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Abstract—This paper considers the problem of detecting a
multichannel signal in the presence of spatially and temporally
colored disturbance. A parametric generalized likelihood ratio
test (GLRT) is developed by modeling the disturbance as a
multichannel autoregressive (AR) process. Maximum likelihood
(ML) parameter estimation underlying the parametric GLRT is
examined. It is shown that the ML estimator for the alternative
hypothesis is nonlinear and there exists no closed-form expres-
sion. To address this issue, an asymptotic ML (AML) estimator
is presented, which yields asymptotically optimum parameter
estimates at reduced complexity. The performance of the para-
metric GLRT is studied by considering challenging cases with
limited or no training signals for parameter estimation. Such cases
(especially when training is unavailable) are of great interest in
detecting signals in heterogeneous, fast changing, or dense-target
environments, but generally cannot be handled by most existing
multichannel detectors which rely more heavily on training at an
adequate level. Compared with the recently introduced parametric
adaptive matched filter (PAMF) and parametric Rao detectors,
the parametric GLRT achieves higher data efficiency, offering
improved detection performance in general.

Index Terms—Generalized likelihood ratio test (GLRT), max-
imum likelihood (ML) parameter estimation, multichannel signal
detection, parametric models, space-time adaptive processing
(STAP).

I. INTRODUCTION

DETECTING a multichannel signal in disturbance is of
great importance in numerous applications including radar

[1], [2], wireless communications [3], hyperspectral imaging
[4], [5], and others. Multichannel signal detection based on
space-time adaptive processing (STAP), which is capable of
handling strong spatially and temporally colored disturbance,
has received significant attention over the past few decades.
A multitude of STAP based detectors have been proposed and
used to mitigate clutter and jamming in radar, remote sensing,
and communication systems [1]–[5].

STAP detectors can be classified based on whether an estimate
of the space-time covariance matrix, denoted by (see Sec-
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tion II), of the multichannel disturbance signal is needed for in-
terference suppression. This class of STAP detectors are hence-
forth referred to as covariance matrix based detectors, which are
among the most extensively studied multichannel detectors, in-
cluding the Reed, Mallett, and Brennan detector [6], Kelly’s gen-
eralized likelihood ratio test (GLRT) [7], the adaptive matched
filter (AMF) detector [8]–[10], the adaptive coherence estimator
(ACE) detector [11], among others. These detectors involve es-
timating from target-free training data and inverting it, which
may impose excessive training and computational burdens when
the joint space-time dimension is large. At a minimum, we need

training signals1 to ensure a full-rank estimate of the
matrix , where denotes the number of spatial chan-

nels and the number of temporal observations. Moreover, the
Reed-Brennan rule [6] suggests that, in average,
training signals are needed to obtain performance within 3 dB
from the optimum bound. Such conditions may not be satisfied,
especially in heterogeneous or dense-target environments that
offer limited training, thus rendering covariance matrix based
techniques inapplicable.

The above difficulty is primarily because for large and in
the absence of any specific structure, involves an enormous
number of unknowns. In many applications, however, the
disturbance usually exhibits certain spatial, temporal, and/or
spectral structures that can be exploited to reduce the number of
unknowns and ease the training/computational burden. Among
other alternatives, one general structured approach is to model
the disturbance as a multichannel autoregressive (AR) process,
which has been found to be very useful in representing the
spatial and temporal correlation of radar signals [12]–[15].
Using both simulated and real data, the so-called parametric
adaptive matched filter (PAMF) [12], [13] has been shown
to significantly outperform the aforementioned covariance
matrix based detectors for small training size at a reduced
complexity. While covariance matrix based detectors perform
joint space-time whitening for interference mitigation, the
PAMF detector adopts a two-step approach, involving temporal
whitening via an inverse moving-average (MA) filter followed
by spatial whitening. Recently, the PAMF detector has been
shown to be equivalent to a parametric Rao detector [16], [17].

In this paper, we develop a parametric GLRT. It is natural
to extend the results of [16] and [17] and consider the para-
metric GLRT for several reasons. First, as shown in Section II,
the problem of interest is a two-sided parameter testing problem
that admits no uniformly most powerful (UMP) solution [18].
A GLRT approach is widely used in such cases due to its good

1K � JN � 1 training signals are needed if both the test and training signals
are used to estimateR.
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asymptotic properties including asymptotic CFAR and consis-
tency. Second, the parametric GLRT may yield improved per-
formance than the parametric Rao detector, especially when
the data is limited. This is because the latter is an asymptotic
(large-sample) parametric GLRT ([18, App. 6B]). Third, all Rao
tests, including the parametric Rao detector, are obtained based
on a further approximation that is valid only for weak signals
([18, p. 238]). As such, the parametric Rao detector is expected
to degrade when the weak signal assumption is violated. These
observations motivate us to consider the parametric GLRT, in
hope of finding a better solution to the problem.

The parametric GLRT to be discussed is different from
Kelly’s GLRT [7]. The latter does not utilize a parametric
model to model the disturbance. For this reason, our solution
is referred to as the parametric GLRT. Our parametric GLRT
is also different from the GLRT developed in [14], where a
different detection problem is addressed that involves unknown
nonlinear signal parameters associated with the signal to be
detected. We follow the direction of [6]–[13] and consider a
detection problem whereby the signal to be detected is known
up to an unknown amplitude. The data model and assumptions
for this problem are further discussed in Section II.

The parametric GLRT relies on maximum likelihood (ML)
parameter estimation for both the null and alternative hy-
potheses. The null hypothesis estimation problem is addressed
in [16], where the ML estimator is obtained in closed-form.
We show in Section III.A that the ML estimator under the
alternative hypothesis is nonlinear and requires searches on a
two-dimensional parameter space. To address this issue, we
introduce an asymptotic ML (AML) estimator that is consider-
ably simpler, yielding estimates in a noniterative fashion, and
asymptotically coincides with the optimum ML estimator. The
AML estimator is related to an iterative alternating least-squares
(ALS) estimator developed in [19], but with several notable
distinctions (see Section III-C). The Cramér-Rao bound (CRB)
for the estimation problem is also derived, offering a baseline
for comparing various (unbiased) estimators.

To examine the performance of the parametric GLRT, we con-
sider scenarios with very limited or even no training signals. The
less challenging case with more training is extensively consid-
ered in, e.g., [13], [16], and [17], for the PAMF and parametric
Rao detectors, which are equivalent to the parametric GLRT
with a large amount of training. It should be noted that the para-
metric GLRT and Rao detectors utilize both test and training
signals for parameter estimation; as such, they are functional
even without training. The capability to handle the training-free
case is a unique and desirable attribute of the parametric GLRT
and Rao detectors. Although the performance of the parametric
GLRT and Rao detectors degrades in the absence of training,
such degradation can be remedied by using a larger , i.e., in-
creasing temporal observations of the test signal. We show that
the parametric GLRT outperforms the parametric Rao detector
when is small and, overall, the former yields a better detec-
tion performance.

The rest of the paper is organized as follows. Section II con-
tains the problem statement. Parameter estimation is addressed
in Section III, including the ML estimators for both hypotheses,
the AML estimator for the alternative hypothesis, and the CRB.

The test statistic, implementation, and asymptotic analysis for
the parametric GLRT are discussed in Section IV. Numerical
results are presented in Section V, followed by our conclusions
in Section VI.

Notation: Vectors (matrices) are denoted by boldface lower
(upper) case letters, all vectors are column vectors, superscripts

and denote transpose and complex conjugate trans-
pose, respectively, denotes the identity matrix (with
subscript suppressed sometimes), denotes the multi-
variate complex Gaussian distribution with mean and covari-
ance matrix takes the Frobenius norm of a matrix/vector,

takes the real part while the imaginary part, and fi-
nally, denotes the Moore-Penrose pseudo-inverse.

II. DATA MODEL AND PROBLEM STATEMENT

The problem of interest is to detect a known multichannel
signal with unknown amplitude in the presence of spatially and
temporally correlated disturbance (e.g., [1])

(1)

where all vectors are vectors, denotes the number of
spatial channels, and is the number of temporal observations.
In the sequel, is referred to as the test signal, is
the signal to be detected with amplitude , and is the
disturbance signal that may be correlated in space and time. In
addition to the test signal , there may be a set of training
or secondary signals , to assist in the
signal detection:\

(2)

In radar systems, training data may be obtained from range cells
adjacent to the test cell. However, training data is generally lim-
ited or may even be unavailable. In the training-free case, we
have .

Define the following space-time vectors:

(3)

It follows that (1) can be more compactly written as

(4)

Clearly, the composite hypothesis testing problem (1) or (4)
is a two-sided parameter testing problem that tests
against . The above signal detection problem occurs
in an airborne STAP radar system with array channels and
a coherent processing interval (CPI) of pulse repetition
intervals (PRIs). The disturbance consists of ground clutter,
jamming, and thermal noise, while is the target space-time
steering vector [13].
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The general assumptions in the literature are [1], [6]–[11]:
AS1: The signal vector is deterministic and known to the

detector;
AS2: The signal amplitude is complex-valued, determin-

istic, and unknown;
AS3: The disturbance signals are independent

and identically distributed (i.i.d.) with distribution
, where is the unknown space-time covari-

ance matrix.
While AS1 to AS3 are standard [1], [6]–[11], we follow a para-
metric approach as in [12]–[17]:
AS4: The disturbance signal , can be

modeled as a -channel process with known2

model order

(5)

where denote the unknown AR coef-
ficient matrices, denote the driving -channel spa-
tial noise vectors that are temporally white but spatially
colored Gaussian noise: , where
denotes the unknown spatial covariance matrix.

The problem of interest is to develop a GLRT based on
Assumptions AS1 to AS4 for the above composite hypothesis
testing problem, using the test signal and training signals

if any. The likelihood functions under both hypotheses
are parameterized by the signal parameter as well as nuisance
parameters and , where

(6)

For simplicity, we write the likelihood functions as

(7)

where under (i.e., ) and under
, and the dependence on the test/training signals is

omitted. While the test statistic of the GLRT is well known,
which is given by the generalized likelihood ratio (GLR) [18]

(8)

finding the ML estimates of the unknown parameters is non-
trivial. We first address the estimation problem before exam-
ining the GLR test statistic in more details.

III. PARAMETER ESTIMATION

Parameter estimators required by the parametric GLRT as
well as the CRB are developed in Appendices I–IV. The main
results are summarized here.

A. ML Estimation Under

The ML estimate of under is given by (see Appendix I)

(9)

2If P is unknown, it can be estimated using a variety of model order selection
techniques (e.g., ([20, App. C]).

where the correlation matrices conditioned on are given by

(10)

(11)

(12)

and where and
. Once is available, the ML

estimates of and under are obtained as

(13)

(14)

where the conditional estimates are given by

(15)

(16)

with

(17)

Remark 1: Although statistically optimum, has no
closed-form expression. The cost function (9) is highly
nonlinear. A brute-force exhaustive search over the two-di-
mensional parameter space (i.e., the real and imaginary part
of ) is generally impractical. Alternatively, we can resort to
Newton-like iterative nonlinear searches, provided an initial es-
timate of is available. Hence, there is a need for suboptimum
estimators with reduced computational complexity. One such
suboptimum estimator is discussed in Section III-C.

B. ML Estimation Under

This is a special case of the one addressed in Section III-A
(see Appendix I). The ML estimates of and under are
given by

(18)

(19)

where the correlation matrices are ob-
tained from (10)–(12), respectively, by setting .

C. Asymptotic ML Estimation Under

We now introduce a computationally more efficient estimator
that is asymptotically equivalent to the ML estimator. The es-
timator is, henceforth, referred to as the AML estimator. The
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idea is to replace in the cost function of (9) by
a statistically consistent estimate (how to obtain such a
consistent estimate is discussed next). The resulting cost func-
tion , which can be shown to be asymptotically equivalent
to the cost function of (9) (e.g., [21], [22]), can be written as

(20)

where and are the temporally whitened versions of
and , respectively, using the consistent AR coeffi-

cient estimate

(21)

(22)

Note that the matrix inside the determinant of (20) is a quadratic
form of . An asymptotic solution is obtained in Appendix II,
which is given by

(23)

where

(24)

(25)

(26)

with denoting the projection matrix projecting to the orthog-

onal complement of the range of

(27)

The above AML estimator requires a consistent estimate
, which can be obtained by using a consistent estimate of

in (15). One such estimate is obtained by the least-squares
(LS) amplitude estimator:

(28)

which ignores the fact that the disturbance signal is colored.
We show in Appendix III that is statistically unbiased and
consistent.

To summarize, the AML estimator can be implemented as
follows.
Step 1: Determine a consistent estimate . This can be

obtained by first computing the LS amplitude esti-
mate as in (28), and using in (15)

(29)

Step 2: Compute the AML amplitude estimate using
(23).

Step 3: Find the AML estimates of the AR coefficients and
spatial covariance matrix by substituting for

in (15) and (16), respectively.
Remark 2: The AML estimator is obtained based on multiple

approximations. The first involves approximating the likelihood
function by dropping out the initial samples of the AR process,
as shown in Appendix I. The second approximates the cost func-
tion in (9) by as in (20), which replaces with a consis-
tent estimate . is further shown to be equivalent to

in Appendix II. The third approximation is to replace the
nonlinear by a quadratic in Appendix II, which ad-
mits a closed form solution. All three approximations are valid
in the large-sample case.

Remark 3: The above AML estimator is related to an alter-
nating LS (ALS) estimator discussed in [19], but there are sev-
eral notable differences. First, AML covers both training

and training-free cases, whereas ALS, which was
introduced to solve an explosive detection problem, considers
only the case without training. Second, ALS is an iterative ap-
proach, whereas iteration is not required by AML. Finally, by
using an asymptotic approximation of the ML cost function,
AML is directly related to the ML estimator and asymptotically
coincides with the latter. Such an asymptotic relation was not es-
tablished for ALS. Numerical results in Section V indicate that
AML and ML yield nearly identical estimation performance.

D. CRB

From Section III-A, an amplitude estimate is obtained first
and then used to produce the nuisance parameter estimates. As
such, amplitude estimation is the most critical step in the esti-
mation process. Next, we provide the CRB for amplitude esti-
mation. The CRB specifies a lower bound on the variance of
any unbiased amplitude estimator, thus offering a baseline for
comparison. The CRB for is derived in Appendix IV, which
is given by

(30)

Like in (22), is the temporally whitened version
of , but by using the true AR coefficient matrix (the de-
pendence on is explicitly shown)

(31)

The CRB for the nuisance parameters can be obtained in a sim-
ilar fashion, but skipped for brevity.

IV. PARAMETRIC GLRT

A. Test Statistic

With the ML parameter estimates obtained in Sections III-A
and III-B, the GLR reduces to

(32)
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where and are given by (19) and (14), respec-
tively. Equivalently, taking a logarithm (with a scaling constant
2) yields3

(33)

where denotes the test threshold (see Section IV-B for
discussion on the setting of ).

Remark 4: The final test statistic is a ratio of two matrix deter-
minants. Note that the two covariance matrix estimates
and have an identical form given by (15), except that

for the former and for the latter. Hence, once
is obtained, the remaining steps involved in calculating

are very similar to those needed for , which can be
performed by the same computing algorithm or hardware, thus
simplifying implementation.

Remark 5: Instead of using the nonlinear ML amplitude es-
timate , we can employ the computationally more efficient
AML amplitude estimate in calculating the GLRT test
statistic. As shown in Section V, the two different versions of
GLRT offer nearly identical detection performance.

B. Asymptotic Analysis

As shown in Appedix V, the asymptotic distribution of the
parametric GLRT statistic in (33) is given by

under
under

(34)

where denotes the central Chi-squared distribution with 2 de-
grees of freedom (i.e., exponential distribution) and the
noncentral Chi-squared distribution with 2 degrees of freedom
and noncentrality parameter

(35)

Note that is related to the signal-to-interference-plus-noise
ratio (SINR) at the output of the temporal whitening filter. Using
the above result, we can write the asymptotic detection and false
alarm probabilities as

(36)

(37)

where is the modified Bessel function of the first kind and
zeroth order [18].

Remark 6: The asymptotic distribution under is indepen-
dent of the unknown parameters. The probability of false alarm

3Although the factor of 2L and logarithm in the test statistic can be absorbed
by the test threshold, it is retained to keep the asymptotic distribution more com-
pact. See Section IV-B.

in (37) depends only on the test threshold, which is a design pa-
rameter. It is evident that the parametric GLRT asymptotically
achieves CFAR.

Remark 7: The above analysis holds under Assumptions AS1
to AS4 of Section II with one exception. In particular, since the
ML parameter estimates are asymptotically Gaussian irrespec-
tive of the distribution of the observed data, the above analysis
still holds if the Gaussian assumption in AS3 is dropped.

V. NUMERICAL RESULTS

In this section, we present simulation results to illustrate
the performance of the proposed detection and estimation
techniques. The disturbance signal is generated as a multi-
channel AR(2) process with AR coefficients and a spatial
covariance matrix . These parameters are set to ensure that
the AR process is stable and is a valid covariance matrix, but
otherwise randomly selected. The signal vector corresponds
to a uniform equispaced linear array with antenna ele-
ments and randomly selected normalized spatial and Doppler
frequencies (see [13]). The SINR is defined as

(38)

where the space-time covariance matrix can be
uniquely determined once and are selected. Note that the
above SINR can be considered as an overall SINR that takes
into account all spatial and temporal signals observed within
one CPI. A different SINR that is also frequently used is defined
based on one snapshot of the array output; see, e.g., [19].

A. Estimation

The estimation results are presented for the estimators dis-
cussed in Section III, namely, the LS (28), AML (23), and ML
(9) estimators. The ML estimator is implemented via local non-
linear iterative searching, initialized by the AML estimate. We
first consider the training-free case with . This is also
the case considered by the ALS estimator [19] and, thus, we in-
clude it for comparison. Fig. 1 shows the mean-squared error
(MSE) of the amplitude estimate obtained by each estimator,
along with the CRB (30), versus the SINR. It is seen that even
for a moderate value of , the AML amplitude estimate
is nearly identical to the ML estimate, and both are very close to
the CRB and considerably better than the simple LS estimate. It
is also observed that the ALS estimate is nearly identical to the
AML estimate in this case.

Fig. 2 depicts the results for a limited-training case with
. The LS and ALS estimators are not included since they do

not utilize any training signal for estimation. It is seen that both
the AML and ML estimates are nearly identical and close to the
CRB for all values of SINR. It is observed that use of training
data slightly improves the estimation performance.

B. Detection

For the parametric GLRT (33), the test statistic can be
computed using either the ML or AML parameter estimates,
as indicated in Remark 5 of Section IV-A. The resulting tests,
which are denoted as parametric GLRT/ML and parametric
GLRT/AML, respectively, are compared with the parametric
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Fig. 1. MSE of amplitude estimate �̂ versus SINR when J = 4; N = 32, and
K = 0 (no training data).

Rao detector [16], [17], which is a large-sample approximation
of the parametric GLRT. Also included in the comparison
are the asymptotic analysis for the parametric GLRT given in
Section IV-B, the ideal matched filter (MF) [10] which assumes
exact knowledge of and, therefore, cannot be used in prac-
tice but offers a baseline for comparison, and Kelly’s GLRT
[7] which is included to show the gain offered by parametric
detection.4 In all examples, we set and the probability
of false alarm .

The training-free case is considered in Figs. 3 to 5,
which show the probability of detection versus SINR for various
detectors when the number of temporal observations varies from

, to 128. Meanwhile, the limited-training
case is considered in Figs. 6 and 7 for and 64, respec-
tively. An examination of these figures reveals the following.

• The parametric GLRT/AML yields nearly identical detec-
tion performance to that of the parametric GLRT/ML, and
may be preferred to the latter due to its reduced complexity.

• For the training-free case, the parametric GLRT is about 3
to 4 dB from the optimum MF bound at ; the gap
reduces to about 1 dB at and a fractional dB at

. Training, even modest, helps improving the de-
tection, which can be seen by comparing Fig. 3 with Fig. 6,
or Fig. 4 with Fig. 7. However, the degradation incurred by
lack of training can be remedied by increasing temporal
observations of the test signal, as seen in Figs. 3 to 5.

• For small (e.g., ), the parametric GLRT outper-
forms the parametric Rao detector. At larger values of ,
the two detectors exhibit similar performance, especially
at the low SINR region.

• The parametric Rao detector is seen to degrade dramati-
cally as the SINR increases. This is not surprising since

4Recall that Kelly’s GLRT is a covariance matrix based detector that cannot
handle the limited-training or training-free case. In the following examples, we
use eitherK = 0 orK = 1 for the parametric detectors; but for Kelly’s GLRT,
K is chosen significantly larger so that K � JN � 1 to ensure a nonsingular
estimate ofR (see discussions in Section I).

Fig. 2. MSE of amplitude estimate �̂ versus SINR when J = 4; N = 32, and
K = 1 (limited training data).

all Rao tests, including the parametric Rao detector, are
based on a weak signal approximation of the GLRT ([18,
App. 6B]). This has also been observed in ([23, Fig. 3]) for
a single-channel detection problem. Such degradation may
not be critical in applications where weak signal detection
is of primary interest.

• Compared to Kelly’s GLRT, both parametric detectors can
produce better detection performance with significantly
less training or even no training, when is not too small.

VI. CONCLUSION

We have developed a new parametric GLRT for multichannel
adaptive signal detection. The parametric GLRT is obtained
by exploiting multichannel AR modeling for the disturbance
signal. We have investigated the underlying parameter estima-
tion problem. The ML estimator has been derived, but not in
a closed form. An AML estimator has been introduced as an
asymptotically optimum but computationally more efficient
alternative. We have examined the detection performance of the
parametric GLRT as well as a recently proposed parametric Rao
detector. We have shown that while both parametric detectors
are significantly less dependent on training than conventional
covariance matrix based detectors, the parametric GLRT is the
better solution of the two, especially when temporal observa-
tions of the test signal are limited.

One most interesting feature of the parametric GLRT and Rao
detectors is that both use the test and training signals for param-
eter estimation and can handle the training-free case. We have
shown that the performance degradation caused by the lack of
training can be remedied by increasing the temporal observa-
tions of the test signal. Such a tradeoff may be of interest and
exploited in some applications, such as radars, when the envi-
ronment is highly heterogeneous such that using neighboring
range cells for training becomes impossible. In particular, the
i.i.d. assumption AS3 concerning the test cell and the neigh-
boring range cells will be seriously violated in that case.
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Fig. 3. Probability of detection P versus SINR when P = 0:01; J =

4; N = 32, and K = 0 (no training data).

Fig. 4. Probability of detection P versus SINR when P = 0:01; J =

4; N = 64, and K = 0 (no training data).

APPENDIX I
ML PARAMETER ESTIMATION

In this Appendix, we develop the ML parameter estimators
under both hypotheses. Recall that the likelihood functions
under both hypotheses differ only in the value of , that is,

under and under . We will show that the
ML estimates under can be obtained by setting in
the ML estimates under .

Let denote the temporally whitened version of

s

(39)

Fig. 5. Probability of detection P versus SINR when P = 0:01; J =

4;N = 128, and K = 0 (no training data).

Fig. 6. Probability of detection P versus SINR when P = 0:01; J =

4;N = 32, and K = 1 (limited training data).

Conditioned on the first values
, the log-likelihood function is proportional to

(within an additive constant) [16]

(40)

It is noted that for the large-sample case, the likelihood func-
tion can be well approximated by the above conditional distri-
bution [24]. We, therefore, use (40) for ML estimation. Taking
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Fig. 7. Probability of detection P versus SINR when P = 0:01; J =

4;N = 64, and K = 1 (limited training data).

the derivative of (40) with respect to and equating it to zero
produce the ML estimates of conditioned on and

(41)

Substituting the above back in (40), we find that
maximizing (40) reduces to minimizing . Therefore,
the ML estimates of and can be obtained by minimizing

with respect to and . In turn, we can get the ML
estimate of by replacing and with their ML estimates
in (41). Next, observe that

(42)

where the -dependent correlation matrices are defined in
(10)–(12). Since is nonnegative definite and the re-
maining terms in (42) do not depend on , it follows that5

(43)

where

(44)

5For two nonnegative definite matricesA andB, we haveA � B ifA�B
is nonnegative definite [22].

When is minimized, the estimate of will min-
imize any nondecreasing function including the determinant of

[22]. It should be noted that in finding the estimate
of , we did not impose the constraint that the underlying AR
process is stable for the sake of obtaining a simple solution.
Hence, the unconstrained ML estimate of and conditioned
on are given by (15) and (16), respectively.

Replacing in (42) by followed by minimizing
yields the ML amplitude estimator of given

by (9). Once the ML estimate of the signal amplitude
is obtained, substituting in (15) and (16) yields the ML
estimates of and under , which are given by (13) and
(14), respectively.

Since under , substituting in (43) and (44)
leads to the ML estimates of and under , which are
given by (18) and (19), respectively.

APPENDIX II
DERIVATION OF THE AML ESTIMATOR

Using definitions in (24)–(27), (20) can be written as

(45)

Next, observe that minimizing

(46)

is asymptotically equivalent to minimizing [19], [22]:

(47)

which is a quadratic function in . Minimizing (47) with re-
spect to leads to the AML estimate given by (23) (see
also [19]).

APPENDIX III
UNBIASEDNESS AND CONSISTENCY OF THE LS ESTIMATOR

First, note that
, which indicates that the LS estimator

is unbiased. Moreover, the variance is given by
.

Next, we show that the variance vanishes as the number of
observations increases. Note that the numerator can be
written as

(48)

where denotes the Hermitian square-root of . It is known
that multiplying by is a coloring linear transform. Under
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Assumption AS4, such a coloring transform using the square-
root of the joint space-time covariance matrix is asymptot-
ically equivalent to a cascade of an AR filer, which performs
temporal coloring, followed by a spatial coloring filter [24]. As
such, (48) can be approximated (for large ) as

(49)

where denotes the output of the multichannel AR
filter as specified in AS4, given the input signal .

Let the eigenvalue decomposition of be expressed as:
, where is a diagonal matrix containing all eigen-

values and is composed of the corresponding eigenvectors.
Let denote the largest eigenvalue of . We have

(50)

It follows that

(51)

since . Assuming that the AR filter
is stable, we have (e.g., [25])

(52)

for some bounded constant . Hence, for a given AR filter and
spatial covariance , the right-hand side (RHS) of (51) vanishes
as goes to infinity. This proves that the LS amplitude estimate
is statistically consistent.

APPENDIX IV
DERIVATION OF CRB

Let , where , and
contains all nuisance parameters in and . It is
shown in [16] that the Fisher information matrix (FIM) for is
block diagonal with respect to and . Therefore, the CRB
for the signal amplitude estimate is given by the FIM associated
with , which is given by [16]

(53)

By inverting (53) and using
, we have the CRB given by (30).

APPENDIX V
ASYMPTOTIC DISTRIBUTION OF THE PARAMETRIC

GLRT STATISTIC

Using the asymptotic results for the GLRT [18], the asymp-
totic distribution of our parametric GLRT statistic is given by

under
under

(54)

where the noncentrality parameter is given by

(55)

where and are under and , respectively;
is the 2 2 upper-left partition of

. Using the observations
and [cf. (53)]

(56)

we have the asymptotic distribution of the parametric GLRT
statistic as shown in (34).
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