3. Probability of detection P; versus input SINR when
F,=001,J =4, N =32, K = 256.

simulation and asymptotic analysis for SINR values of
0, 5, and 10 dB. It is seen that the simulation results
match those obtained by asymptotic analysis.

Figs. 3-6 depict the probability of detection P,
versus SINR for the MF, AMF, and the parametric
Rao/PAMF detectors under various conditions that
are specified below the figures. In particular, Figs. 3
and 5 correspond to the case with adequate training,
for which the Reed-Brennan rule is satisfied (see
discussions in Section III), whereas Figs. 4 and 6
correspond to the case with limited training, for
which the AMF detector does not even exist, since the
training size K = 8 is too small to meet the minimum
training condition (16). An examination of these
figures reveals the following.

K=8, N=32, J=4, Pf:0.0‘I
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01 ................ p T ................................................

I ; ; .

-5 0 5 10 15

SINR (dB)

Fig. 4. Probability of detection P, versus input SINR when
F,=001,J =4, N =32, K = 8. Note that AMF detector is not
included since it cannot be implemented for such a small K.

K=128, N=16, J=4, P=0.01

1 T
— MF (theoretical) ! ! ~
0.9H O Rao/PAMF (asymptotic) |..... T 4 A RN
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kel N
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w S o

o
[®)

[ s Ve

e . .-

& ; ;
-5 0 5 10 15
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Fig. 5. Probability of detection P; versus input SINR when
P,=001,J =4, N =16, K = 128.

1) When the assumptions of Section II are met,
the asymptotic analysis provides a quite accurate
prediction of the performance of the parametric
Rao/PAMF detectors. The gap between the asymptotic
and simulated results is seen to widen as K and/or N
decreases. But even for the most challenging case with
K =8 and N = 16, the gap is about 0.5 dB, as shown
in Fig. 6.

2) The parametric Rao/PAMF detector is very
close to the optimum MF detector. The gap between
the two detectors closes with increasing K and/or N.

3) The parametric Rao/PAMF detector
outperforms the AMF detector by 2 to 3 dB when the
Reed-Brennan rule is marginally satisfied. This agrees
with earlier observations made in [16].
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Fig. 6. Probability of detection P; versus input SINR when
F=0.01,J =4, N =16, K = 8. Note that AMF detector is not
included since it cannot be implemented for such a small K.

K=256, N=32, J=4, P,=0.01
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Fig. 7. Probability of detection P, versus input SINR of
parametric Rao/PAMF detector when model order of multichannel
AR process used for computing test statistic is true (P = 2),
underestimated (assuming P = 1), and overestimated (assuming
P =3), along with P,=0.01, J =4, N =32, K = 256.

So far we have assumed that the model order
P of the multichannel AR process is known
(cf. Assumption AS4). As mentioned in Remark 1
of Section II, various model selection techniques
can be used to estimate P, and it is not unusual for
these techniques to underestimate or overestimate
the model order by a small number (relative to the
true model order P) [21, 22]. Hence, it would be of
interest to find out how the parametric Rao/PAMF
detector performs when an inaccurate model order
estimate is used. This is shown in Fig. 7, where
the performance of the Rao/PAMF detector using
the true, an underestimated, and an overestimated

Pd vs. SINR for various N

-
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Fig. 8. (a) Impact of pulse number N on parametric Rao/PAMF
detector when F; = 0.01 and J = 4. (b) “Zoomed-in” version
of (a).

model order is depicted. As we can see, using an
inaccurate model order estimate degrades the detection
performance, but the degradation is not significant,
especially in the case of model order overestimation.
Overestimation is a more robust error since the
high-order coefficients can be estimated close to zero
(providing that the size of the signals that can be used
for estimation is large enough). The above behavior
of the parametric Rao/PAMF detector is typical and
has been consistently observed in other experiments
with a similar setup. Here, we only considered the
case where the model order is incorrectly estimated by
one unit. A larger performance variation is expected if
there is a larger estimation error for P.

Finally, Fig. 8 depicts P; versus SINR for the
parametric Rao/PAMF detector when J =4, F = 0.01,
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and N varies from N =4 to N = 128. It is seen that
the detection performance increases with N.

VI.  CONCLUSIONS

We have developed a parametric Rao test for
the multichannel adaptive signal detection problem
by exploiting a multichannel AR model. We have
derived the ML estimates of the parameters involved
in the test. The parametric Rao test is an asymptotic
parametric GLRT, and the asymptotic distributions
of its test statistic under both hypotheses have been
obtained in closed form. We have shown that the
PAMF test statistic has a form identical to that
of the parametric Rao test statistic; therefore, the
PAMF test is also an asymptotic parametric GLRT.
Computer simulations show that: 1) our asymptotic
analysis provides fairly accurate prediction of the
performance of the parametric Rao/PAMF test; 2)
even with relatively limited training, the parametric
Rao/PAMF detector is quite close to the ideal MF
detector; 3) the parametric Rao/PAMF detector
outperforms the AMF detector, which does not exploit
a parametric model; and finally 4) the performance
of the parametric Rao/PAMF detector is affected by
inaccurate model order estimation, but the resulting
performance degradation is tolerable when the model
order estimation error is small.

Our asymptotic analysis of the parametric Rao
detector is based on several assumptions stated in
Section II, including that the disturbance can be
modeled as an AR(P) process with known model
order P, and that the training signals are I[ID When
these assumptions are violated, we expect that
the analysis will be less accurate, but may still be
informative if the assumptions are not significantly
violated. For example, we have noticed in simulation
that when the disturbance is an MA process, the
test threshold obtained by analysis assuming an AR
model is still quite accurate. One possible reason is
that AR models are fairly general parametric models,
and under mild conditions, can be used to model
or approximate a large class of stationary random
processes (e.g., an MA process can be approximated
as an AR process with a high enough model order)
[23]. Nevertheless, there is a need to find out how
accurate our analysis is in real systems with real data,
when the assumptions of Section II may not all be
met. This will be an interesting future effort.

APPENDIX A. ML PARAMETER ESTIMATION

In the following, we derive the ML estimates
of the nuisance parameters Q and {A(p)}i;’:1 or A
defined in (21) under H,, which is needed in the
derivation of the Rao test in Appendix B. The joint
probability density function (pdf) or likelihood

function [, fi(x,(0),x,(1),....x, (N — 1);, A, Q) under
H;, i=0or 1, can be written as

[ LA &P).x (P + 1), (N = 1) [ x(0), %, (1), ...,
X (P = 1);A, Q) f (x,(0), %, (1),

x,(P—1);0,A,Q). (36)

The exact maximization of the pdf with respect to

the unknown parameters produces a set of highly
nonlinear equations that are difficult to solve. For
large data records, the likelihood function can be
approximated well by the conditional pdf in the above
equation [21] and, therefore, the latter can be used for
parameter estimation. After some manipulations using
the standard procedure for obtaining the pdf of a set
of transformed random variables, we have

X (P).x (P +1),....x,(N — 1) | x,(0),x,(1),...,
X, (P—1);0,A,Q)

N-1

1
- H Q] exp{—e(n)Q e, (n)}

n=P

(37

where for k > 1, €,(n) is a function of the observed
signals given by (7), whereas g,(n) is given by (8) or
(11) with « =0 when i =0 and o # 0 when i = 1.
Recall that the training signals {x, }X_, and
the test signal x,, are independent. Let X(n) =
[x3(n),x] (n),x}(n),....x}(n)]T. The joint conditional
pdf is given by
FX(P),X(P +1),....X(N - 1) | X(0),X(1),...,
X(P —1);0,A,Q)
= fi(a,A,Q)
1 -1
——expq{—tr (A
g P(-rQ ' QA)

where in the first equality we dropped the dependence
on the observed signals for notational brevity,

(K+1)(N—P)
} (38)

1 N-1 K "
Qi(a,A) = m r; Z%Sk(n)sk (n)

(39)

and we reiterate that « =0 fori =0, a #0 fori =1,
and g(n) depends on o as shown in (8) or (11).

The Rao test requires the ML estimates of the
nuisance parameters under H,. Henceforth, we only
consider the case i = 0. Taking the derivative of
In f,(A,Q) with respect to Q and equating the result
to zero produces the ML estimates of Q(A) given A:*

Qu(A) = Qy(A). (40)

4Since a = 0 for i = 0, the dependence on « is dropped.
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Substituting QML(A) into f;(A,Q), we have
1 (K+1)(N—P)
(em)! IQo(A)I}
Next, we determine the ML estimates of A.
Since maximizing f,(A) is equivalent to minimizing
|QML(A)|, or |Qy(A)|, the ML estimate of A can be

obtained by minimizing |Q,(A)| with respect to A. We
next expand the matrix as follows:

(K + (N —P)Q,(A)

métxfo(A, Q= [ (41)

=R, +AH1i. +ﬁHA+AHﬁ A

H H -1 H H —1\H
= (A" +RIR DR, (A" +RUIR, )
+R,, ~RIR R, (42)

where the correlation matrices are defined in
(23)—(25). Since Ryy is nonnegative definite and
the remaining terms in (42) do not depend on A, it
follows that

Qy(A) > Qy(A)|, - (43)
where N
A= RUR,. (44)

When Q,(A) is minimized, the estimate AH of AH will
minimize any nondecreasing function including the
determinant of Q,(A) [24]. Hence, the ML estimate
Al of AH is given by (44) or (26), and Q,, is given
by (22), which is obtained by replacing AH in (42)
with ALl . The subscript “ML” is dropped in other
parts of the paper for notational brevity.

APPENDIX B.
RAO TEST

DERIVATION OF THE PARAMETRIC

The composite hypothesis testing problem (3)
involves a signal parameter vector 6, = [ag,q;]T =
[R{a},S{a}]" and a nuisance parameter vector 6,
that includes all unknown parameters in {A"(p)}7_,
and Q. The nuisance parameter vector 6; may be
written as 8, = [q},q},ak,al |T with ag = vec(R{AH}),
a; = vec(S{AM}), qi contains the diagonal elements
in Q and the real part of the elements below the
diagonal, while q, contains the imaginary part of
the elements below the diagonal (note that the spatial
covariance matrix Q is a Hermitian matrix). Let

0=16"0"". (45)
Observing that the nuisance parameters are the same
under both hypotheses, we can write the parameter
test as follows:

Hy: 6,=6,.6,
H: 6,=9,.6,

(46)

SFor two nonnegative definite matrices A and B, we have A > B if
A — B is nonnegative definite.
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where 6, =1[0,0]" and 6, =6, = [a,a,]". The pdf
under H,, and the pdf under H, differ only in the value
of 0, and they are given by (see Appendix A):

exp{—t(Q ' Qi(a,A))}

(K +1)(N—P)
fi(0) = ]

q

where Q;(a,A) is defined in (39). The Rao test is
given by [7]

omf@)|" | - olnf(@)| H
—0 | T @lge, —5— TR:
90, lo=p 0000, gpm
47)
where ~g,, denotes a corresponding threshold,
=[0].671" (48)

LR

denotes the ML estimate of 6 under H,, and

[11(0)1,0, = [y, 4,(8) =Ly 0, (O D)y 4 (O)] !

(49)
which is related to the Fisher information matrix
(FIM), given by [7]

I, ,(0) I, 4 (6
16 = | 100 ® To.6.(6) 50)

Iy o (0) I, 0 (0)]

Hence, the problem boils down to finding the ML
estimates of the nuisance parameters under H,,, which
have been obtained in Appendix A, and evaluating
the first-order derivatives of the log likelihood and the
FIM at the ML estimates of the nuisance parameters.
The latter task is worked out next.

The FIM is block diagonal. To see this, let qr> 91,
ag,, and a; denote the ith element of q, q;, az and
a,, respectively. The first partial derivative of the log
likelihood In f* with respect to (w.r.t.) ay is

alnf - S
Z (MQ "ey(n) + Y e (mQ'8(n).
n=P n=P

(5D

The second partial derivative of In f w.r.t. a and gp
becomes

0’Inf
dagdqp

N-1 Q
=—2%{Z S mQ ' 5 =Q s(n)}

n=P R'

(52)
Likewise, we have

0’Inf

p 9Q
o~ "’H 1
—8aRc’9q, =23 {E mQ~ —Q Eo(n)}

n=P

(33)
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and
Inf e 1aA ()
8aR8aRl. - 2; ; R (n)Q R, =)

3A A ()

Ri

X [Xy(n—p) —as(n—p)] } - (54

+8(mQ ™!

Since E[xy(n) —as(n)] = E[Xo(n —p) —as(n—p)] =0
and E[ey(n)] = 0, taking the expectation in (52)—(54)

yields
2 2 2
E[&lnf}:E[é lnf}zE{a lnf}:
dagdqpg, dagdyq,, Oagldag
In a similar way, we can show (55)
2 2 2
» 0°Inf =E&lnf _r 0*Inf
00 0qp, 0,04, dagday,
2 2
_E 0°Inf _E 0°Inf o
oy 0ap, day0ay,
(56)
Summarizing the above calculations, we have
Iy 6(0)=0 Iy 0,(0)=0 (57)
which implies that the FIM is block diagonal. It
follows that _ _
(110, 5, = 15,5,(0). (58)

Hence, we only need to compute 15,19,(5)’ which is
obtained next.
The second partial derivative of In f w.r.t. o is

9%In
a—f —2ZSH(n)Q s(n). (59)
O‘R
Likewise, we have
8%In
5 f 2Zsﬂ<n>Q 5(n) (60)
al
and 5 5
0°Inf =8lnf —o. 1)
Oagla;  Ja 0oy
As a result, we have the FIM associated with the
signal parameter vector:
N71~ B 1 ()
Iy 6(0)=2Y §mQ '5(n) [ o J . (62)
n=P

Finally, by inverting the matrix (62) and replacing 0
with @ which is the ML estimate of 6 under H,, we
have

~ 1 1 O
1,8 = K

(63)
2515 Q150 1]

where 6 is the ML estimate of the spatial covariance

matrix in (27), and s(n) is the temporally whitened
steering vector in (19). Moreover, since so(n)\ezé =

X,(n), we have

N-1 . R .
O/ -3 (& Q5 + 5 Q%)
dag lg=g )
(64)
dlnf !
5 =Y o QS + 5 Q" Zym)).
ar lo=6 WP
(65)

Using (63)—(65) in (47) yields the parametric Rao test,
which is shown in (18).

APPENDIX C.  ASYMPTOTIC DISTRIBUTION OF THE
PARAMETRIC RAO TEST STATISTIC

The Rao test is known to have the same
asymptotic performance as the GLRT. Using the
asymptotic results for the GLRT [7], the asymptotic
distribution of our parametric Rao test statistic is

given by
T 1{xi,
Lo,

where x3 denotes the central Chi- squared distribution
with 2 degrees of freedom and x5 2()\) the noncentral
Chi-squared distribution with 2 degrees of freedom
and noncentrality parameter \:

A=, —6,)"(T'(16,.0,)15.4) "6, —6,).
(67)

under H,

66
under H, (60)

Using the observations 6, — 0, =
(ct. (62))

[og, ;] and

('(16,,.0,Dg, 4, =

1 {1 0]
2N ISHmQ18(n) [0 1
(68)

we have the asymptotic distribution of the parametric
Rao test statistic as shown in (28).

APPENDIX D. PERFORMANCE OF THE MF AND
AMF DETECTORS

The performance of the MF and AMF detectors
can be computed analytically. In this appendix, we
include a brief summary of their performance for easy
reference.

Consider the MF detector (12) first. Let R"!/2 be
the square root of the space-time covariance matrix
R. Define § = R"!/%s and x, = R™!/?x,, which are the
spatially and temporally whitened steering vector and
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test signal, respectively. Since the rank of ss™ is one,
we have the following eigen decomposition:

sst = yAUH (69)

where A = diag(s's,0,...,0) and UMU = L. Let x,, =
Uk, and s = UYs, which are rotated versions of
X, and s, respectively. Then, the test statistic can be
written as
I stx, |2 xIUAUYX,
ME = =

- =

- 2
= Xo,1%0,1 = |xo,1|

stis stis
(70)

where X, ; and 5, denote the first element of X,

and s, respectively. It is clear from Assumptions

AS1-AS3 in Section II that x,; is a complex

Gaussian variable: X, ; ~ CN(as,1) with a = 0 under

Hy and a # 0 under H,. Hence, 2Ty = 2|X,,|* has

a central Chi-squared distribution with 2 degrees of

freedom under H, and, respectively, a noncentral

Chi-squared distribution with 2 degrees of freedom

and a noncentrality parameter A\ = 2|a5,|> under

H,. It is noted that the distribution of the MF test

statistic is similar to that of the parametric Rao test

statistic with the only difference of the noncentrality

parameter under H;. Hence, the false alarm and

detection probabilities can be similarly computed as

in (33) and (34).

The performance of the AMF detector (14) was
analyzed in [12], which is summarized below. The
density of a loss factor p, which was defined in [12,
eq. (25)], is given by

f(p) = f3(p;L—1,JN — 1)

where L = K —JN + 1 and the central Beta density
function is

(71

(n+m—1)!
(n—1Dlm-1)!

The probability of false alarm is given by
' fs(p;L—1,JN — 1)
Boamr = / d d
Y

where 1 = Yy /(1 = Ykeny) and ey is the test
threshold of Kelly’s GLRT (15). Meanwhile, the
probability of detection is given by

P 1 1 ! (L
e =1~ [ 2 )

p
1 +np

f3(en,m) = KN =2t (72)

(73)

x (mp)"G,, ( )f (p)dp (74)

where ¢ = sHR7!s and G, () is the incomplete Gamma
function given by

m—1
G, =€ (75)
k=0

The integrals can be computed by numerical
integration.
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