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a b s t r a c t 

We consider the problem of robust compressed sensing where the objective is to recover a high- 

dimensional sparse signal from compressed measurements partially corrupted by outliers. A new sparse 

Bayesian learning method is developed for this purpose. The basic idea of the proposed method is to 

identify the outliers and exclude them from sparse signal recovery. To automatically identify the outliers, 

we employ a set of binary indicator variables to indicate which observations are outliers. These indica- 

tor variables are assigned a beta-Bernoulli hierarchical prior such that their values are confined to be 

binary. In addition, a Gaussian-inverse Gamma prior is imposed on the sparse signal to promote sparsity. 

Based on this hierarchical prior model, we develop a variational Bayesian method to estimate the indica- 

tor variables as well as the sparse signal. Simulation results show that the proposed method achieves a 

substantial performance improvement over existing robust compressed sensing techniques. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Compressed sensing, a new paradigm for data acquisition and

reconstruction, has drawn much attention over the past few years

[1–3] . The main purpose of compressed sensing is to recover

a high-dimensional sparse signal from a low-dimensional linear

measurement vector. In practice, measurements are inevitably con-

taminated by noise due to hardware imperfections, quantization

errors, or transmission errors. Most existing studies (e.g. [4–6] ) as-

sume that measurements are corrupted with noise that is evenly

distributed across the observations, such as independent and iden-

tically distributed (i.i.d.) Gaussian, thermal, or quantization noise.

This assumption is valid for many cases. Nevertheless, for some

scenarios, measurements may be corrupted by outliers that are sig-

nificantly different from their nominal values. For example, during

the data acquisition process, outliers can be caused by sensor fail-

ures or calibration errors [7,8] , and it is usually unknown which

measurements have been corrupted. Outliers can also arise as a

result of signal clipping/saturation or impulse noise [9,10] . Con-
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under Grant 61522104 and Grant U1530154 , and the National Science Foundation 

nder Grant ECCS-1408182 and Grant ECCS-1609393 . 
∗ Corresponding author. 

E-mail addresses: 201611260117@std.uestc.edu.cn (Q. Wan),

huipingduan@uestc.edu.cn (H. Duan), JunFang@uestc.edu.cn ,

aquarius.fang@gmail.com (J. Fang), Hongbin.Li@stevens.edu (H. Li). 

 

p  

v  

t  

t  

b  

s  

fi  

http://dx.doi.org/10.1016/j.sigpro.2017.05.017 

0165-1684/© 2017 Elsevier B.V. All rights reserved. 
entional compressed sensing techniques may incur severe per-

ormance degradation in the presence of outliers. To address this

ssue, in previous works (e.g. [7–10] ), outliers are modeled as a

parse error vector, and the observed data are expressed as 

 = Ax + s + w (1)

here A ∈ R 

M×N is the sampling matrix with M � N , x denotes

n N -dimensional sparse vector with only K nonzero coefficients,

 ∈ R 

M denotes the outlier vector consisting of T � M nonzero en-

ries with arbitrary amplitudes, and w denotes the additive mul-

ivariate Gaussian noise with zero mean and covariance matrix

1/ γ ) I . The above model can be formulated as a conventional com-

ressed sensing problem as 

 = 

[
A I 

][x 
s 

]
+ w � Bu + w (2)

fficient compressed sensing algorithms can then be employed to

stimate the sparse signal as well as the outliers. Recovery guaran-

ees of x and e were also analyzed in [7–10] . 

The rationale behind the above approach is to detect and com-

ensate for these outliers simultaneously. In this paper, we de-

elop a new approach which automatically identifies and excludes

he outliers from sparse signal recovery. To our best knowledge,

his identify-and-reject approach is originally introduced for ro-

ust compressed sensing. It was brought to our attention that a

imilar idea of excluding the impulsive samples from the adaptive

lter is used in [11] . Although it may seem preferable to com-
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Fig. 1. Graphical model for robust Bayesian compressed sensing. 
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ensate rather than simply reject outliers, inaccurate estimation

f the compensation (i.e. outlier vector) could result in a destruc-

ive effect on sparse signal recovery, particularly when the number

f measurements is limited. In this case, identifying and rejecting

utliers could be a more sensible strategy. Also, to see the potential

f the identify-and-reject approach, consider an ideal case where

ll outlier-corrupted measurements are correctly identified and re-

oved, in which case the problem is simplified as 

¯ = Ā x + w̄ (3) 

here Ā ∈ R 

(M−T ) ×N is obtained by removing the outlier-corrupted

ows from A . Based on compressed sensing theories [12] , it can

e verified that, in order to attain a same recovery probability,

he data model (3) requires a smaller number of measurements

han that needed by (2) . This result shows that the identify-and-

eject approach has the potential to outperform the compensa-

ion approach, particularly when outliers can be perfectly or near-

erfectly identified. 

Motivated by the identify-and-reject idea, we develop a

ayesian framework for robust compressed sensing, in which a set

f binary indicator variables are employed to indicate which obser-

ations are outliers. These variables are assigned a beta-Bernoulli

ierarchical prior such that their values are confined to be binary.

lso, a Gaussian inverse-Gamma prior is placed on the sparse sig-

al to promote sparsity. A variational Bayesian method is devel-

ped to find the approximate posterior distributions of the in-

icators, the sparse signal and other latent variables. Note that

ayesian methods, as an important class of compressed sensing

echniques, have received significant attention over the past few

ears, e.g. [13–15] . 

The rest of this paper is organized as follows. In Section 2 , we

ntroduce our proposed hierarchical prior model for robust com-

ressed sensing. An variational Bayesian method is developed in

ection 3 to learn the indicator hyper-parameters as well as the

parse signal. Simulation results are provided in Section 4 , followed

y the concluding remarks in Section 5 . 

. Hierarchical prior model 

We develop a Bayesian framework which employs a set of indi-

ator variables z � { z m 

} to indicate which observation is an outlier,

.e. z m 

= 1 indicates that y m 

is a normal observation; otherwise y m 

s an outlier. More precisely, we can write 

 m 

= 

{
a 

r 
m 

x + w m 

z m 

= 1 

a 

r 
m 

x + w m 

+ s m 

z m 

= 0 

(4) 

here a 

r 
m 

denotes the m th row of A , s m 

and w m 

are the m th en-

ry of s and w , respectively. The probability of the observed data

onditional on these indicator variables can be expressed as 

p(y| x , z, γ ) = 

M ∏ 

m =1 

(N (y m 

| a 

r 
m 

x , 1 /γ )) z m (5) 

rom (5) , we can see that if the indicator variable z m 

is set to zero,

hen the factorization term (N (y m 

| a 

r 
m 

x , 1 /γ )) z m is equal to one,

hich implies that the observation y m 

is excluded from the proba-

ility calculation. Eq. (5) can also be deemed as a likelihood func-

ion of x . It is therefore natural to discard those outliers and only

eep the normal observations. Here N (x | μ, σ 2 ) denotes a Gaussian

istribution with mean μ and variance σ 2 . To infer the indicator

ariables, a beta-Bernoulli hierarchical prior [16,17] is placed on z ,

.e. each component of z is assumed to be drawn from a Bernoulli

istribution parameterized by πm 

p(z m 

| πm 

) = Bernoulli (z m 

| πm 

) = π z m 
m 

(1 − πm 

) 1 −z m ∀ m (6) 
K  
nd πm 

follows a beta distribution 

p(πm 

) = Beta (e, f ) ∀ m (7) 

here Beta( e, f ) denotes the beta distribution, and e and f are pa-

ameters characterizing the beta distribution. Note that the beta-

ernoulli prior assumes the random variables { z m 

} are mutually

ndependent, and so are the random variables { πm 

}. 

To encourage a sparse solution, a Gaussian-inverse Gamma hi-

rarchical prior, which has been widely used in sparse Bayesian

earning (e.g. [18–21] ), is employed. Specifically, in the first layer, x

s assigned a Gaussian prior distribution 

p(x | α) = 

N ∏ 

n =1 

p(x n | αn ) (8) 

here p(x n | αn ) = N (x n | 0 , α−1 
n ) , and α� { αn } are non-negative hy-

erparameters controlling the sparsity of the signal x . The second

ayer specifies Gamma distributions as hyperpriors over the preci-

ion parameters { αn }, i.e. 

p(α) = 

N ∏ 

n =1 

Gamma (αn | a, b) = 

N ∏ 

n =1 

�(a ) −1 b a αa −1 
n e −bαn (9) 

here Gamma( αn | a, b ) denotes the Gamma distribution, �(a ) =
 ∞ 

0 t a −1 e −t dt is the Gamma function, and the parameters a and b

re set to small values (e.g. a = b = 10 −10 ) in order to provide non-

nformative (over a logarithmic scale) hyperpriors over { αn }. Also,

o estimate the noise variance, we place a Gamma hyperprior over

, i.e. 

p(γ ) = Gamma (γ | c, d) = �(c) −1 d c γ c−1 e −dγ (10) 

here the parameters c and d are set to be small, e.g. c = d =
0 −10 . The graphical model of the proposed hierarchical prior is

hown in Fig. 1 . 

. Variational Bayesian inference 

Based on the hierarchical prior model, we now develop a vari-

tional Bayesian method [22] for robust compressed sensing. Let

� { z , x , π, α, γ } denote the hidden variables in our hierarchical

odel. Our objective is to find the posterior distribution p ( θ| y ),

hich is usually computationally intractable. To circumvent this

ifficulty, observe that the marginal probability of the observed

ata can be decomposed into two terms 

n p(y) = L (q ) + KL (q || p) (11) 

here 

 (q ) = 

∫ 
q (θ) ln 

p(y, θ) 

q (θ) 
dθ (12) 

nd 

L (q || p) = −
∫ 

q (θ) ln 

p(θ| y) 

q (θ) 
dθ (13) 

here q ( θ) is any probability density function, KL( q || p ) is the

ullback–Leibler divergence between p ( θ| y ) and q ( θ). Since KL( q || p )



106 Q. Wan et al. / Signal Processing 140 (2017) 104–109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

≥ 0, it follows that L ( q ) is a rigorous lower bound on ln p ( y ). More-

over, notice that the left hand side of (11) is independent of q ( θ).

Therefore maximizing L ( q ) is equivalent to minimizing KL( q || p ), and

thus the posterior distribution p ( θ| y ) can be approximated by q ( θ)

through maximizing L ( q ). Specifically, we could assume some spe-

cific parameterized functional form for q ( θ) and then maximize

L ( q ) with respect to the parameters of the distribution. A partic-

ular form of q ( θ) that has been widely used with great success is

the factorized form over the component variables in θ [22] . For our

case, the factorized form of q ( θ) can be written as 

q (θ) = q z (z) q x (x ) q α(α) q π (π) q γ (γ ) (14)

We can compute the posterior distribution approximation by find-

ing q ( θ) of the factorized form that maximizes the lower bound

L ( q ). The maximization can be conducted in an alternating fashion

for each latent variable, which leads to [22] 

ln q x (x ) = 〈 ln p(y, θ) 〉 q α (α) q γ (γ ) q z (z) q π (π) + constant 

ln q α(α) = 〈 ln p(y, θ) 〉 q x (x ) q γ (γ ) q z (z) q π (π) + constant 

ln q γ (γ ) = 〈 ln p(y, θ) 〉 q x (x ) q α (α) q z (z) q π (π) + constant 

ln q z (z) = 〈 ln p(y, θ) 〉 q x (x ) q α (α) q γ (γ ) q π (π) + constant 

ln q π (π) = 〈 ln p(y, θ) 〉 q x (x ) q α (α) q γ (γ ) q z (z) + constant 

(15)

where 〈·〉 · denotes an expectation with respect to the distributions

specified in the subscript. More details of the Bayesian inference

are provided below. 

1) Update of q x ( x ): We first consider the calculation of q x ( x ).

Keeping those terms that are dependent on x , we have 

ln q x (x ) ∝ 〈 ln p(y| x , z, γ ) + ln p(x | α) 〉 q α (α) q γ (γ ) q z (z) 

∝ −
M ∑ 

m =1 

〈 γ z m 

(y m 

− a 

r 
m 

x ) 2 〉 
2 

− 1 

2 

N ∑ 

n 

〈 αn x 
2 
n 〉 

= − 〈 γ 〉 (y − Ax ) T D z (y − Ax ) 

2 

− 1 

2 

x T D αx (16)

where 

D z � diag (〈 z〉 ) , D α � diag (〈 α〉 ) (17)

〈 z 〉 and 〈 α〉 denote the expectation of z and α, respectively. It

is easy to show that q ( x ) follows a Gaussian distribution with

its mean and covariance matrix given respectively by 

μx = 〈 γ 〉 �x A 

T D z y (18)

�x = 

(〈 γ 〉 A 

T D z A + D α

)−1 
(19)

2) Update of q α( α): Keeping only the terms that depend on α, the

variational optimization of q α( α) yields 

ln q α(α) ∝ 〈 ln p(x | α) + ln p(α| a, b) 〉 q x (x ) 

= 

N ∑ 

n =1 

(a + 0 . 5) ln αn − (0 . 5 

〈
x 2 n 

〉
+ b) αn (20)

The posterior q α( α) therefore follows a Gamma distribution 

q α(α) = 

N ∏ 

n =1 

Gamma (αn | ̃  a , ̃  b n ) (21)

in which ˜ a and 

˜ b n are given respectively as 

˜ a = a + 0 . 5 

˜ 2 
b n = b + 0 . 5 〈 x n 〉 
3) Update of q γ ( γ ): The variational approximation of q γ ( γ ) can

be obtained as: 

ln q γ (γ ) ∝ 〈 ln p(y| x , z, γ ) + ln p(γ | c, d) 〉 q x (x ) q z (z) 

∝ 

M ∑ 

m =1 

(
0 . 5 〈 z m 

〉 ln γ − 0 . 5 γ 〈 z m 

〉〈 (y m 

− a 

r 
m 

x ) 2 〉 )

+ (c − 1) ln γ − dγ

= (c + 0 . 5 

M ∑ 

m =1 

〈 z m 

〉 − 1) ln γ − (d + 0 . 5 〈 (y − Ax ) T 

D z (y − Ax ) 〉 ) γ (22)

Clearly, the posterior q γ ( γ ) obeys a Gamma distribution 

q γ (γ ) = Gamma (γ | ̃  c , ˜ d ) (23)

where ˜ c and 

˜ d are given respectively as 

˜ c = c + 0 . 5 

M ∑ 

m =1 

〈 z m 

〉 (24)

˜ d = d + 0 . 5 〈 (y − Ax ) T D z (y − Ax ) 〉 q x (x ) (25)

in which 

〈 (y − Ax ) T D z (y − Ax ) 〉 q x (x ) 

= (y − Aμx ) 
T D z (y − Aμx ) + trace (A 

T D z A �x ) 

4) Update of q z ( z ): The posterior approximation of q z ( z ) yields 

ln q z (z) ∝ 〈 ln p(y| x , z, γ ) + ln p(z| π) 〉 q x (x ) q γ (γ ) q π (π) 

∝ 

M ∑ 

m =1 

〈 z m 

(
−0 . 5 γ (y m 

− a 

r 
m 

x ) 2 + ln πm 

)

+ (1 − z m 

) ln (1 − πm 

) 〉 (26)

Clearly, z m 

still follows a Bernoulli distribution with its proba-

bility given by 

P (z m 

= 1) = Ce 〈 ln πm 〉 e −
γ 〈 (y m −a r m x ) 

2 〉 
2 (27)

P (z m 

= 0) = Ce 〈 ln (1 −πm ) 〉 (28)

where C is a normalizing constant such that P (z m 

= 1) + P (z m 

=
0) = 1 , and 

〈 (y m 

− a 

r 
m 

x ) 2 〉 = (y m 

− a 

r 
m 

μx ) 
2 + a 

r 
m 

�x a 

r 
m 

T 

〈 ln πm 

〉 = �(e + 〈 z m 

〉 ) − �(e + f + 1) 

〈 ln (1 − πm 

) 〉 = �(1 + f − 〈 z m 

〉 ) − �(e + f + 1) (29)

The last two equalities can also be found in [17] , in which �( ·)
represents the digamma function. 

5) Update of q π ( π): The posterior approximation of q π ( π) can be

calculated as 

ln q π (π) ∝ 〈 ln p(z| π) + ln p(π| e, f ) 〉 q z (z) 

∝ 

M ∑ 

m =1 

〈 z m 

ln πm 

+ (1 − z m 

) ln (1 − πm 

) + (e − 1) ln πm 

+ ( f − 1) ln (1 − πm 

) 〉 

= 

M ∑ 

m =1 

〈 (z m 

+ e − 1) ln πm 

+ ( f − z m 

) ln (1 − πm 

) 〉 
(30)

It can be easily verified that q π ( π) follows a Beta distribution,

i.e. 

q π (π) = 

∏ 

p(πm 

) = 

∏ 

Beta (〈 z m 

〉 + e, 1 + f − 〈 z m 

〉 ) (31)

m m 
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5

In summary, the variational Bayesian inference involves updates

f the approximate posterior distributions for hidden variables x ,

, z , π, and γ in an alternating fashion. Some of the expectations

nd moments used during the update are summarized as 

 αn 〉 = 

˜ a 

˜ b n 
(32) 

 γ 〉 = 

˜ c 

˜ d 
(33) 

 x 2 n 〉 = 〈 x n 〉 2 + �x (n, n ) (34) 

 z m 

〉 = 

P (z m 

= 1) 

P (z m 

= 1) + P (z m 

= 0) 
(35) 

here �x ( n, n ) denotes the n th diagonal element of �x . 

emark. We discuss the computational complexity of our pro-

osed method and the compensation approach. The main com-

utational complexity of our proposed method involves comput-

ng an inverse of an N × N matrix (cf. (19) ), which has the com-

utational complexity of order O ( N 

3 ). For the compensation-based

ethod (2) , it has a computational complexity of order O ((M +
) 3 ) . Therefore, our proposed approach has an advantage over the

ompensation-based method in terms of computational complex-

ty. 

For clarity, we summarize our algorithm as follows. 

BP-RBCS Algorithm 

Input : Observed data y, measurement matrix A 

1 . Given initial estimates α, γ and parameter a, b, c, d, e and f

2 . At iteration t = 0 , 1 , . . . : 

Update the estimate ˆ x (t) according to (18) ; 

Update the hyperparameters α and γ according 

to (32) and (33) , respectively; 

Update the indicators z according to (35) . 

3 . Continue the above iteration until ‖ ̂ x (t+1) − ˆ x (t) ‖ 2 ≤ ε, where ε is a prescribed 

tolerance value. 

Output : Recovered signal ˆ x (t) . 

. Simulation results 

We now carry out experiments to illustrate the performance of

ur proposed method which is referred to as the beta-Bernoulli

rior model-based robust Bayesian compressed sensing method

BP-RBCS) 1 . As discussed earlier, another robust compressed sens-

ng approach is compensation-based and can be formulated as

 conventional compressed sensing problem (2) . For comparison,

he sparse Bayesian learning method [18,23] is employed to solve

2) , and this method is referred to as the compensation-based ro-

ust Bayesian compressed sensing method (C-RBCS). The SL0 2 al-

orithm which has demonstrated superior performance is also in-

luded and employed to solve (2) in our experiments. Also, we

onsider an “ideal” method which assumes the knowledge of the

ocations of the outliers. The outliers are then removed and the

parse Bayeisan learning method is employed to recover the sparse

ignal. This ideal method is referred to as RBCS-ideal, and serves as

 benchmark for the performance of the BP-RBCS and C-RBCS. Note

hat both C-RBCS and RBCS-ideal use the sparse Bayesian learning

ethod for sparse signal recovery. The parameters { a, b, c, d } of the

parse Bayesian learning method are set to a = b = c = d = 10 −10 .

ur proposed method involves the parameters { a, b, c, d, e, f }. The
1 Codes are available at http://www.junfang-uestc.net/codes/RBCS.rar . 
2 Codes are available at http://ee.sharif.edu/ ∼SLzero/ . 

 

s  

t  
rst four are also set to a = b = c = d = 10 −10 . The beta-Bernoulli

arameters { e, f } are set to e = 0 . 7 and f = 1 − e = 0 . 3 since we

xpect that the number of outliers is usually small relative to the

otal number of measurements. Our simulation results suggest that

table recovery is ensured as long as e is set to a value in the range

0.5, 1]. 

We first examine the performance of respective algorithms for

andom measurement matrices A ∈ R 

M×N with i.i.d Gaussian en-

ries. The K nonzero entries of the sparse signal x ∈ R 

N are drawn

rom a Gaussian distribution N (0 , 1) . We consider a noiseless case.

uppose that T out of M measurements are corrupted by outliers.

or those corrupted measurements { y m 

}, their values are chosen

niformly from [ −10 , 10] . Fig. 2 depicts the success rates of dif-

erent methods vs. the number of measurements and the num-

er of outliers, respectively, where we set N = 64 , K = 2 , T = 10 in

ig. 2 (a), and M = 25 , K = 2 , N = 64 in Fig. 2 (b). The success rate

s computed as the ratio of the number of successful trials to the

otal number of independent runs. A trial is considered successful

f the normalized reconstruction error of the sparse signal x is no

reater than 10 −6 . Results are averaged over 10 3 independent runs.

rom Fig. 2 , we see that our proposed BP-RBCS presents a clear

erformance advantage over the C-RBCS and the SL0. 

Next, we consider the problem of direction-of-arrival (DOA) es-

imation where K narrowband far-field sources impinge on a uni-

orm linear array of M sensors from different directions. The re-

eived signal can be expressed as 

 = Ax + w 

here w denotes i.i.d. Gaussian observation noise with zero mean

nd variance 1/ γ , A ∈ C 

M×N is an overcomplete dictionary con-

tructed by evenly-spaced angular points { θn }, with the ( m, n )th

ntry of A given by a m,n = exp { −2 jπ(m − 1) sin (θn ) D/λ} , in which

 denotes the distance between two adjacent sensors, λ represents

he wavelength of the source signal, and { θn } are evenly-spaced

rid points in the interval [ −π/ 2 , π/ 2] . The signal x contains K

onzero entries that are independently drawn from a unit circle.

he values of measurements corrupted with outliers are chosen

niformly from [ −10 , 10] . The SL0 method is not included in or-

er to better show the visual difference between the proposed

P-RBCS and the C-RBCS. We first consider a noiseless case, i.e.

 /γ = 0 . Fig. 3 depicts the success rates of different methods vs.

he number of measurements and the number of outliers, respec-

ively, where we set N = 64 , K = 3 , T = 7 in Fig. 3 (a), and M =
5 , K = 3 , N = 64 in Fig. 3 (b). From Fig. 3 , we see that our pro-

osed BP-RBCS achieves a substantial performance improvement

ver the C-RBCS. This result corroborates our claim that rejecting

utliers is a better strategy than compensating for outliers, par-

icularly when the number of measurements is limited. Next, we

onsider a noisy case with 1 /γ = 0 . 01 . Fig. 4 plots the normalized

ean square errors (NMSEs) of different methods vs. the number

f measurements and the number of outliers, respectively, we set

 = 64 , K = 3 , T = 7 in Fig. 4 (a), and M = 25 , K = 3 , N = 64 in Fig.

 (b). The 95% confidence intervals for the NMSEs are also shown

n Fig. 4 , where the vertical line segments represent the confi-

ence intervals surrounding the means. This result, again, demon-

trates the superiority of our proposed method over the C-RBCS.

e show in Table 1 the average computing time of the BP-RBCS

nd the C-RBCS, respectively, where we set K = 3 , T = 7 . We see

hat our proposed BP-RBCS is more computationally efficient than

he compensation-based method. 

. Conclusions 

We proposed a new Bayesian method for robust compressed

ensing. The rationale behind the proposed method is to iden-

ify the outliers and exclude them from sparse signal recovery. To

http://www.junfang-uestc.net/codes/RBCS.rar
http://ee.sharif.edu/~SLzero/
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Fig. 2. (a) Success rates of respective algorithms vs. M ; (b). Success rates of respective algorithms vs. T . 

Fig. 3. DOA estimation (a) Success rates of respective algorithms vs. M ; (b). Success rates of respective algorithms vs. T . 

Fig. 4. DOA estimation (a) NMSEs of respective algorithms vs. M ; (b). NMSEs of respective algorithms vs. T . 
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Table 1 

Average computing time of algorithms BP-RBCS and C-RBCS. 

Standard deviation Algorithm M × N Runtime(s) 

σ = 0 C-RBCS 25 × 64 0.39 

C-RBCS 45 × 64 0.21 

BP-RBCS 25 × 64 0.18 

BP-RBCS 45 × 64 0.09 

σ = 0 . 1 C-RBCS 25 × 64 1.56 

C-RBCS 45 × 64 2.32 

BP-RBCS 25 × 64 1.23 

BP-RBCS 45 × 64 1.39 
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[  
his objective, a set of indicator variables were employed to indi-

ate which observations are outliers. A beta-Bernoulli prior is as-

igned to these indicator variables. A variational Bayesian inference

ethod was developed to find the approximate posterior distri-

utions of the latent variables. Simulation results show that our

roposed method achieves a substantial performance improvement

ver the compensation-based robust compressed sensing method. 
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