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Abstract

In order to accommodate high data-rate applications, there is a significant interest in extending space–time (ST) coding, orig-
inally proposed for frequency-nonselective channels assumed known to the receiver, to unknown ISI (inter-symbol interference)
channels. In this paper, we consider the problem of blind channel identification and linear multiuser receiver design for ST-coded
CDMA (code-division multiple-access) systems operating in frequency-selective fading channels. We investigate the identifiability
conditions and present a subspace-based blind channel estimator for such systems. To assess the performance of the proposed and
other potential estimators, we derive an unconditional Cramér–Rao bound (CRB) which, similarly to the proposed blind channel
estimator, does not assume the knowledge of the transmitted information symbols. We discuss various linear multiuser detection
schemes that can be used in conjunction with the proposed channel estimator for symbol demodulation in ST-coded CDMA sys-
tems. Numerical examples are presented to illustrate the performance of the proposed channel estimator and linear detectors in
multipath Rayleigh fading channels.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Future wireless communication systems have to deal with increasing demands for high data-rate, high-quality data
services. Space–time (ST) coding, which relies on multiple-antenna transmissions and appropriate signal processing
at the receiver, is able to provide drastic increases in transmission rate, due to its ability to fully exploit spatial and
temporal diversity [1]. Most previous studies on ST coding, however, were focused on the design of ST codes, as-
suming frequency-nonselective channels that are perfectly known to the receiver [2–4]. In practice, the channel state
information (CSI) is unknown and has to be estimated. Channel estimation is of particular importance in future broad-
band wireless networks since high data-rate transmissions lead to severe frequency-selective channel fading, which
necessitates the use of channel estimation/equalization techniques to combat significant inter-symbol interference
(ISI).
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Channel estimation in ST-coded systems, however, is more challenging than in single-antenna systems since the
number of unknown channel coefficients to be estimated increases proportionally to the number of transmit antennas.
For training-based channel estimation schemes [5], this transforms to more required training data and, accordingly,
decreases the channel throughput. Although the recently proposed differential ST coding schemes for frequency-
nonselective channels (e.g., [6] and references therein) obviate the need for channel estimation and, therefore, are
particularly attractive in fast fading environments when channel estimation becomes very difficult or even infeasible,
differential decoding of ST codes incurs approximately a 3 dB penalty in SNR (signal-to-noise ratio) compared to
coherent decoding which requires channel estimation. Hence, channel estimation is well motivated, especially in
cases when the channel experiences relatively slow fading.

It should also be noted that interference in ST-coded systems is more severe than in single-antenna systems. For a
system with K users where each is equipped with Q transmit antennas, MUI (multiuser interference) is composed of
(K − 1)Q interfering signals, rather than K − 1 interfering signals in a single-antenna system. To deal with the MUI
more effectively, it is necessary to utilize/extend the multiuser detection schemes devised for conventional multiuser
systems without ST coding [7] to ST-coded multiuser systems, such as the ST-coded CDMA (code-division multiple-
access) systems considered in this paper.

The problem of interest to this work is blind channel estimation and multiuser receiver design for ST-coded CDMA
systems. Channel estimation for single- and multiuser ST-coded systems in frequency-selective channels has been
considered in, for example, [5,8–11]. Those studies all assume multicarrier modulation which converts a frequency-
selective channel into a set of nonoverlapping frequency-nonselective sub-channels. In contrast, we consider in this
paper single-carrier ST-coded CDMA systems. In Section 2, we formulate the data model for such systems, which is
shown to coincide with an MIMO (multiple-input–multiple-output) system. In Section 3, the classical MIMO identifi-
cation results (e.g., [12]) are utilized to determine the identifiability conditions for ST-coded CDMA systems. Also in
Section 3, we present a subspace-based blind channel estimator to estimate the underlying frequency-selective chan-
nels by exploiting the unique signal structure inherent in ST-coded CDMA systems. The proposed subspace-based
channel estimator is an extension of the acclaimed work on blind identification of SIMO (single-input–multiple-
output) channels in [13], which has found extensive applications under various scenarios (e.g., [14–16]). To assess
the performance of the proposed and other potential channel estimators for ST-coded CDMA systems, we derive in
Section 4 an unconditional Cramér–Rao bound (CRB) which is not conditioned on the transmitted information sym-
bols. It is meaningful to compare with this unconditional CRB since the proposed blind channel estimator either does
not assume the knowledge of the transmitted symbols. In Section 5, we discuss several linear multiuser detectors that
can be used in conjunction with the proposed channel estimation algorithm for symbol demodulation in ST-coded
CDMA systems. Numerical examples are presented in Section 6 to illustrate the performance of the proposed channel
estimator and linear receivers in multipath Rayleigh fading channels. Finally, the study is concluded in Section 7.

Notation. Vectors (matrices) are denoted by boldface lower (upper) case letters; all vectors are column vectors;
superscripts (·)∗, (·)T , and (·)H denote the complex conjugate, transpose, and conjugate transpose, respectively; IN

denotes the N × N identity matrix; 0 denotes an all-zero vector/matrix; E{·} denotes the statistical expectation; ‖ · ‖
denotes the vector 2-norm [17]; ⊗ denotes the matrix Kronecker product [17]; diag{·} denotes a diagonal matrix; �{·}
and �{·} takes the real and imaginary part of a complex quantity, respectively; �·� denotes the smallest integer no less
than the argument; finally, given a sequence of P × K matrices {H(m)}M−1

m=0 (or, equivalently, a P × K polynomial

matrix Hz(z) �
∑M−1

m=0 H(m)z−m) [18], we define the generalized Sylvester matrix as

TN(H) �

⎡
⎣

H(M − 1) · · · H(0) 0
. . .

. . .

0 H(M − 1) · · · H(0)

⎤
⎦ ∈ C

NP×(M+N−1)K . (1)

2. Problem formulation

2.1. System model

Consider a synchronous (downlink) K-user CDMA system equipped with Q (Q � 2) transmit antennas (T ×’s)
and L (L � 1) receive antennas (R×’s). We consider only the downlink (i.e., base station to mobile) since multiple
antennas are more often installed at the base station than at the mobile. We assume the Alamouti’s ST coding scheme
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Fig. 1. Block diagram of a baseband ST-coded CDMA system shown for user k.

[3] which utilizes Q = 2T ×’s; extensions to other ST-block coding schemes are straightforward. Figure 1 depicts a
diagram of the baseband ST-coded CDMA system, shown only for user k. At the transmitter, the ST encoder (specified
in Section 2.2) maps the incoming symbol stream {bk(n)}, drawn from some unit-energy constellation B, into two ST-
coded symbol streams: {dk(n)} and {d̃k(n)}.1 Next, the two ST-coded symbol streams are spread by two distinctive
spreading codes {ck(p)}P−1

p=0 and {c̃k(p)}P−1
p=0 , respectively, before being sent out by T × 1 and T × 2. Here P = T/Tc

is the processing gain with T and Tc being the symbol and chip duration, respectively. At the receiver, the channel
estimator produces a (blind) channel estimate which is utilized by the multiuser detector for multiuser detection and
ST decoding (not shown).

The baseband signals for user k transmitted from T × 1 and T × 2, respectively, are given by (in discrete form at
the chip rate)2

s̄k(p) =
∞∑

m=−∞
d̄k(m)c̄k(p − mP), s̃k(p) =

∞∑
m=−∞

d̃k(m)c̃k(p − mP). (2)

Let f̄ (l)(t) [respectively, f̃ (l)(t)] be the impulse response of the overall channel including the physical wireless chan-
nel and the transmit/receive filters between T × 1 (respectively T × 2) and R × l. Hereafter, f̄ (l)(t) and f̃ (l)(t) are
modeled as FIR (finite impulse response) filters [19] with a maximum length of W chips or, equivalently, (M − 1)

symbol periods, where

M � �WTc/T � + 1 = �W/P � + 1. (3)

Then, the received signal at R × l, in discrete form at the chip rate, is given by

y(l)(p) =
K∑

k=1

W−1∑
q=0

[
f̄ (l)(q)s̄k(p − q) + f̃ (l)(q)s̃k(p − q)

] + v(l)(p), (4)

where f̄ (l)(q) � f̄ (l)(t)|t=qTc , f̃ (l)(q) � f̃ (l)(t)|t=qTc , v(l)(p) is the channel noise assumed to be spectrally white
with zero-mean and variance σ 2

v , and it was assumed that a prior synchronization between the transmitter and receiver
has been achieved (using one of the techniques discussed in, e.g., [20] and references therein). For brevity, in what
follows we will mainly describe/define the quantities associated with T ×1 with more details; similar definitions carry
over to those associated with T × 2.

Let x̄(l)(p) denote the noiseless signals received at R × l due to transmissions from T × 1 only, i.e.,

x̄(l)(p) =
K∑

k=1

W−1∑
q=0

f̄ (l)(q)s̄k(p − q). (5)

1 Throughout the paper, ¯(·) [respectively ˜(·)] is designated to quantities associated with the first (respectively second) transmit antenna.
2 Throughout the paper, we use m and n for symbol indexes, p and q for chip indexes, k for user index, and l for R× index.
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Substituting the expression of s̄k(p) given in (2) into (5) yields

x̄(l)(p) =
K∑

k=1

∞∑
m=−∞

d̄k(m)

W−1∑
q=0

f̄ (l)(q)c̄k(p − q − mP) �
K∑

k=1

∞∑
m=−∞

d̄k(m)h̄
(l)
k (p − mP), (6)

where h̄
(l)
k (p) is the composite signature sequence resulting from the convolution of the spreading code {c̄k(p)} and

the channel response {f̄ (l)(p)}:

h̄
(l)
k (p) �

W−1∑
q=0

f̄ (l)(q)c̄k(p − q), p = 0, . . . ,MP − 1. (7)

Let x̄
(l)
p (n) � x̄(l)(p +nP ) denote the pth chip of the signal received during the nth symbol period at R × l. It follows

from (6) and (7) that x̄
(l)
p (n) is given by

x̄(l)
p (n) =

K∑
k=1

∞∑
m=−∞

d̄k(m)h̄
(l)
k (p − mP + nP ) �

K∑
k=1

∞∑
m=−∞

d̄k(m)h̄
(l)
p,k(n − m) =

K∑
k=1

M−1∑
m=0

h̄
(l)
p,k(m)d̄k(n − m),

(8)

where

h̄
(l)
p,k(n) � h̄

(l)
k (p + nP ), p = 0, . . . ,P − 1. (9)

To express the input–output relation in compact matrix/vector form, we define

d̄(n) = [
d̄1(n), . . . , d̄K(n)

]T ∈ C
K×1,

H̄p(m) =
⎡
⎢⎣

h̄
(1)
p,1(m) . . . h̄

(1)
p,K(m)

...

h̄
(L)
p,1(m) . . . h̄

(L)
p,K(m)

⎤
⎥⎦ ∈ C

L×K,

H̄(m) = [
H̄T

0 (m), . . . , H̄T
P−1(m)

]T ∈ C
LP×K,

x̄(n) = [
x

(1)
0 (n), . . . , x

(L)
0 (n), . . . , x

(1)
P−1(n), . . . , x

(L)
P−1(n)

]T ∈ C
LP×1. (10)

It follows from (5) and (8) that

x̄(n) =
M−1∑
m=0

H̄(m)d̄(n − m), (11)

which corresponds to an MIMO system with K inputs and LP outputs.
Next, we collect samples received during N consecutive symbol periods, where N is the smoothing factor [21].

Specifically, let x̄N(n) = [x̄T (n), . . . , x̄T (n+N −1)]T ∈ CLNP×1, d̄N(n) = [d̄T (n−M +1), . . . , d̄T (n+N −1)]T ∈
C

(M+N−1)K×1, and TN(H̄) ∈ C
LNP×(M+N−1)K be the generalized Sylvester matrix formed from {H̄(m)}M−1

m=0
[cf. (1)]. Then, x̄N(n) can be expressed as

x̄N(n) = TN(H̄)d̄N(n). (12)

The noiseless signal due to the transmissions from T × 2 only has a similar relation:

x̃N(n) = TN(H̃)d̃N(n), (13)

where x̃N(n), TN(H̃), and d̃N(n) are quantities associated with T × 2 which are similarly defined to x̄N(n), TN(H̄)

and d̄N(n), respectively.
Let H(m) = [H̄(m), H̃(m)], and d(n) = [d̄T (n), d̃T (n)]T . The overall noisy signal due to transmissions from both

T ×’s is given by

yN(n) � x̄N(n) + x̃N(n) + vN(n) = TN(H)dN(n) + vN(n), n = 0, . . . ,Ny − 1, (14)
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where TN(H) ∈ C
LNP×2(M+N−1)K denotes the generalized Sylvester matrix formed from {H(m)}M−1

m=0 [cf. (1)],
dN(n) � [dT (n − M + 1), . . . ,dT (n + N − 1)]T ∈ C

2(M+N−1)K×1, and vN(n) denotes the LNP × 1 noise vector.
Note that (14) corresponds to a noisy MIMO system with 2K inputs and LP outputs.

2.2. ST encoder

The ST encoder in Fig. 1 implements the Alamouti’s ST coding scheme [3]. Specifically, for user k, the ST encoder
takes two adjacent symbols bk(2n) and bk(2n + 1) and outputs the following ST-coded matrix:

Dk(n) �
[

d̄k(2n) d̄k(2n + 1)

d̃k(2n) d̃k(2n + 1)

]
,

where

d̄k(2n) = bk(2n), d̄k(2n + 1) = −b∗
k (2n + 1), d̃k(2n) = bk(2n + 1), d̃k(2n + 1) = b∗

k (2n). (15)

The columns of Dk(n) are then transmitted one at a time over two successive symbol intervals, with the elements of
each column sent from the two T ×’s simultaneously.

In the sequel, we assume that {bk(n)} are drawn from some unit-energy, circularly symmetric constellation (e.g.,
R-ary PSK with R > 2) such that E{|bk(n)|2} = 1 and E{b2

k(n)} = 0; furthermore, we assume that {bk(n)} are inde-
pendently and identically distributed (i.i.d.) for different n and k. Under these conditions, one can easily verify that
E{dk(n)dH

k (n)} = I4, where

dk(n) �
[
d̄k(2n), d̃k(2n), d̄k(2n + 1), d̃k(2n + 1)

]T
. (16)

We further assume that N is chosen such that M + N − 1 is even, which implies that the dN(n) in (14) contains a
total of (M + N − 1)/2 full ST code matrices for each user. This observation, along with the previous assumptions,
suggests that

RdN
� E

{
dN(n)dH

N (n)
} = I2(M+N−1). (17)

The problem of interest is to estimate the unknown channel coefficients {f̄ (l)(p)}W−1
p=0 and {f̃ (l)(p)}W−1

p=0 , for l =
1, . . . ,L, that are embedded in the channel matrix TN(H), and then to recover the information symbols {bk(n)} from
the noisy observations {yN(n)}.

3. Subspace-based blind channel identification

3.1. Blind identification of MIMO FIR channels

The formulation of the ST-coded CDMA system model in Section 2.1 indicates that the estimation of the FIR
channels {f̄ (l)(p)} and {f̃ (l)(p)} is clearly related to the MIMO channel identification problem, a topic that has been
extensively addressed in the literature (e.g., [15,22–24] and references therein). Most blind identification schemes
relying only on the second-order statistics (SOS) of the received signal require the MIMO channel to satisfy certain
disparity conditions such that the generalized Sylvester matrix TN(H) has full column rank. This necessitates the
choice of the smoothing factor N to make TN(H) a tall matrix, i.e., LNP � 2(M + N − 1)K . More specifically, we
recall the following result (see, e.g., [12,23]).

Proposition 1. Define the LP × 2K transfer function Hz(z) �
∑M−1

m=0 H(m)z−m. The generalized Sylvester matrix
TN(H) has full column rank if and only if the following conditions are satisfied:

(A1) Hz(z) has full column rank for all z [i.e., Hz(z) is irreducible].
(A2) H(M − 1) has full column rank [i.e., Hz(z) is column reduced].
(A3) The degrees of the columns of Hz(z) are identical.
(A4) N � max1�j�LP−2K μ⊥

j − 1, where {μ⊥
j }LP−2K

j=1 denote the dual Kronecker indices [18] of the rational sub-
space spanned by the columns of Hz(z).
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(A3) is usually satisfied in a downlink scenario where all users share identical channels. The case of different
column degrees of Hz(z) (e.g., uplink) is addressed in [15]. (A4) reiterates the need for a large enough smoothing
factor N to build the necessary “embedding dimension.” Although {μ⊥

j }LP−2K
j=1 depend on the unknown channel,

general criteria on how to choose N are provided in [12].
The subspace-based blind channel identification method, originally proposed for the SIMO channel identification

[13], can be used to identify an MIMO FIR filter Hz(z) up to a constant nonsingular matrix, providing that certain
conditions are satisfied. More specifically, under the conditions stated in Proposition 1 and, furthermore, that (A4) is
augmented to

(A4′) N � max1�j�LP−2K μ⊥
j ,

if there exists an LP × 2K polynomial matrix Ĥz(z) �
∑M−1

m=0 Ĥ(m)z−m which satisfies rank{Ĥz(z)} = 2K and
�⊥

HT (Ĥ) = 0, where �⊥
H denotes the orthogonal projector on the left null space of TN(H), then [12]

Ĥz(z) = Hz(z)�, (18)

where � ∈ C
2K×2K is a constant, nonsingular matrix.

3.2. Blind channel identification for ST-coded CDMA systems

We note that the MIMO FIR channel TN(H) is partly known due to the presence of spreading [cf. (7)]. The
knowledge of the spreading codes can be utilized to produce channel estimates with much reduced ambiguity, as
shown in [25] for conventional CDMA systems (without ST coding). In the sequel, we derive a subspace-based blind
channel estimator which yields estimates of {f̄ (l)(p)} and {f̃ (l)(p)} to within only a scalar ambiguity. The remaining
scalar ambiguity can be easily removed by differentially encoding/decoding the information symbols or using a few
pilot symbols.

The covariance matrix of yN(n) is given by [see (14) and (17)]

RyN
= E

{
yN(n)yH

N (n)
} = TN(H)T H

N (H) + σ 2
v ILNP .

Assuming that the conditions in Proposition 1 are satisfied, TN(H) has full column rank. Hence, the eigendecompo-
sition of RyN

can be expressed as

RyN
= Es�sEH

s + σ 2
v EnEH

n , (19)

where �s = diag{λ1, . . . , λ2(M+N−1)K} contains the 2(M + N − 1)K largest eigenvalues, i.e., signal eigenvalues,
Es ∈ CLNP×2(M+N−1)K contains the 2(M + N − 1)K signal eigenvectors which span the signal subspace, i.e.,
span{Es} = span{TN(H)}, and En ∈ C

LNP×J contains the J noise eigenvectors which span the noise subspace, with

J � LNP − 2(M + N − 1)K.

The signal and noise subspaces are mutually orthogonal. Hence, EH
n TN(H) = 0 or, equivalently,

EH
n TN(H̄) = 0, EH

n TN(H̃) = 0, (20)

where TN(H̄) and TN(H̃) are LNP × (M + N − 1)K generalized Sylvester matrices defined as in (12) and (13),
respectively.

Let

H̄ = [
H̄T (0), . . . , H̄T (M − 1)

]T �
[

h̄1, . . . , h̄K

] ∈ C
LMP×K,

H̃ = [
H̃T (0), . . . , H̃T (M − 1)

]T �
[

h̃1, . . . , h̃K

] ∈ C
LMP×K. (21)

Decompose En into EH
n � [G0, . . . , GN−1], where Gn ∈ CJ×LP for n = 0, . . . ,N − 1, and form
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GH =

⎡
⎢⎢⎢⎢⎢⎣

GN−1 0
...

. . .

G0 GN−1
. . .

...

0 G0

⎤
⎥⎥⎥⎥⎥⎦

= T H
M (GH ) ∈ C

J (M+N−1)×LMP . (22)

Since convolution is commutative, one can easily verify that (20) is equivalent to

GH H̄ = 0, GH H̃ = 0. (23)

Let

f̄(p) = [
f̄ (1)(p), . . . , f̄ (L)(p)

]T ∈ C
L×1, f̄ = [

f̄T (0), . . . , f̄T (W − 1)
]T ∈ C

LW×1,

and f̃ is similarly formed from {f̃ (l)(p)}. We note that H̄ and H̃ are parameterized by f̄ and f̃, respectively. In
particular, we have [see (7)]

h̄k = C̄k f̄, h̃k = C̃k f̃, (24)

where

C̄k = C̄k ⊗ IL, C̃k = C̃k ⊗ IL, (25)

C̄k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c̄k(0) 0
...

. . .
...

c̄k(P − 1) c̄k(0)
...

. . .
...

0 c̄k(P − 1)
...

. . .
...

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
MP×W, (26)

and C̃k is similarly formed from the spreading code {c̃k(p)}P−1
p=0 .

Substituting (24) into (23) yields

GH C̄k f̄ = 0, GH C̃k f̃ = 0, k = 1, . . . ,K. (27)

Hence, f̄ and f̃ are within the null space of GH C̄k and GH C̃k , respectively. If the dimension of the two null spaces is
one, then any vector within {GH C̄k} (respectively {GH C̃k}) is proportional to f̄ (respectively f̃). Specifically, we have
the following result.

Proposition 2. In addition to (A1)–(A3) and (A4′), assume

(A5) The two matrices [h̄1, . . . , h̄k−1, C̄k, h̄k+1, . . . , h̄K, H̃ ] and [h̃1, . . . , h̃k−1, C̃k, h̃k+1, . . . , h̃K, H̄ ] have
full column rank.

If there exist ˆ̄f and ˆ̃f such that GH C̄k
ˆ̄f = 0 and GH C̃k

ˆ̃f = 0, then ˆ̄f ∝ f̄ and ˜̄f ∝ f̃.

Proof. Let ˆ̄H and ˆ̃H be formed from ˆ̄f and ˆ̃f, respectively, by using (24) and (21). According to (18), we have

[ ˆ̄H ,
ˆ̃H ] = [ H̄ , H̃ ]

[
�̄

�̃

]
, (28)

where �̄ = [ω̄1, . . . , ω̄2K ] and �̃ = [ω̃1, . . . , ω̃2K ] are some K ×2K constant matrices. Equivalently, we can express
(28) as

ˆ̄hk = H̄ ω̄k + H̃ ω̃k,
ˆ̃hk = H̄ ω̄K+k + H̃ ω̃K+k. (29)

Let ω̄j,k (respectively ω̃j,k) denote the (j, k)th element of �̄ (respectively �̃). We rewrite (29) as
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C̄k

(ˆ̄f − ω̄k,k f̄
) = ˆ̄hk − ω̄k,kh̄k =

∑
j �=k

ω̄j,kh̄j + H̃ ω̃k,

C̃k

(ˆ̃f − ω̃k,K+k f̃
) = ˆ̃hk − ω̃k,K+kh̃k = H̄ ω̄K+k +

∑
j �=k

ω̃j,K+kh̃j ,

which, in conjunction with (A5), suggest that

ˆ̄f = ωk,k f̄, ˆ̃f = ωk,K+k f̃,

and � � [�̄T
, �̃

T ]T is a strictly diagonal matrix. This concludes the proof. �
As pointed out in [23], the dependence on (A2) (i.e., Hz(z) is column reduced) may not be well adjusted in CDMA

systems since the last LMP −L(P +W −1) rows of H̄ and H̃ are zeros [cf. (7), (21), and (26)]. Nevertheless, it was
shown that (A2) is not necessary to ensure blind identification in CDMA systems if the spreading codes are properly
designed; see [23] for details.

In practice, RyN
and, therefore, G are unknown. Denote by Ĝ the estimate of G obtained from the eigendecompo-

sition of, e.g., the sample covariance matrix:

R̂yN
= 1

Ny

Ny−1∑
n=0

yN(n)yH
N (n). (30)

Note that other estimators of RyN
and G, including adaptive schemes, are possible; but explorations of such alterna-

tives are beyond the scope of the current paper. Due to estimation and roundoff errors, (27) in general does not hold
exactly. Instead, we seek solutions in the least-squares (LS) sense. That is,

ˆ̄f = arg min
f∈CLW×1

fH C̄H
k ĜH ĜC̄kf, (31)

ˆ̃f = arg min
f∈CLW×1

fH C̃H
k ĜH ĜC̃kf. (32)

Under the standard constraint ‖f‖ = 1 (to avoid trivial solutions), ˆ̄f and ˆ̃f are the eigenvectors corresponding to the
smallest eigenvalue of C̄H

k ĜH ĜC̄k and C̃H
k ĜH ĜC̃k , respectively.

In the event that the receiver has the knowledge of some other users’ spreading codes, say users within K⊆ [1,K],
the knowledge can be used to improve channel estimation, by using the following modified criteria:

ˆ̄f = arg min
f∈CLW×1

fH
( ∑

k∈K
C̄H

k ĜH ĜC̄k

)
f, (33)

ˆ̃f = arg min
f∈CLW×1

fH
( ∑

k∈K
C̃H

k ĜH ĜC̃k

)
f, (34)

the solutions to which, under again the unit-norm constraints, are the eigenvectors corresponding to the smallest
eigenvalue of (

∑
k∈K C̄H

k ĜH ĜC̄k) and (
∑

k∈K C̃H
k ĜH ĜC̃k), respectively.

To summarize, the proposed subspace-based blind channel identification algorithm for ST-coded CDMA systems
consists of the following steps:

Step 1. Estimate the covariance matrix RyN
by using, e.g., the sample covariance matrix R̂yN

in (30).
Step 2. Obtain the noise eigenvectors En by computing the eigendecomposition of R̂yN

[cf. (19)], and form Ĝ
by (22).

Step 3. Compute the channel estimates ˆ̄f and ˆ̃f by (31) and (32) if only spreading codes for user k are known, or by
(33) and (34) if additional spreading codes are known.
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4. Cramér–Rao bound

In this section, we derive the Cramér–Rao bound (CRB), the lower bound on the variance of any unbiased esti-
mators, for the ST-coded CDMA channel estimation problem. Specifically, we derive an unconditional CRB which is
not conditioned on the information symbols (see, e.g., [26]). It is meaningful to compare the proposed blind channel
estimator with the unconditional CRB since the former does not assume the knowledge of the information symbols.
Conditional CRBs (i.e., CRBs which are conditioned on the information symbols) for various blind channel identifi-
cation problems have been investigated in the literature; see, e.g., [27–29] and references therein.

Assume that the observation time consists of a total of Ns symbol intervals. We collect all samples obtained within
this observation time and define y � [yT (0), . . . , yT (Ns − 1)]T ∈ C

LNsP×1, where y(n) consists of LP × 1 noisy
samples obtained within one symbol interval [cf. (10) and (14)]: y(n) = x̄(n) + x̃(n) + v(n), n = 0, . . . ,Ns − 1, and
d � [dT (−M + 1), . . . ,dT (Ns − 1)]T ∈ C

2K(M+Ns−1)×1 contains all the information symbols that contribute to y.
Then, we have [see (14)]

y = TNs (H)d + v, (35)

where TNs (H) ∈ C
LNsP×2(M+Ns−1)K denotes the generalized Sylvester matrix formed from {H(m)}M−1

m=0 [cf. (1)] and
v ∈ C

LNsP×1 contains the overall noise samples.
The derivation of the CRB requires the knowledge of the exact distribution of y, which is in general difficult to

obtain. In the sequel, we assume that y follows a Gaussian distribution with zero-mean and covariance matrix:

Ry = TNs (H)T H
Ns

(H) + σ 2
v ILNsP = TNs (H̄)T H

Ns
(H̄) + TNs (H̃)T H

Ns
(H̃) + σ 2

v ILNsP , (36)

where we used the fact that E{ddH } = I2K(M+Ns−1) (see Section 2.2) and the second equality of (36) was due to
H(m) = [H̄(m), H̃(m)] for m = 0, . . . ,M − 1. Comparing with the CRB based on the Gaussian assumption is well
motivated not only because it is easily computable, but also because the Gaussian CRB is the lower bound for the
covariance matrices of a large class of estimation methods, regardless of the data distribution [30, p. 293].

Let f � [f̄T , f̃T ]T ∈ C
2LW×1 and θ � [�T {f}, �T {f}]T ∈ R

4LW×1. For a Gaussian process with zero-mean and
covariance matrix Ry, the (r, s)th element of the Fisher information matrix (FIM) is given by (e.g., [30, Appendix B])

[J(θ)]s,t = tr

{
∂Ry

∂θs

R−1
y

∂Ry

∂θt

R−1
y

}
, s, t = 1, . . . ,4LW, (37)

where θs denotes the sth element of θ . By (36), we have

∂Ry

∂θs

= ∂TNs (H̄)

∂θs

T H
Ns

(H̄) + TNs (H̄)

(
∂TNs (H̄)

∂θs

)H

+ ∂TNs (H̃)

∂θs

T H
Ns

(H̃) + TNs (H̃)

(
∂TNs (H̃)

∂θs

)H

. (38)

To facilitate the evaluation of ∂TNs (H̄)/∂θs and ∂TNs (H̃)/∂θs , we decompose the spreading code matrices in (25) as
follows:

C̄k �
[
C̄

T

k,0, . . . , C̄
T

k,M−1

]T
, C̃k �

[
C̃

T

k,0, . . . , C̃
T

k,M−1

]T
, (39)

where C̄k,m and C̃k,m, for m = 0, . . . ,M − 1, are LP × LW matrices. This decomposition, along with (21) and
(24)–(26), allows the following expressions of the channel matrices:

H̄(m) = [
C̄1,m f̄, . . . , C̄K,m f̄

]
, H̃(m) = [

C̃1,m f̃, . . . , C̃K,m f̃
]
, m = 0, . . . ,M − 1.

Hence,

∂H̄(m)

∂�{f̄s}
= [

C̄1,m(:, s), . . . , C̄K,m(:, s) ]
� �̄s,m,

∂H̃(m)

∂�{f̃s}
= [

C̃1,m(:, s), . . . , C̃K,m(:, s) ]
� �̃s,m,

∂H̄(m)

∂�{f̄s}
= j�̄s,m,

∂H̃(m)

∂�{f̃s}
= j�̃s,m,

∂H̄(m)

∂�{f̃s}
= ∂H̄(m)

∂�{f̃s}
= ∂H̃(m)

∂�{f̄s}
= ∂H̃(m)

∂�{f̄s}
= 0, (40)
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where the Matlab notation A(:, s) is used to denote the sth column of any matrix A, and f̄s (respectively f̃s ) denotes
the sth element of f̄ (respectively f̃ ). It follows that

∂TNs (H̄)

∂�{f̄s}
= TNs (�̄s),

∂TNs (H̃)

∂�{f̃s}
= TNs (�̃s),

∂TNs (H̄)

∂�{f̄s}
= jTNs (�̄s),

∂TNs (H̃)

∂�{f̃s}
= jTNs (�̃s),

∂TNs (H̄)

∂�{f̃s}
= ∂TNs (H̄)

∂�{f̃s}
= ∂TNs (H̃)

∂�{f̄s}
= ∂TNs (H̃)

∂�{f̄s}
= 0, (41)

where TNs (�̄s) [respectively TNs (�̃s)] is the LNsP × (M + Ns − 1)K generalized Sylvester matrix formed from
{�̄(s,m)}M−1

m=0 [respectively {�̃(s,m)}M−1
m=0 ]. Using (41) in (38), which is subsequently substituted into (37), we can

compute the 4LW × 4LW FIM J(θ) entry by entry.
The FIR J(θ), however, is singular due to the scalar ambiguity inherent in all blind channel identification problems

[27–29]. To eliminate the ambiguity, various constraints can be enforced to regularize the estimation problem, e.g.,
the unit-norm constraint in Section 3 plus a constraint on the phase of one element of f̄ and f̃, respectively; see [31].
Suppose we have a set of Nu < 4LW constraints on the parameter θ defined through

u(θ) = 0. (42)

Define the 4LW × Nu gradient matrix of the constraints:

U(θ) = ∂u(θ)

∂θT
.

The gradient matrix is assumed to have full row rank for any θ satisfying the constraints (42) (i.e., the constraints are
not redundant). Let V ∈ R

4LW×(4LW−Nu) whose columns form a basis for the null space of U(θ), i.e., U(θ)V = 0.
Then, the constrained CRB is given by [28,31]

CRB
(
θ;u(θ) = 0

) = V
[
VT J(θ)V

]−1VT . (43)

5. Linear detection and ST decoding

Once estimates of the channel vectors f̄ and f̃ are available, various detection techniques can be employed for user
detection. Although the nonlinear ML (maximum likelihood) detector yields the optimum performance, it has an ex-
ponential complexity in K and, thus, is of only theoretical interest [7]. In this section, we consider linear detection
schemes, including the single-user MF (matched-filter) detector and the multiuser ZF (zero-forcing) and MMSE (min-
imum mean-squared error) detectors, for demodulation in ST-coded CDMA systems. We also discuss how to perform
ST decoding to fully recover the information symbols.

5.1. MF detector

Assume that user k is of interest. Decompose the composite channel vectors h̄k and h̃k as [cf. (21)]: h̄k �
[h̄T

1 (0), . . . , h̄T
K(M − 1)]T and h̃k � [h̃T

1 (0), . . . , h̃T
K(M − 1)]T . Let Hk(m) � [h̄k(m), h̃k(m)] ∈ C

LP×2, m =
0, . . . ,M − 1. We separate the contribution of user k from that of other users to the receiver signal yN(n) and rewrite
(14) as

yN(n) = TN(Hk)dN,k(n) + MUI+vN(n),

where TN(Hk) ∈ C
LNP×2(M+N−1) is the generalized Sylvester matrix formed from {Hk(m)}M−1

m=0 [cf. (1)], the MUI
(multiuser interference) term lumps signals from all users other than user k, and

dN,k(n) = [
dT

k (n − M + 1), . . . , dT
k (n + N − 1)

]T ∈ C
2(M+N−1)×1, (44)

dk(n) = [
d̄k(n), d̃k(n)

]T
. (45)
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The MF detector “matches” only to the composite channel of user k, while treating the MUI as white Gaussian
noise:

WMFk
= T †H

N (Hk). (46)

The MF detector outputs an estimate of dN,k(n) as d̂N,k(n) = WH
MFk

yN(n).

5.2. ZF detector

The ZF detector is given by (e.g., [7])

WZF = T †H
N (H), (47)

where TN(H) is defined in (14). The ZF detector WZF satisfies the ZF constraint: WH
ZFTN(H) = I2K(M+N−1), by

which it removes completely the MUI and ISI at the expense of increasing the additive noise level [7]. We note that
WZF requires the spreading codes of all users. It demodulates all users simultaneously and outputs an estimate of
dN(n) as d̂N(n) = WH

ZFyN(n) ∈ C
2K(M+N−1)×1.

5.3. MMSE detector

The MMSE detector minimizes the mean-squared error criterion:

WMMSEk
= arg min

W∈CLNP×2(M+N−1)
E

{∥∥WH yN(n) − dN,k(n)
∥∥2}

,

the solution to which is well-known (e.g., [7])

WMMSEk
= R−1

yN
E

{
yN(n)dH

N,k(n)
} = R−1

y TN(Hk). (48)

In practice, RyN
can be replaced by R̂yN

in (30) or some other recursively computed covariance matrix estimate.
Hence, unlike the ZF detector, the spreading codes of other users are not required by the MMSE detector. The MMSE
detector outputs an estimate of dN,k(n) as d̂N,k(n) = WH

MMSEk
yN(n).

5.4. ST decoding

Form d̂k(n) = [ ˆ̄dk(n),
ˆ̃
dk(n)]T from the detector output d̂N,k(n) [see (44)–(45)]. Assume proper alignment/synchro-

nization at the receiver such that two adjacent blocks of {d̂k(n)} form an estimate of dk(n) [see (16)]

d̂k(n) �
[

d̂T
k (2n), d̂T

k (2n + 1)
]T �

[ ˆ̄dk(2n),
ˆ̃
dk(2n), ˆ̄dk(2n + 1),

ˆ̃
dk(2n + 1)

]T
.

Reversing the ST encoding process (15), we obtain the soft estimates of {bk(2n), bk(2n + 1)} as follows:

b̂k(2n) = [ ˆ̄dk(2n) + ˆ̃
d

∗
k(2n + 1)

]/
2, b̂k(2n + 1) = [ ˆ̃

dk(2n) − ˆ̄d∗
k(2n + 1)

]/
2.

Finally, the hard estimate ˆ̂
bk(n) is obtained by comparing the soft estimate b̂k(n) with every constellation point:

ˆ̂
bk(n) = arg min

b∈B
∣∣b̂k(n) − b

∣∣.
6. Simulation results

In this section, we present simulation results to illustrate the performance of the proposed subspace-based blind
channel estimation algorithm and the linear multiuser detection schemes for ST-coded CDMA systems. We consider
systems equipped with L = 1 or L = 2R×’s. The spreading codes are randomly generated with processing gain
P = 32. The channels {f (l)(p)} and {f̃ (l)(q)} are modeled as FIR filters with duration W = 30 chips; the individual
taps are generated as independent complex Gaussian random variables with zero-mean and variance 1/W . The in-
formation symbols are drawn from a unit-energy QPSK constellation. The SNR is defined as SNR = 10 log10 1/σ 2

v

in dB.
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(a)

(b)

Fig. 2. (a) MSE and CRB versus Ny using all users’ spreading codes when SNR = 25 dB, K = 5, P = 32, and W = 30; (b) MSE and CRB versus
SNR using all users’ spreading codes when Ny = 500, K = 5, P = 32, and W = 30.

6.1. Channel estimation

The performance measure is the averaged MSE (mean-squared error) of the channel estimates, defined as:

MSE(ˆ̄f) = 1
LW−1

∑LW−1
i=1 MSE( ˆ̄f i), where ˆ̄f i denotes the estimate of the ith element of f̄; MSE(

ˆ̃f) is similarly de-

fined. The channel estimates ˆ̄f and ˆ̃f are normalized with respect to the first element of f̄ and f̃, respectively, in order
to remove the inherent scalar ambiguity in the estimates. The smoothing factor N = 3 is used for channel estimation.
The MSE results presented below are averaged over 100 independent Monte Carlo trials.

Figure 2a depicts the MSE of the channel estimates versus the number of data samples Ny when K = 5 and
SNR = 25 dB, whereas Fig. 2b shows the MSE versus the SNR when K = 5 and Ny = 500. The MSEs in these
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(a)

(b)

Fig. 3. (a) MSE (and CRB) versus Ny using one user’s spreading codes when SNR = 25 dB, K = 5, P = 32, and W = 30; (b) MSE (and CRB)
versus SNR using one user’s spreading codes when Ny = 500, K = 5, P = 32, and W = 30.

figures correspond to channel estimates that use the spreading codes of all users [i.e., (33)–(34)]. The MSEs of the
channel estimates that use the spreading codes of only the desired user [i.e., (31)–(32)] are depicted in Figs. 3a and 3b.
We also plot the unconditional CRB derived in Section 4 in these figures to illustrate the lower performance bound.
We note that channel estimates are consistent in the sense that as the SNR or Ny increases, the MSE decreases
monotonically. The channel estimates for the 2R× system are seen to be always more accurate than those for the
1R× system, even though the number of unknown channel coefficients doubles in the former system. We also note
that the channel estimation accuracy differs noticeably between using all users’ spreading codes and using only one
user’s spreading codes. It should be stressed that the CRB assumes the knowledge of the all spreading codes; it is thus
unlikely for any estimators that use the spreading codes of only the desired user, e.g., the estimator as in (31)–(32), to
achieve the CRB.
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Fig. 4. Symbol error rate versus SNR using estimated channels when K = 5, N = 3, P = 32, and W = 30.

Fig. 5. Symbol error rate versus SNR using estimated channels when K = 10, N = 3, P = 32, and W = 30.

6.2. Multiuser detection

We next examine the performance of the linear detectors discussed in Section 5 by using the blind channel estimates
in these detectors. The channel coefficients are estimated with Ny = 1000 samples of data, using a smoothing factor
of N = 3 and the spreading codes of only the desired user. The following SER (symbol error rate) results are averaged
over 500 independent channel realizations to emulate a Rayleigh fading environment.

Figure 4 depicts the SER as a function of the SNR of the linear MF, ZF, and MMSE detectors when K = 5 users
are transmitting simultaneously, whereas Fig. 5 shows the SER results when K = 10. We note that the multiuser ZF
and MMSE detectors outperform significantly the single-user MF detector. The poor performance of the MF detector
is due to the MUI which is treated as noise and not exploited for detection. We also note that the MMSE detector
outperforms the ZF detector, especially when L = 1 and K = 10. Since the ZF detector requires the spreading codes
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Fig. 6. Symbol error rate of the MMSE detector with/without ST coding versus SNR using true and estimated channels when K = 5, N = 3,
P = 32, and W = 30.

of all users while the MMSE detector requires the spreading codes of only the desired user (see Sections 5.2 and 5.3),
the latter is clearly more attractive in downlink applications.

6.3. Diversity advantage

Finally, we consider the diversity advantage offered by ST coding. We compare the ST-coded CDMA system with
the conventional CDMA system using 1T × without ST coding. Figure 6 depicts the SER of these two systems using
MMSE detection when K = 5 and L = 1 (i.e., 1R× for both systems) in Rayleigh fading channels. The MMSE
detection is implemented by using both the true and estimated CSI. The CSI for the ST-coded system is estimated by
our proposed channel estimator whereas the CSI for the conventional CDMA system is estimated by the approach in
[25], both using a total of Ny = 500 data samples. Figure 6 indicates a diversity gain of more than 3 dB achieved by the
ST-coded system, which clearly motivates the use of ST coding in CDMA systems. We also note that the performance
between using the true and estimate CSI is quite small.

7. Conclusions

We have investigated the problem of blind channel identification and linear multiuser detection for ST-coded
CDMA systems operating in frequency-selective fading environments. The classical MIMO identification results have
been utilized to determine the identifiability conditions for ST-coded CDMA systems. Under these identifiability con-
ditions, a subspace-based blind channel estimator has been proposed, which yields consistent channel estimates up to
a scaling factor. We have also derived an unconditional CRB for the blind channel identification problem. The CRB
is not conditioned on the unknown information symbols, which makes it a more suitable performance bench mark
for blind estimators than CRBs which are conditioned on the information symbols. The proposed channel estimator
has been used with three linear detectors for ST-coded CDMA systems, namely the single-user MF detector and the
multiuser ZF and MMSE detectors, and the performance of the resulting receivers has been compared with one an-
other in multipath Rayleigh fading channels. The performance gain achieved by the ST-coded CDMA systems over
conventional CDMA systems without ST coding has also been demonstrated.
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