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Abstract: The problem of detecting a multichannel signal in spatially and temporally coloured
disturbances is considered. The parametric Rao and parametric generalised likelihood ratio test
detectors, recently developed by modelling the disturbance as a multichannel autoregressive
(AR) process, have been shown to perform well with limited or even no range training data.
These parametric detectors, however, assume that the model order of the multichannel AR
process is known a priori to the detector. In practice, the model order has to be estimated by
some model order selection technique. Meanwhile, a standard non-recursive implementation of
the parametric detectors is computationally intensive since the unknown parameters have to be
estimated for all possible model orders before the best one is identified. To address these issues,
herein the joint model order selection, parameter estimation and target detection are considered.
We present recursive versions of the aforementioned parametric detectors by integrating the multi-
channel Levinson algorithm, which is employed for recursive and computationally efficient
parameter estimation, with a generalised Akaike Information Criterion for model order selection.
Numerical results show that the proposed recursive parametric detectors, assuming no knowledge
of the model order, yield a detection performance nearly identical to that of their non-recursive
counterparts at significantly reduced complexity.
1 Introduction

Space–time adaptive processing (STAP) has proven to be an
effective approach for signal detection in the presence of
strong interference/clutter, for example an airborne radar
environment [1, 2]. Conventional STAP detectors, such as
the Reed, Mallett and Brennan (RMB) detector [3], Kelly’s
generalised likelihood ratio test (GLRT) [4], the adaptive
matched filter (AMF) detector [5–7], and the adaptive
coherence estimator (ACE) detector [8–10], involve esti-
mating and inverting a space–time covariance matrix
obtained from target-free training data. This may impose
excessive training and computational burdens especially
when the joint space–time dimension is large. It is therefore
of great interest to reduce the training and computational
requirements of such STAP detectors for practical and real-
time applications.
Parametric model-based STAP detectors have received

significant interest in recent years [11–18]. Specifically,
the parametric adaptive matched filter (PAMF), which was
developed by modelling the disturbance as a multichannel
autoregressive (AR) process, was shown to outperform the
aforementioned covariance matrix-based STAP detectors,
providing improved detection performance with reduced
training data requirements [11, 12]. More recently, the
PAMF detector has been shown to be closely related to a
parametric Rao detector [15, 16]. Specifically, both
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detectors share an identical test statistic form, although the
PAMF uses only training signals for parameter estimation,
whereas the parametric Rao detector uses both training and
test signals for that purpose [15, 16]. One advantage of the
parametric Rao detector is that it can handle the training-free
case, in which case it derives parameter estimates exclu-
sively from the test signal. Moreover, a parametric GLRT,
which also models the disturbance as a multichannel AR
process, has been developed in [17, 18]. The parametric
GLRT has been found to yield improved detection perform-
ance over the parametric Rao detector with a somewhat
higher complexity. Both the parametric Rao and parametric
GLRT detectors have been shown to asymptotically achieve
constant false alarm rate. In addition, the asymptotic
distribution of their test statistics has been obtained in
closed-form, which can be used to set the test threshold
and determine the detection and false alarm probabilities.
Furthermore, unlike the covariance matrix-based STAP
detectors, both the parametric Rao and parametric GLRT
detectors are found to perform well with limited or even
no range training data [17, 18]. As such, these detectors
are particularly useful for airborne radar target detection in
heterogeneous or dense-target environments, where range
training is usually limited.
The PAMF, parametric Rao and parametric GLRT detec-

tors, however, were developed by assuming that the model
order of the multichannel AR process is known to the detec-
tor a priori. In practice, the model order has to be estimated
using some model order selection technique, such as the
generalised Akaike Information Criterion (GAIC),
minimum description length, or others [19]. Since most of
these model order selection techniques require estimates
of the unknown parameters for each possible model order
before the best one is identified, a standard non-recursive
implementation of the parametric detectors turns out to be
computationally intensive.
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In this paper, we consider a joint model order selection,
parameter estimation and target detection procedure for
STAP applications. We note that the parameter estimates
of a multichannel AR process for all model orders can be
efficiently obtained by recursively solving a set of multi-
channel Yule–Walker equations using the multichannel
Levinson algorithm [20, 21]. The multichannel Levinson
algorithm yields parameter estimates for a particular
model order at every recursion. Information criteria such
as the GAIC can then be conveniently computed. As such,
the estimation of the model order is naturally integrated.
We follow the above approach and develop recursive
versions of the parametric Rao and parametric GLRT detec-
tors. The recursive parametric detectors utilise the
Yule–Walker parameter estimates obtained by using the
multichannel Levinson algorithm with the biased autocorre-
lation function (ACF) estimate [20, 21]. Our development
of the recursive versions of the parametric detectors
integrated with the GAIC for model order selection is
well motivated since the multichannel Levinson algorithm
is computationally efficient and the model order is not
required to be known to the detectors. Numerical results
show that the Yule–Walker parameter estimates are asymp-
totically equivalent to the maximum likelihood (ML)
estimates originally used in the non-recursive parametric
Rao [15, 16] and parametric GLRT [17, 18] detectors.
It is also observed that the recursive parametric detectors
perform nearly identically to the corresponding non-
recursive parametric detectors, even though the former
assumes no knowledge of the model order, whereas the
latter assumes the exact model order.
The rest of the paper is organised as follows. Section 2

contains the data model and problem statement. The non-
recursive parametric Rao and parametric GLRT detectors
with known model order are summarised in Section
3. Section 4 contains our recursive parametric Rao and para-
metric GLRT detectors with unknown model order.
Numerical results are presented in Section 5, followed by
our conclusions in Section 6.

Notation: Vectors (matrices) are denoted by boldface lower
(upper) case letters, all vectors are column vectors, super-
scripts (.)T and (.)H denote transpose and complex conjugate
transpose, respectively, I denotes the identity matrix,
CN (m, R) denotes the multivariate complex Gaussian dis-
tribution with mean m and covariance matrix R, C
denotes the complex number field and finally (.)† denotes
the Moore-Penrose pseudo-inverse.

2 Data model and problem statement

Consider the problem of detecting a known multichannel
signal with unknown amplitude in the presence of spatially
and temporally coloured disturbance (e.g. [1]).

H0: x0 ¼ d0

H1: x0 ¼ asþ d0
(1)

where all vectors have JN � 1 dimensions with J denoting
the number of spatial channels and N the number of tem-
poral observations. The test signal x0 contains a disturb-
ance signal d0 and possibly a target signal as, where s
denotes the target steering vector which is assumed
known and a the unknown complex amplitude. In addition
to the test signal x0, there may be a set of target-free train-
ing or secondary signals xk ¼ dk [ C JN�1, k ¼ 1, . . . , K,
64
that can be exploited to assist in the target detection
process. In this paper, we consider both cases with or
without range training data; in the latter case, we set
K ¼ 0. The disturbance signals {dk}

K
k¼0 are assumed to

be independent and identically distributed with
distribution CN (0, R), where R [ C

JN�JN is the unknown
space–time covariance matrix.
Let us decompose the JN � 1 space–time vector xk into a

series of J � 1 spatial vectors xk (n) as follows

xk ¼ [xTk (0), . . . , x
T
k (N � 1)]T (2)

Let dk and s be similarly decomposed into dk(n) [ C
J�1

and s(n) [ C
J�1, respectively. Then, we can rewrite the

hypothesis testing using the above spatial vectors indexed
by n (time):

H0: x0(n) ¼ d0(n), n ¼ 0, . . . , N � 1

H1: x0(n) ¼ as(n)þ d0(n), n ¼ 0, . . . , N � 1
(3)

Furthermore, we follow a parametric approach as in [11, 12,
15–18], which models the disturbance signal dk(n), as a
J-channel AR (P) process with unknown model order P.

dk(n)¼�
XP
i¼1

A
H(i)dk(n� i)þ1k(n), k ¼ 0, 1, . . . ,K (4)

where {AH(i)}Pi¼1 denote the unknown J � J AR coefficient
matrices and 1k (n) the J � 1 spatial noise vectors that are
temporally white but spatially coloured: 1k(n)� CN (0,Q),
where Q[C

J�J denotes the unknown spatial covariance
matrix.
The problem of interest is to develop parametric detectors

for the above composite hypothesis testing problem (1) or
(3), using the test signal x0 and training signals {xk}

K
k¼1

(if any). We reiterate that the model order P is assumed
unknown to the detector in this paper, whereas the original
developments of the PAMF, parametric Rao and parametric
GLRT detectors all assume that P is known [11, 12, 15–18].
A distinctive feature of this work is that we consider com-
putationally efficient solutions to this joint order selection
problem, parameter estimation and target detection
problem.

3 Non-recursive parametric Rao and parametric
GLRT detectors with known model order

For easy reference and to facilitate our development of the
recursive parametric detectors, we provide a brief
summary of the parametric Rao and GLRT detectors in
this section. These detectors are two different solutions
to the problem stated in Section 2 when the model
order P is known [15–18]. The parametric Rao detector
is computationally simpler, but the parametric GLRT
offers improved performance. Both detectors first find
the ML estimates of the unknown parameters, which are
next used to compute the test statistics. The likelihood
functions under the null and alternative hypotheses
are parameterised by the signal amplitude a, the AR coef-
ficients AH ¼ AH(1), . . . , AH(P)

� �
[ C J�JP, and spatial

covariance matrix Q. Note that under the null hypothesis
we have a ¼ 0. Given A, the steering vector and test
signal can be temporally whitened through the following
IET Radar Sonar Navig., Vol. 2, No. 1, February 2008



inverse (i.e. moving average) filtering.

~s(n) ¼ s(n)þ
XP
i¼1

A
H(i)s(n� i) (5)

~x0(n) ¼ x0(n)þ
XP
i¼1

AH(i)x0(n� i) (6)

This is an important observation exploited by the parametric
Rao and parametric GLRT detectors that are summarised as
follows.
The parametric GLRT is given by [17, 18]

TGLRT ¼ 2L ln
jQ̂ML, 0j

jQ̂ML, 1j
.
,

H1

H0

gGLRT (7)

where L ¼ (Kþ 1) (N2 P) and gGLRT denotes the corre-
sponding test threshold. The ML estimates of the spatial
covariance matrix under the null and alternative hypotheses,
Q̂ML,0 and Q̂ML,1 are given by

Q̂ML,0 ¼ Q̂(a)ja¼0 (8)

Q̂ML,1 ¼ Q̂(a)ja¼âML
(9)

The a-dependent Q̂(a) is given by

Q̂(a) ¼
1

L
(R̂xx(a)� R̂H

yx(a)R̂
�1
yy (a)R̂yx(a)), (10)

where the a -dependent correlation matrices are

R̂xx(a) ¼
XK
k¼1

XN�1

n¼P

xk(n)x
H
k (n)

þ
XN�1

n¼P

[x0(n)� as(n)][x0(n)� as(n)]H (11)

R̂yy(a) ¼
XK
k¼1

XN�1

n¼P

yk(n)y
H
k (n)

þ
XN�1

n¼P

[ y0(n)� at(n)][ y0(n)� at(n)]H (12)

R̂yx(a) ¼
XK
k¼1

XN�1

n¼P

yk(n)x
H
k (n)

þ
XN�1

n¼P

[ y0(n)� at(n)][x0(n)� as(n)]H (13)

with t(n) and yk(n) denoting the regression subvectors
formed from the steering vector s(n) and test signal xk(n),

respectively: t(n) ¼ [sT(n� 1), . . . , sT(n� P)]T [ C JP�1

and yk(n) ¼ [xTk (n� 1), . . . , xTk (n� P)]T [ C JP�1, k ¼

0, . . . ,K. The ML estimate of a under the alternative hypoth-
esis, which is used in (9), is given by

âML ¼ argmin
a

jR̂xx(a)� R̂H
yx(a)R̂

�1
yy (a)R̂yx(a)j (14)

The parametric Rao test is given by [15, 16]

TRao ¼
2
PN�1

n¼P ~̂sH(n)Q̂
�1

ML,0 ~̂x
H
0 (n)

��� ���2PN�1
n¼P ~̂sH(n)Q̂

�1

ML,0 ~̂s
H
0 (n)

_
H1

H0

gRao (15)

where gRao denotes the test threshold. The temporally
whitened steering vector ~̂sH(n) and test signal ~̂xH0 (n) are
IET Radar Sonar Navig., Vol. 2, No. 1, February 2008
obtained by replacing AH with its ML estimate under H0

Â
H
ML;0 ¼ �R̂

H
yx(a)R̂

�1
yy (a)ja¼0 (16)

in (5) and (6), respectively.
The Rao test is shown to be asymptotically equivalent to

the GLRT but may be inferior to the latter when the data
size is small. In addition, the Rao test is obtained based
upon a low-order Taylor expansion of the GLRT, an
approximation which is only valid for weak signals [22].
As such, the performance of the parametric Rao detector
degrades when the weak signal assumption is violated.
The parametric GLRT was developed as an improved detec-
tor to deal with the above issues. However, the cost function
of the ML amplitude estimator in (14) is highly nonlinear.
Newton-like iterative nonlinear searches are generally
used to find the ML amplitude estimate. Another subopti-
mum but computationally more efficient estimator, referred
to as the asymptotic ML (AML) estimator, was developed in
[17, 18]. The AML estimator, which was found to yield
similar performance to the ML estimator, can be
implemented as follows:

Step 1: First, compute a least-squares (LS) amplitude

estimate âLS ¼ sHx0=s
Hs: Then, determine an estimate

Â
H

LS of AH as follows.

Â
H
LS ¼ R̂

H
yx(âLS)R̂

�1
yy (âLS) (17)

which can be shown to be statistically consistent [17, 18].
Step 2: Compute the temporally whitened signals ~̂xk(n) and
~̂s(n) by replacing AH with the LS AR coefficient estimate
ÂH
LS in (5) and (6), respectively. Then, obtain the AML

amplitude estimate âAML by using

âAML ¼
tr( ~̂S

H
C�1 ~̂X0)

tr( ~̂S
H
C�1 ~̂S)

, (18)

where ~̂S ¼ [~̂s(P), . . . , ~̂s(N � 1)] [ C J�(N�P), ~̂X k ¼ [ ~̂xk(P),
. . . , ~̂xk(N � 1)] [ C J�(N�P) and

C ¼ ~̂X 0P
? ~̂X

H

0 þ
XK
k¼1

~̂X k
~̂X
H

k (19)

with P? denoting the projection matrix projecting to

the orthogonal complement of the range of ~̂S
H
:P?

¼

I � P ¼ I � ~̂S
H
( ~̂S

H
)y [ C

(N�P)�(N�P):
Step 3: Find the AML estimate of the spatial covariance
matrix by substituting âAML for a in (10).

Recall that the parametric Rao and parametric GLRT
detectors utilise both the test and training signals for the par-
ameter estimation. As a result, they are functional even
without range training data [17, 18]. The capability to
handle the training-free detection is a unique and desirable
attribute of the parametric detectors which is not shared by
other existing detectors including the PAMF detector.
Nevertheless, we need a way to efficiently find an accurate
estimate of the model order P.

4 Recursive parametric tests with unknown
model order

A standard non-recursive implementation of the parametric
detectors is computationally intensive since the parameter
estimation for the underlying parametric model has to be
repeated for all possible model orders before the best one
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is identified. Therefore there is a need to develop more effi-
cient solutions for joint model order selection, parameter
estimation and detection.
We present herein recursive versions of the parametric

Rao and parametric GLRT detectors. The multichannel
Levinson algorithm is used to recursively solve a set of
multichannel Yule–Walker equations for model order
p ¼ 1, 2, . . . , Pmax, where Pmax is an upper bound on the
model order P. Interestingly, the complexity involved in
the above procedure, which provides parameter estimates
for all Pmax model orders, has lower complexity than that
involved in solving a single model order p ¼ Pmax by the
ML approach (see Section 4.5 for details). Given these par-
ameter estimates for all possible p, an information criterion
such as the GAIC can be conveniently utilized to identify
the best model order as well as the associated estimates of
A, Q and a. These parameter estimates are then used to
compute the final test statistics for the parametric Rao and
GLRT detectors. In the following, we discuss the details
of the proposed joint approach.

4.1 Parameter estimation by the multichannel
Levinson algorithm

Assume that x(n) is a J-channel AR(P) process as described
in (4). Estimates of the unknown parameters can be
obtained by solving the multichannel Yule–Walker
equations given by [20, 21]

R(m) ¼

�
PP
i¼1

AH(i)R(m� i), m � 1

�
PP
i¼1

A
H(i)R(�i)þ Q, m ¼ 0

8>>><
>>>:

(20)

where the autocorrelation matrix is defined as

R(m) ¼ E[x(n)xH(n� m)] (21)

In matrix form, the multichannel Yule–Walker equations
become

APR ¼ Q 0 � � � 0
� �

(22)

where the block matrix AP contains the multichannel AR
coefficients and R is a block Toeplitz matrix.

AP ¼ I A
H
P (1) . . . A

H
P (P)

� �
(23)

R ¼

R(0) � � � R(P)

R(�1) � � � R(P�1)

..

. . .
. ..

.

R(�P) � � � R(0)

2
66664

3
77775 (24)

The multichannel Levinson algorithm can be used to recur-
sively solve the above multichannel Yule–Walker
equations for different model orders as follows [20, 21].
The multichannel Levinson algorithm begins with the

following initial conditions.

Q
f
0 ¼ Q

b
0 ¼ R(0) (25)

A0 ¼ B0 ¼ I (26)

K
fH
0 ¼ K

bH
0 ¼ I (27)

Henceforth, the superscripts f and b denote the forward and
backward directions of a linear prediction process used by
the Levinson algorithm, the subscript denotes the order of
the linear predictor,A and B denote the block row matrices
66
formed by the forward and backward AR coefficient
matrices, respectively, and K denotes the reflection coeffi-
cient matrix.
Given the pth order forward and backward AR coefficient

matrices Ap and Bp, the forward and backward reflection
coefficient matrices for the ( pþ 1)th order linear predictors
are computed by

K fH
pþ1( pþ 1) ¼ �Dpþ1(Q

b
p)

�1 (28)

KbH
pþ1( pþ 1) ¼ �rpþ1(Q

f
p)

�1, (29)

where Dpþ1 and rpþ1 are defined as

Dpþ1 ¼
Xp
i¼0

K
fH
p (i)R( pþ 1� i) (30)

rpþ1 ¼
Xp
i¼0

K
bH
p (i)R(i� p� 1) (31)

Next, we update the forward and backward AR coefficient
matrices for the (pþ 1)th order predictors as follows.

Apþ1 ¼ [Ap, 0]þ K fH
pþ1( pþ 1)[0, Bp] (32)

Bpþ1 ¼ [0, Bp]þ KbH
pþ1( pþ 1)[Ap; 0] (33)

Finally, we update the forward and backward prediction
error covariance matrices for the ( pþ 1)-th order predic-
tors.

Qf
pþ1 ¼ Qf

p þ K fH
pþ1( pþ 1)rpþ1 (34)

Q
b
pþ1 ¼ Q

b
p þ K

bH
pþ1( pþ 1)Dpþ1 (35)

which completes the pth recursion of the multichannel
Levinson algorithm. Note that the solutions to the pth
order multichannel Yule–Walker equations areAp, and Qp

f .
In practice, the space–time covariance matrix R(m) in the

multichannel Yule–Walker equations should be replaced
by some estimate. The biased ACF estimate given by

R̂(m) ¼
1

N

XN�1�m

n¼0

x(nþ m)xH(n) (36)

is usually recommended since it guarantees that the matrix
R is non-negative definite [20, 21].

4.2 AR model order selection

Model order selection for parametric models is a classical
research topic and has been investigated for various
models (e.g. [19, 21] and references therein). Herein, we
consider the GAIC, which has been observed to yield
good performance results for model order selection (e.g.
[23]). The GAIC chooses the model order p that minimises

W ( p) ¼ V ( p)þ h( p) (37)

where V ( p) is the minimum negative log-likelihood func-
tion and h( p) is a penalty term that penalises increasing
model order [19]. The minimum negative log-likelihood
function can be shown to be

V ( p) ¼ J (K þ 1)(N � p) ln (ep)þ (K þ 1)

� (N � p) ln jQ̂j (38)

where the dependence on p is made explicit. The penalty
IET Radar Sonar Navig., Vol. 2, No. 1, February 2008



term typically takes the form as [19]

h( p) ¼ 2cJ2p ln( ln (K þ 1)(N � p)) (39)

where c � 1 is a parameter of user choice. It has been found
that (37) along with (39) usually provides a consistent
model order estimation [19].

4.3 Recursive parametric Rao test

Based on the above recursive parameter estimation and
model order selection techniques, the parametric Rao test
can be implemented in a recursive manner as follows.

Step 1: Obtain the biased ACF estimate according to (36)

R̂(m) ¼
1

N (K þ 1)

XK
k¼0

XN�1�m

n¼0

xk(nþ m)xHk (n)

m ¼ 0, 1, . . . , Pmax

(40)

Note that both the training and test signals are used to obtain
the ACF estimate.
Step 2: Initialisation: Set p ¼ 0 and initialise the forward
and backward prediction error covariance matrices, Qf

0

and Qb
0, and the forward and backward AR coefficient

matrices, A0 and B0, as in (25) and (26). Compute the
GAIC W(0) for the 0-th model order by using (37).
Step 3a: Compute the forward and backward reflection coef-
ficient matrices for the ( pþ 1)th order linear predictors,
K fH

pþ1( pþ 1) and KbH
pþ1( pþ 1), by using (28) and (29).

Step 3b: Update the forward and backward AR coefficient
matrices for the ( pþ 1)-th order predictors, Apþ1 and
Bpþ1, by using (32) and (33). Update the forward and back-
ward prediction error covariance matrices for the ( pþ 1)-th

order predictors, Qf
pþ1 and Qb

pþ1, by using (34) and (35).

Step 3c: Compute the GAIC W ( pþ 1) for the ( pþ 1)-th
model order, by using (37).

– If p ¼ 0, increase p by 1 and go back to Step 3a;
– else if W ( pþ 1) � W ( p), go to Step 4;
– otherwise, increase p by 1 and go back to Step 3a.

The following upper bound can be imposed for model
order selection [12]

p �
3

ffiffiffiffi
N

p

J

� �
(41)

where b�c rounds a real-valued number towards zero.
Step 4: The order estimate P̂ is p (i.e. the final value of the
above recursion index). For the selected model order P̂ ¼ p,
obtain the parameter estimates

Â
H(i) ¼ A

H

P̂
(i), i ¼ 1, 2, . . . , P̂ (42)

Q̂ ¼ Qf

P̂
(43)

Compute the parametric Rao test statistic (15) by replacing
the ML parameter estimates (16) and (8) with the obtained
Yule–Walker solutions (42) and (43), respectively. Finally,
the test statistic is compared with a test threshold to decide
if the target is present. The test threshold can be determined
by using the asymptotic analysis in [15, 16].

The recursive parametric Rao test is summarised in
Fig. 1.
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4.4 Recursive parametric GLRT

Recursive implementation of the parametric GLRT is more
involved than the recursive parametric Rao test. The reason
is that finding the ML estimate of a, which is required by
the parametric GLRT, is nonlinear even with a known
model order [17, 18, 24]. To circumvent the problem, we
consider a recursive parametric GLRT by using the model
order estimate obtained by the recursive parametric Rao
test.
The recursive implementation of the parametric GLRT

can be summarised as follows.

Step 1: Find the spatial covariance matrix estimate Q̂0 under
H0 and the model order estimate P̂ by using the multi-
channel Levinson algorithm in the same manner as in the
recursive parametric Rao test.
Step 2: Using the model order estimate P̂ obtained in Step 1,
find the amplitude estimate â by either (14) or (18). Next,
obtain the spatial covariance matrix estimate Q̂1 by using
â and P̂. Specifically, the spatial covariance matrix estimate
Q̂1 can be obtained by running the multichannel Levinson
algorithm a second time (with P̂ recursions) along with
the following modified ACF estimate.

R̂(m) ¼
1

N (K þ 1)

XN�1�m

n¼0

�x0(nþ m)�xH0 (n)

(

þ
XK
k¼1

XN�1�m

n¼0

xk(nþ m)xHk (n)

) (44)

where �x0(n) ¼ x0(n)� â s(n).

Step 3: Compute the test statistic (7) by replacing the ML
parameter estimates (8) and (9) with the Yule–Walker sol-
utions Q̂0 and Q̂1, respectively. Finally, the test statistic is
compared with a test threshold to decide if the target is
present.

Fig. 1 Summary of recursive parametric Rao test
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4.5 Complexity

We provide a brief discussion on the complexity involved in
the recursive parametric Rao test versus its non-recursive
counterpart. Since the recursive and non-recursive
implementations differ only in parameter estimation (they
share identical steps in signal whitening and calculating
the test statistic), we only compare the complexity involved
in finding estimates of the AR coefficients A and the spatial
covariance matrix Q. Tables 1 and 2 contain a summary of
the number of flops involved in the major steps of the recur-
sive and, respectively, non-recursive parameter estimation.
For a quick comparison, suppose (K þ 1)N . JPmax.
Then, it can be seen from Tables 1 and 2 that the recursive
parameter estimation, which yields parameter estimates for
all model orders, has a overall complexity of
O(J2Pmax(K þ 1)N ), whereas the overall complexity of
the non-recursive estimation is O(J2P3

max(K þ 1)N ), which
is P2

max times higher.
Similar conclusions can be made for the parametric

GLRT since, just like the parametric Rao test, the recursive
and non-recursive implementations differ only in how par-
ameter estimates are obtained.

5 Numerical results

In this section, we present simulation results to illustrate the
performance of the proposed techniques. The disturbance
signal is generated as a multichannel AR(2) process (i.e.
P ¼ 2) with randomly selected AR coefficients A and a
spatial covariance matrix Q. These parameters are set to
ensure that the AR process is stable and Q is a valid
covariance matrix, but otherwise randomly selected.
The steering vector s corresponds to a uniform equi-spaced
linear array with J ¼ 4 and randomly selected normalised
spatial and Doppler frequencies (see [12]). The

Table 1: Complexity of the Yule–Walker estimator with
the multichannel Levinson algorithm for model orders
p 5 1, . . . , Pmax (recursive implementation)

Equation Flops Remark

(40) O(J2Pmax(Kþ 1)N ) one time

calculation

(28), (29) O(J3(pþ 2)) at pth recursion

(32), (33) O(J3p) at pth recursion

(34), (35) O(J3) at pth recursion

subtotal O(J3p) at pth recursion

total O(J2Pmax(Kþ 1)N )þO(J3Pmax
2 )

’ O(J2Pmax(Kþ 1)N )

for p ¼ 1, . . . , Pmax

Table 2: Complexity of the ML estimator for model
orders p 5 1, . . . , Pmax (non-recursive implementation)

Equation Flops Remark

(11) O(J2(Kþ 1)(N2 p)) for model order p

(12) O(J2p2(Kþ 1)(N2 p)) for model order p

(13) O(J2p(Kþ 1)(N2 p)) for model order p

(10) O(J3(p3
þ p2

þ p)) for model order p

subtotal O(J2p2(Kþ 1)N )þO(J3p3)

’ O(J2p2(Kþ 1)N )

for model order p

total O(J2Pmax
3 (Kþ 1)N) for p ¼ 1, . . . , Pmax
68
signal-to-interference-plus-noise ratio (SINR) is defined as

SINR ¼ jaj2sHR�1s (45)

where the JN � JN space–time covariance matrix can be
uniquely determined once A

H and Q are selected.

5.1 Estimation

We first examine the estimation performance of the sol-
utions to the multichannel Yule–Walker equations. Since
Q is a matrix, we define the following metric.

j(Q) ¼
1

J2
tr E Q̂� Q

� �H
Q̂� Q

� �	 
� �
(46)

which is the average of the mean squared errors (MSEs) of
all elements of the matrix. For brevity, the above metric is
referred as the MSEs henceforth.
Figs. 2 and 3 depict the MSE of the spatial covariance

matrix estimate Q against the number of temporal obser-
vations N. We consider the Yule–Walker estimate obtained
by using the multichannel Levinson algorithm with the cor-
responding ML estimate (8). Fig. 2 shows the case without

Fig. 3 MSE of spatial covariance matrix estimate against the
number of temporal observations N when K ¼ 2 and J ¼ 4

Fig. 2 MSE of spatial covariance matrix estimate against the
number of temporal observations N when K ¼ 0 and J ¼ 4
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range training data (K ¼ 0), whereas Fig. 3 corresponds to
the case with limited range training data (K ¼ 2). It is
observed that the Yule–Walker estimate is asymptotically
(for large N and/or large K) equivalent to the ML estimate,
although the performance of the Yule–Walker estimate
may be different when the data size is small. Fig. 2 shows
that the Yule–Walker estimate performs slightly
better than the ML estimate, when the number of temporal
observations N is small and no range training data are avail-
able (K ¼ 0 ). Although it is generally believed that the ML
estimate is more accurate than the Yule–Walker estimate
(e.g., [25]), with an extremely small data size as considered
in this example (e.g. N ¼ 10, K ¼ 0), either one of the two
estimators can slightly outperform the other depending
upon the choice of the AR parameters. It should also be
noted that the bias of the Yule–Walker estimate (because
of the use of the biased ACF estimate) can be significant
[25]. Fig. 3 shows that the Yule–Walker estimate performs
almost identically to the ML estimate when range training
data are used (K ¼ 2). It is also observed that the
Yule–Walker and ML estimates improve as the range train-
ing data (K) and/or temporal observation size (N)
increases.

Fig. 4 Probability of detection Pd against SINR when K ¼ 0,
J ¼ 4, N ¼ 64, P ¼ 2 and Pf ¼ 0.01

Fig. 5 Probability of detection Pd against SINR when K ¼ 0,
J ¼ 4, N ¼ 128, P ¼ 2 and Pf ¼ 0.01
IET Radar Sonar Navig., Vol. 2, No. 1, February 2008
5.2 Detection

We next examine the detection performance of the recursive
parametric Rao and GLRT detectors. For the recursive para-
metric GLRT detector, the AML instead of the ML estimate
of a is used since the detection difference between the two
is negligible (see [17, 18]), although the AML is computa-
tionally simpler. Also included in the comparison is the
ideal matched filter (MF), which assumes the exact knowl-
edge of R and is used only as a baseline for comparison. In
all examples, we set the probability of false alarm
Pf ¼ 0:01. Recursive and non-recursive are denoted by
‘R’ and ‘NR’, respectively, in the figures. For example,
recursive and non-recursive parametric GLRT detectors
are denoted by R-GLRT and NR-GLRT, respectively.
Figs. 4–7 depict the probability of detection of various

detectors against the SINR for the recursive parametric
detector with unknown model order P and their non-
recursive counterparts with known P. Figs. 4 and 5 show
the case without range training data (K ¼ 0), and Figs. 6
and 7 correspond to the case with limited range training
data (K ¼ 2 and 8). We see that in general, the performance
of the recursive parametric detectors with unknown P is

Fig. 7 Probability of detection Pd against SINR when K ¼ 8,
J ¼ 4, N ¼ 32, P ¼ 2 and Pf ¼ 0.01

Fig. 6 Probability of detection Pd against SINR when K ¼ 2,
J ¼ 4, N ¼ 64, P ¼ 2 and Pf ¼ 0.01
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nearly identical to that of their non-recursive counterpart
with known P. This is particularly true for the cases
shown in Figs. 5–7, where the data size is relatively large
(large N with K ¼ 0, or a moderate N with non-zero K).
On the other hand, it is observed in Fig. 4 that the recursive
parametric Rao detector performs slightly better than the
non-recursive parametric Rao detector when the temporal
observation is small and no range training data is available
(K ¼ 0 and N ¼ 64). This is probably because the
Yule–Walker parameter estimate is slightly more accurate
than the ML estimate in this case (see Fig. 2).

6 Conclusions

We have presented recursive versions of the parametric Rao
and parametric GLRT detectors, utilising the multichannel
Levinson algorithm to solve the multichannel Yule–
Walker equations recursively and find the estimates of the
unknown parameters, along with a GAIC for model order
selection. Numerical results show that the Yule–Walker
estimate obtained by using the multichannel Levinson
algorithm along with the biased ACF estimate is asymptoti-
cally equivalent to the ML estimate originally used in the
non-recursive parametric Rao and parametric GLRT detec-
tors. It is also shown that the proposed recursive parametric
detectors that assume no knowledge about the model order
perform almost identically as the corresponding non-
recursive parametric detectors with perfect knowledge of
the model order, although the formers have reduced compu-
tational complexity.
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