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Off-Grid Fundamental Frequency Estimation
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Abstract—In this paper, we propose a gridless method for esti-
mating an unknown number of fundamental frequencies. Starting
with a conventional dictionary matrix, containing sets of candidate
fundamental frequencies and their corresponding harmonics, a
nonconvex log-sum cost function is formed such that it imposes the
harmonic structure and treats every fundamental frequency in the
dictionary as a parameter. The cost function is iteratively decreased
by minimizing a surrogate function, and, in each iteration, the fun-
damental frequencies are refined, whereas redundant parameters
are omitted from the dictionary. The proposed method is tested on
both real and simulated data, showing its preferred performance
as compared to other state-of-the-art multipitch estimators.

Index Terms—Grid mismatch, iterative reweighted methods,
multi-pitch estimation, super-resolution.

I. INTRODUCTION

IN AREAS such as audio, biomedicine, and mechanics, the
estimation of fundamental frequencies is often of central

importance. In particular, the multi-pitch problem is challeng-
ing, as one needs to determine not only the number of funda-
mental frequencies, but also the number of harmonics related
to each fundamental frequency. This problem has historically
been addressed by utilizing various forms of model order es-
timators, or by simply assuming the model order is already
known a-priori [1]–[4]. Early pitch estimation methods relied
on covariance-based methods as the ones presented in [5], [6].
Later, filterbank- and subspace-based methods were introduced
and MUSIC-like methods were widely used [7]–[12]. Recent
contributions include, e.g., [13], where the computational speed
is in focus, and [14] where the problem is to estimate the funda-
mental frequencies in real noise when multiple people speak at
the same time. In [15], the Pitch Estimation using �2 norm and
Block Sparsity (PEBS) algorithm was presented, where the fun-
damental frequency estimation problem was instead solved by
using a (block-)sparsity approach, thereby combining the model
order estimation with the overall estimation of the fundamen-
tal frequencies and their harmonics. Based on the promising
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performance of the initial PEBS algorithm, several improve-
ments have been suggested, including focusing on the choice
of hyperparameters [16], time-updating [17], and computation
complexity [18]. The results presented in these works illustrate
the benefits of using a sparse framework for solving multi-pitch
estimation problems.

Sparse reconstruction methods are used in a vast number of
areas and have been intensively studied (see, e.g., [19]–[24]).
As in the case of PEBS, the resulting sparse problems have often
been expressed using dictionary matrices, containing a large
quantity of possible signal candidates, with the assumption that
only a small subset of these candidates is needed to approximate
the signal well. These candidates are often selected on a pre-
defined grid that spans the parameter space of interest. Recently,
some concerns have been raised as to how this grid-based
selection of candidates affects the performance. In [25], it was
shown that since the grid and the true parameters are unlikely to
coincide, this may cause the estimation to deteriorate. If one, in
an effort to circumvent this, increases the number of grid points
to decrease the distance between the grid and the true param-
eters, the dictionary matrix will become increasingly coherent,
i.e., the columns of the dictionary matrix become correlated,
which may in turn degrade the performance, and increase
the computational complexity of the algorithm. To counter
these drawbacks, it has recently been suggested that one may
instead solve the sparse problem without applying a grid, using
so-called gridless methods. One noticeable example of this is
the use of the atomic norm [26]–[30], where the sparse problem
is instead formulated as a convex semi-definite program (SDP).
The use of the atomic norm can be seen as solving the sparse
problem using an infinite grid, but without the problem of a
resulting coherent dictionary matrix. Unfortunately, the atomic
norm formulation does not easily allow for imposing general
data structures to the cost function, and, typically, any addi-
tional model constraints will fundamentally change the problem
formulation. This is in contrast to the grid-based approaches,
where such model structures could easily be accounted for by
adding different constraints to the cost function.

In this paper, we aim to combine the benefits of the off-grid
methods with the use of a cost function that easily allows for
adding structure to the signal of interest. To this effect, we will
expand on the PEBS formulation and introduce a method for
solving problems involving group sparsity with sparse groups
based on the super-resolution iterative reweighted (SURE-IR)
method [31]. We then proceed to adress both the computational
complexity issue as well as the appropriate choice of hyper-
parameters for the introduced estimator. Using both simulated
and real audio data, we illustrate the preferable performance of
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the introduced estimator, comparing to several earlier alterna-
tive formulations. For the real data case, we test the proposed
method using the Bach10 data set, containing 10 musical pieces
composed by Johann Sebastian Bach, showing that the proposed
method achieves similar performance as state-of-the-art music
transcription methods, although without the need of any training
data, as is typically utilized by such methods.

It should be noted that the proposed method is not limited to
audio problems, although this is here the main focus. Indeed,
due to the possibility of adding new constraints to the cost
function, the technique may likely be extended to find use in
other related fields, such studies of mechanical vibrations (see,
e.g., [32]–[35]).

II. SIGNAL MODEL AND EARLIER WORK

Consider the multi-pitch signal model1

y(n) =
K∑

k=1

Lk∑

�=1

αk,�e
2iπfk �tn + ε(n) (1)

where fk denotes the kth fundamental frequency (also de-
noted pitch), αk,� the complex amplitude corresponding to
the �th overtone of the kth fundamental frequency, tn , for
n = 1, . . . , N , the nth time point, and ε(n) any non-tonal audio
or noise component, here, for simplicity, being modelled as a
complex-valued white Gaussian noise (see also [36]). Often, the
problem of interest is that of estimating fk for k = 1, . . . ,K. If
this set is known, as well as the number of overtones for each
pitch, Lk , the corresponding amplitudes of the overtones may
be formed, for instance, using least squares (LS).

Typically, it is non-trivial to determine the required model
orders; for simplicity, we will initially consider the problem of
only estimating K sinusoids in noise. This corresponds to the
case where Lk = 1 for all k. To form an efficient estimator,
one may then include the model order estimation into the es-
timation of the frequencies, for instance by forming the sparse
optimization problem (see also [37])

minimize
z

||y − Az||22 + λ||z||1 (2)

where A is a dictionary matrix, z a vector containing the com-
plex amplitudes, λ is a hyperparameter that controls the amount
of sparsity in the solution, and

y =
[
y(1) . . . y(n)

]T
(3)

Usually, the dictionary, A, is an N ×M matrix containing
M � N signal candidates (in this case sinusoids). Thus,

A =
[
a1 . . . aM

]
(4)

where ak = [ e2iπfk t1 . . . e2iπfk tN ]T .
The first part of (2) is thus a data-fitting term, whereas the

second term is a sparsity enhancing term, penalizing the mag-
nitude of z, thus promoting a sparse solution, containing only a
few signal candidates. This methodology is widely used in sig-
nal processing and has been popular for many years (see, e.g.,

1For notational and computational simplicity, we here consider the discrete-
time analytic signal of the (real-valued) measured signal.

[19]). However, it has in recent times been argued that using a
pre-defined grid may cause the estimation to deteriorate, mainly
because of the fact that the true parameter value will typically
not exactly coincide with any of the grid points. Trying to in-
crease the grid size, in an effort to minimize the distance from
the grid points to the true values, may further harm the estima-
tion as the dictionary matrix then becomes more coherent. To
address this issue, a gridless method based on the use of the
atomic norm was proposed in [27]. Instead of solving a problem
based on a dictionary matrix, the authors proposed the gridless
formulation (for the noiseless case)

minimize
x,u

1
2
(x+ u1)

subject to

[
x yH

y T (u)

]
≥ 0 (5)

where T (u) forms a Hermitian Toeplitz matrix with the vector
u on its first row, and where u1 denotes the first element in
u. The corresponding frequencies are then obtained using a
Vandermonde decomposition of T (u∗), where u∗ denotes the
value of u at the solution of (5). The atomic norm enjoys many
benefits (for a more detailed discussion on the topic, see, e.g.,
[26]–[30]), but it is generally hard to generalize the method
to accommodate for other model restrictions, such as block
sparsity or, e.g., spectral smoothness [38]. As an alternative,
another gridless approach was suggested in [31], which was
based on the formulation of a non-convex optimization problem.
The proposed problem utilized a logarithmic penalty to enforce
sparsity, such that

minimize
z,θ

||y − A(θ)z||22 + λ

M∑

m=1

log
(|zm |2 + η

)
(6)

where η > 0 is a parameter ensuring that the function is not
evaluated at zero, and zm denotes the mth element of z. It
should be noted that the dictionary matrix is now parameterized
over the parameter vector θ, containing the sought fundamental
frequencies. Thus, instead of using a fixed grid, the grid points
are selected as to minimize the cost function in (6). Using a
logarithmic penalty will enhance the sparsity, but, at the same
time, render the problem non-convex. To solve the problem,
a majorization-minimization (MM) approach was proposed in
[31] and the optimization problem was reformulated using a
surrogate function, thus yielding a simplified version of the
original problem. This allows the problem to be solved using an
analytic solution of the amplitudes as a function of θ, such that

z∗(θ) =
(
AH (θ)A(θ) + λD(i)

)−1
AH (θ)y (7)

where

D(i) = diag

(
1

|z(i)
1 |2 + η

, . . . ,
1

|z(i)
M |2 + η

)
(8)

with z(i)
m denoting themth element of z at iteration i. Using this

closed-form solution, the frequencies may then be found using
a gradient descent method. The resulting algorithm starts with
an initial grid and then iteratively refines the grid points to find
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the correct solution. This results in a dynamic grid, where the
redundant grid points are removed, and the grid points closest to
the true solution are refined. The initial grid may here be much
coarser than the grid needed to solve (2) with a classic grid-
based solution. In the following, we will extend on the SURE-IR
algorithm to allow for the incorporation of block penalties, as
well as sparsity within each block, showing how the resulting
technique may be used to solve the multi-pitch problem.

III. PROPOSED METHOD

To take the harmonic structure in (1) into consideration and
generalize the above discussed SURE-IR algorithm, we need
to reformulate the problem so that it allows for a closed form
solution similar to (7). In order to do so, let A(θ) denote the
N ×M dictionary matrix with

A(θ) =
[
A1(θ1) . . . AG (θG )

]
(9)

Ag (θg ) = [a(θg ) a(2θg ) . . . a(Lgθg )] (10)

a(�θg ) =
[
ei2π�θg t1 . . . ei2π�θg tN

]T
/
√

(N) (11)

where θg denotes the fundamental frequency for the gth pitch-
group, for g = 1, . . . , G, with G denoting the number of con-
sidered groups, and M =

∑G
g=1 Lg , i.e., the total number of

frequencies considered in the initial grid. Note that by dividing
with

√
N , the columns of the matrix A(θ) are normalized. Us-

ing the logarithmic penalty for a group penalty, and at the same
time allowing for sparsity within the groups, one may consider
the cost function

minimize
z,θ

λ

G∑

g=1

Lg∑

�=1

log
(|zg,� |2 + η

)

+ μ

G∑

g=1

log
(||zg ||22 + η

)
/Lg + ||y − A(θ)z||22 (12)

where μ and λ are hyperparameters that govern the group spar-
sity and the overall sparsity, respectively, η > 0 are constants
ensuring that the functions are not evaluated over zero, and
where zg denotes the amplitudes related to group g in A. As ex-
pected, the problem in (12) is not convex and difficult to solve.
To allow for a closed form solution for z, the second term in
(12) is rewritten as

G∑

g=1

log(||zg ||22 + η)/Lg =
G∑

g=1

log(||Fgz||22 + η)/Lg (13)

where Fg is a
∑G

g=1 Lg ×
∑G

g=1 Lg diagonal matrix with ones
on the diagonal corresponding to group g, and zeros elsewhere.
Thus, Fgz is not equal to zg . However, their non-zero elements
are equal, and zg is a subvector in the resulting vector Fgz. To
solve (12), we then follow the same approach as in [31] and
use an MM approach. To do so, a surrogate function, Q(z|z(i)),
which is much simpler than the original function, is devised
such that it coincides with the original function at the current
point z(i) , and is greater than or equal to the original function
everywhere else. It can be shown that minimizing (or even just
decreasing) Q(z, z(i)) then yields a non-increasing updating

step in the original function, thus yielding a method of mini-
mizing the more complex function, using simpler functions. An
appropriate surrogate function to (12) may be selected as

ψ1(z|z(i)) =
G∑

g=1

L−1
g

( ||Fgz||22 + η

||Fgz(i) ||22 + η

+ log(||Fgz(i) ||22 + η) − 1
)

(14)

for the second term in (12) and

ψ2(z|z(i)) =
G∑

g=1

Lg∑

�=1

(
|zg,� |2 + η

|z(i)
g ,� |2 + η

+ log(|z(i)
g ,� |2 + η) − 1

)

(15)

for the first term, thus yielding

Q(z|z(i)) = μψ1(z|z(i)) + λψ2(z|z(i))

Removing terms that are independent of z and θ, the surrogate
cost function may be re-written as

minimize
z,θ

S(z,θ|z(i)) (16)

where

S(z,θ|z(i)) = λzHD(i)
0 z + μ

G∑

g=1

zHFH
g D

(i)
g Fgz/Lg

+ ||A(θ)z − y||22 (17)

with

D(i)
0 = diag

(
1

|z(i)
1 |2 + η

, . . . ,
1

|z(i)
M |2 + η

)
(18)

D(i)
g =

1
||Fgz(i) ||22 + η

, for g = 1, . . . , G (19)

Furthermore, let

H(i) =
G∑

g=1

FH
g D

(i)
g Fg /Lg (20)

Differentiating S(z,θ|z(i)) with respect to z, setting it equal to
zero, yields

∂S(z,θ|z(i))
∂z

= 0 ⇔ (21)

z(θ)∗=
(
λD(i)

0 + μH(i) + A(θ)HA(θ)
)−1

A(θ)Hy

(22)

Using (22), one may then find the θ that minimizes (16) by
searching for the best θ using, e.g., a steepest descent method,
by substituting (22) in (16), yielding

minimize
θ

S(z∗,θ|z(i))

= −yHA(θ)
(
λD(i)

0 + μH(i) + A(θ)HA(θ)
)−1

A(θ)Hy

(23)

Following the reasoning in [31], one may show that the
original cost function, Γ(θ, z), will be non-increasing when
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one decreases the surrogate function, thus showing that
Γ(θ(i+1) , z(i+1)) ≤ Γ(θ(i) , z(i)). This proof has been presented
in [31] for the problem in (6); the corresponding proof for the
here considered case follows directly, and is, in the interest of
brevity, thus omitted.

Interestingly, the minimization problem in (23) is very similar
to the one in [31]; the difference lies in the introduction ofμH(i) ,
which weights the different zg,� accordingly to the power of the
group they belong to. This indicates how easy it is to extend
the SURE-IR algorithm and allow for the modeling of other
structures in the signal. For instance, one may consider adding a
logarithmic version of the total variation penalty to (12), which
would then simply add another term in (23). This suggests that
the SURE-IR approach, in contrast to, e.g., atomic norm, can
allow for adding and subtracting different penalties and may
thus easily be extended to cover also other model structures.

For the gradient based search, one needs to compute the gradi-
ent of S(z∗,θ|z(i)) with respect to θ. The gradient for the single
sinusoid case was presented in [31] and the reader is referred
to that paper for the details. However, we note that, in contrast
to the single sinusoidal case, the derivative of one fundamental
frequency, ∂A(θ)/∂θ, is in the examined case operating on all
the elements of that pitch group; the derivative will thus be a
matrix instead of a vector for the here considered case. Thus the
direction, dg , for which the frequency for the pitch group g is
moving is

dg = −yH
(
T 1 + AGAH + TH

1
)
y (24)

where

T 1 =
∂A(θ)
∂θ

T 2A(θ)H (25)

with

T 2 =
(
λD0 + μH + A(θ)HA(θ)

)−1
(26)

and

G = −T 2

(
∂A(θ)
∂θ

H

A(θ) + A(θ)H
∂A(θ)
∂θ

)
T 2 (27)

When forming the gradient step, each harmonic is then multi-
plied with its corresponding harmonic order, i.e., �. Thus, the
updating becomes

θ(i+1)
g = θ(i)

g − αdg (28)

where α denotes the step length. The harmonics are then up-
dated accordingly by scaling the fundamental frequency with
the harmonic order �.

The algorithm starts by first selecting a grid of fundamen-
tal frequencies, and then adding the harmonics, thus forming
a grid containing G fundamental frequencies and M total grid
points (thereby including both the fundamental frequencies and
their respective harmonics). In pitch estimation, one has to pay
particular attention to the so-called halfling problem [15], [16].
This problem stems from the fact that the frequencies corre-
sponding to {f0 , 2f0 , . . . , L0f0} are also present in the group
corresponding to f0/2. This ambiguity results in that the algo-
rithms often prefer to choose the lower fundamental frequency.
A common solution to this problem is to include a total variation

penalty, which can easily be included in the proposed method.
However, we opt to overcome this problem by, similarly to [17],
instead penalize the amplitudes in each group with the power of
the group’s fundamental frequency such that the second penalty
term in (19) becomes

D(i)
g =

1

|z(i−1)
g ,1 | (||Fgz(i) ||22 + η

) , for g = 1, . . . , G (29)

where zg,1 denotes the amplitude corresponding to the funda-
mental frequency of group g. Thereby, if the amplitude of the
candidate fundamental frequency is zero, the other amplitudes
in that group will be heavily penalized; thus, if there is any com-
petition between f0 and f0/2 candidates, the method is more
likely to choose the higher fundamental frequency. This penalty
is not necessary after the algorithm has found some initial es-
timates of the groups, and may be removed after a couple of
iterations. Appropriately setting hyperparameters such as μ and
λ is often a difficult problem. In this work, we take a practical
stance to this problem. First, we observe that if the true θ were
known, one would solve (23) with μ = λ = 0. Thus, we should
expect the method to improve if we gradually decreased λ and
μ. To this end, we begin setting λ as in [31]. Then, after the first
pruning step, we decrease λ by half each iteration, thereby grad-
ually improving the estimates. Similar to the method introduced
in [31], the extended algorithm will also decrease η in each it-
eration. The choice of μ is more critical. A too small value of
μ will result in too many groups being involved in the solution,
and a too large value will suppress true groups and often result
in the method breaking down. If one is not able to find a suitable
value of μ, one may first run the algorithm by setting a large μ;
if the method breaks down, i.e., yields an empty set, the prob-
lem is simply resolved using a smaller value of μ, preferably
by decreasing the value by a factor 2. As noted above, it may
be beneficial to continue to decrease the value of μ through out
the iterations. This approach to selecting a good value of μ is
possible since with the pruning step, the computational com-
plexity is low, and it can be further decreased by warm-starting
the algorithm for each decrease of μ. As shown in the numerical
section, the proposed method is notably faster than the SURE-
IR algorithm when using a dictionary with the same number of
frequencies. This is primarily due to the fact that even though
the number of grid points are the same, the proposed method
only has the fundamental frequencies as variables; thus, when
calculating the gradient, and pruning the dictionary, these steps
become more efficient. The value of η is decreased with a factor
10 every time ||z(i) − z(i−1) ||22 < η. This rule is based on the
fact that when the methods starts to converge, η should play a
smaller part in (18) and (19). Furthermore, since the dictionary
is pruned, it means that as the method converges, a larger ratio
of the elements in z becomes non-zero. Thus, it is reasonable to
decrease η to achieve a smaller bias in the z estimates.

IV. IMPLEMENTATIONAL ASPECTS

The implementation of the proposed algorithm relies on three
steps in each iteration: solving (23) using a gradient-based min-
imization, evaluating z for the new value of θ using (22), and
removing redundant grid points. The last step is implemented to
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reduce the computational complexity by decreasing the size of
the matrices A(θ), D0 , and H. To speed up the calculations, one
may start pruning the dictionary after merely a few iterations.
This is done by removing all the groups and all the individual
frequencies in case their magnitudes are below a certain pre-
defined limit, say τ , which we in this paper has selected to be
τ = 0.05.

We coin the presented method the block super-resolution it-
eratively reweighted (BSURE-IR). Algorithm 1 summaries the
proposed method, wherein 0MG and 1MG denote an MG× 1
long vector of zeros and ones, respectively, ξ a predefined stop-
ping criteria, and k the number of restarts.

V. NUMERICAL EXAMPLES

In this section, we investigate the performance of the proposed
method and compare the results to other competing methods.
Throughout this section, we will evaluate the methods’ ability to
correctly estimate the frequencies by measuring the root-mean-
squared-error (RMSE), defined as

RMSE(θ̂) =

√√√√ 1
∑K

k=1 Lk

K∑

k=1

Lk∑

�=1

(θk,� − θ̂k ,�)2 (30)

where θk,� denotes the true parameter value, θ̂k ,� the estimated
value, and θ̂ the vector of parameters that are estimated. In the
following, we compare the methods’ RMSE as a function either
of the length of the signal,N , or the signal-to-noise-ratio (SNR),
defined as

SNR = 10 log
(
P

σ2

)
(31)

where P is the power of the noiseless signal and σ2 the vari-
ance of the noise. For each SNR level or signal length, the
presented results are found using 100 Monte-Carlo simulations.
In the first example, an N = 30 long uniformly sampled signal
with a single pitch was considered. The fundamental frequency
was uniformly drawn between [1/7, 1/3) for each Monte-Carlo
simulation and the number of harmonics were selected as � 1

f0
	

for each fundamental frequency, f0 , with �·	 denoting the floor
operator.

Four algorithms were considered; BSURE-IR, SURE-IR
[31], ANLS [9], and the PEBS algorithm [15]. The BSURE-IR
method was allowed an initial grid of 15 elements over the fun-
damental frequencies, ranging from [0.1, 0.3], and the number
of harmonics selected as � 1

f0
	, for each considered fundamen-

tal frequency, f0 , thus yielding a dictionary containing a total
of 77 spectral lines. The initial value of μ was set to 100. The
SURE-IR algorithm was also allowed a dictionary containing
77 elements, although these being unstructured. The ANLS was
allowed 28 grid points and was given the same range over the
fundamental frequency as BSURE-IR, as well as perfect model
order knowledge. The PEBS algorithm was given prior infor-
mation about where the fundamental frequency was positioned,
given as a range of ±0.02 around the true value. In this range,
PEBS was given 1000 grid points and the initial user parameters
were set to 5 and 30 for the parameter governing the �1 and the

Algorithm 1: The BSURE-IR estimator.
1: Input: A grid, θ, of size M over the considered

fundamental frequencies, λ = λ0 , μ = μ0 , ξ = ξ0 ,
η = 1, i = 1, k = 0, z(0) = 0MG, z(1) = 1MG, and
data vector y.

Output: The estimates of z(i) and θ(i) .
2: while ||z(i) − z(i−1) ||2 > ξ do
3: Form H(i) from (18), (19), and (20).
4: Update z(θ)(i) from (22).
5: Update θ(i) by taking a single step in (28).
6: Decrease λ, η, and μ, prune the dictionary and

remove all columns of A(θ) corresponding to
elements in z with |zg,� | < 0.05 and ||zg ||2 < 0.05.

7: Set i = i+ 1
8: If ||z||0 = 0, then set k = k + 1, μ = μ0/2k ,

z(0) = 0MG, z(1) = 1MG, and restart the iterations
with i = 1.

9: end while

Fig. 1. The RMSE of the frequency estimates, as defined in (30), as a function
of SNR, for uniformly sampled data.

�2 norms, respectively. Furthermore, for the PEBS algorithm,
only the largest peak was selected from the estimates, thus not
requiring the algorithm to make a correct model order, thereby
avoiding the problem of wrongly setting the hyperparameters.
This was not true for the other methods, where each wrong
model order estimate was recorded. The resulting RMSE may
be seen in Fig. 1, where it can be seen that the proposed method
outperforms the other methods for SNR-levels of 10 dB and
above. Interestingly, it can be seen that the grid-based methods
have similar performance to the BSURE-IR for low SNR levels,
whereas the two off-grid methods excel for higher SNR levels;
even SURE-IR, which does not take the harmonic structure in
consideration, actually outperforms the two grid-based methods
that actively exploits the harmonic structure. In this setting, the
BSURE-IR method failed to correctly estimate the model order
6 times for the lowest SNR level, but managed to correctly do
so for the other SNRs. The average run-times for the methods
were 3.0 seconds for BSURE-IR, 10.5 seconds for SURE-IR,
0.1 seconds for ANLS, and 4.7 for PEBS.



SWÄRD et al.: OFF-GRID FUNDAMENTAL FREQUENCY ESTIMATION 301

Fig. 2. The RMSE of the frequency estimates as a function of SNR for non-
uniformly sampled data.

Fig. 3. The RMSE of the frequency estimates as a function of the data
length, N .

Proceeding, we investigate how the performance is affected
by non-uniformly sampled data. This scenario is not as com-
mon for audio samples, but is so in many other areas. As ANLS
does not allow for this case, the algorithm is omitted from
comparison. Using the same settings as before, but now with
non-uniform sampled data with length N = 30 sampled from
60 measurements, the RMSE was measured for the methods.
Fig. 2 shows the result. As expected, BSURE-IR again outper-
forms the competing methods. Again, comparing SURE-IR with
PEBS, the latter seems to benefit from exploiting the harmonic
structure for lower SNR levels. However, when the SNR level
reaches 10 dB, the unstructured SURE-IR again outperforms
the PEBS algorithm. Here, BSURE-IR failed to determine the
correct model order 6 times for SNR 5 dB, but estimated it
correctly in the other cases. The run times in this setting were
2.5 seconds for BSURE-IR, 11.5 seconds for SURE-IR, and
18.5 seconds for PEBS.

In the third example, we investigate the performance as func-
tion of the length of the signal. Fig. 3 shows the results when
using the same settings as before, but with N ranging from 20
to 300 and with SNR fixed at 15 dB. Once again it may be seen

Fig. 4. The RMSE of the frequency estimates of a multi-pitch signal contain-
ing two pitches for non-uniformly sampled data.

that the purposed method outperforms the competing methods.
In this scenario, we had to remove 86 outliers for PEBS to make
the figure readable; 55 outliers for N = 20, 29 for N = 25,
and 2 for N = 30. BSURE-IR estimated the wrong model or-
der five times, once for N = 20, N = 100, and N = 300, and
twice forN = 200. The run times for the considered algorithms
were 2.3 seconds for BSURE-IR, 8.6 seconds for SURE-IR, and
14.2 seconds for PEBS.

In the fourth example, we look at the case were the signal con-
tains multiple pitches. Here, we consider a signal with length
N = 30, non-uniformly sampled and with two fundamental fre-
quencies set at 0.15π/3 and 0.26π/3. Fig. 4 shows the resulting
RMSE for all frequencies in both pitches. For the case when
the SNR level is 5 dB, BSURE-IR seems to have problem to
get the model order correct, and 41 times the estimated order
model was incorrect. This only happened 8 times for the other
SNR levels. For PEBS, 42 outliers were removed to make the
figure more readable. If disregarding the 5 dB case, one can
see that the BSURE-IR method outperforms the PEBS algo-
rithm for the multi-pitch case. Note that, again, PEBS is given
K a priori and is also zoomed in around the correct fundamental
frequencies. Also, PEBS are now allowed 1000 grid points for
each fundamental frequency. The run times for this examples
are 5.2 seconds for BSURE-IR and 84.3 seconds for PEBS. The
increase in run time for PEBS is mainly due to the increase in
grid size.

In the final example, we evaluate the performance of the
methods on the Bach10 dataset [39]. The data set contains ten
excerpts from chorals that were composed by Johann Sebas-
tian Bach. The instruments playing in the pieces are a violin,
a clarinet, a saxophone, and a bassoon, and the set contains
many sequences where the overtones overlaps. The resulting es-
timates are compared to ground truth fundamental frequencies,
obtained by applying the single pitch estimator YIN [40] to each
separate channel. Obvious errors in the ground truth were cor-
rected for manually. Each excerpt is about 25-42 seconds long.
Table I presents the performance measures accuracy, precision,
and recall, as defined in [41]. In Table I, the performance of
the BSURE-IR estimator is compared to four other multi-pitch
estimators, namely PEARLS [17], PEBS [15], PEBSI-Lite [16],
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TABLE I
PERFORMANCE MEASURES FOR THE BSURE-IR, PEARLS, PEBS,

PEBSI-LITE, BW15, AND ESACF ALGORITHMS, WHEN

EVALUATED ON THE BACH10 DATASET

Method Accuracy Precision Recall Pre-trained

BSURE-IR 0.47 0.71 0.58 No
PEARLS 0.44 0.68 0.54 No
PEBS 0.39 0.56 0.51 No
PEBSI-Lite 0.45 0.63 0.61 No
BW15 0.52 0.68 0.68 Yes
ESACF 0.27 0.47 0.39 No

Fig. 5. The resulting estimation of the fundamental frequencies (pitches) of
the Bach10 data set.

and ESACF [6], as well as a state-of-the-art music transcription
method [42], here denoted BW15 (after the surnames of the au-
thors and the year of publication). For BSURE-IR, the starting
value of μwas set to 1 and the number of initial fundamental fre-
quency grid-points 30, and the maximum allowedLwas set to 4.
PEARLS is a time-recursive multi-pitch estimator, with a dictio-
nary learning scheme that resembles a gridless method, but uses
a different cost function, and ESACF is a auto-correlation based
multi-pitch estimator. The BW15 method is a music transcrip-
tion algorithm that uses a probabilistic latent component analysis
to produce pitch estimates that are trained on databases of music
instruments. We choose to include this method into the compar-
ison to show the performance of a state-of-the-art method that
is pre-trained and specifically tailored for music transcription,
which is not the case for the other discussed methods. The set-
tings and results from ESACF and PEBSI-Lite were taken from
[16] and for PEARLS and BW15, the setting and results were
from [17]. The PEBS settings and results were obtained from
[18]. Fig. 5 shows the resulting BSURE-IR estimates of the
fundamental frequencies from an excerpt of J. S. Bach’s Ach,
Gott und Herr performed by a violin, a bassoon, a clarinet, and
a saxophone. As can be seen from the figure, BSURE-IR man-
ages to capture most of the fundamental frequencies without too
many false positives. Furthermore, from Table I, one may see
that the BSURE-IR method scores higher on both accuracy and
precision as compared to the other multi-pitch estimators, and
has somewhat even score for recall. Not surprisingly, BW15 at-
tains a higher score than BSURE-IR, except for precision, where
BSURE-IR attains a slightly higher score. However, it should

be stressed that BW15 has been trained on the instruments in-
cluded in the Bach10 data set, whereas BSURE-IR has not. We
note that, as for a future research topic, it would be interesting
to try to combine the probabilistic approach of BW15 and the
more robust BSURE-IR signal model approach.

VI. CONCLUSION

In this paper, we present a novel off-grid multi-pitch estima-
tor. By parameterizing the dictionary containing the candidate
pitches and solving a non-convex optimization problem using
a majorization-minimization approach, an iterative method is
derived. In each iteration, the dictionary is pruned which al-
lows for a decreased computational complexity. The method is
evaluated on both simulated and real data. In the real data case,
the proposed method is shown to yield similar performance as
a specialized music transcription algorithm that is pre-trained
on the instruments present in the signal. Furthermore, the pro-
posed method is benchmarked against other popular multi-pitch
estimates, showing the preferred performance of the proposed
method.
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SWÄRD et al.: OFF-GRID FUNDAMENTAL FREQUENCY ESTIMATION 303
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