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Detection With Target-Induced Subspace Interference
Pu Wang, Jun Fang, Hongbin Li, and Braham Himed

Abstract—In this letter, we consider the detection of a multi-
channel signal with an unknown amplitude in colored noise, when
there is a covariance mismatch between the null and alternative
hypotheses. Specifically, the covariance mismatch is caused by a
target-induced subspace interference that is present only under the
alternative hypothesis. According to the signal model, we propose a
detector involving the following steps. The observation is first pro-
jected to the orthogonal complement of the signal to be detected,
followed by a second projection to the interference subspace. Then,
the energy of the doubly projected signal (residual) is computed. If
the residual energy is small, the proposed detector reduces to the
standard matched filter (MF), which ignores the subspace inter-
ference; otherwise, a modified test statistic is employed for addi-
tional interference cancellation. Simulation results are presented
to demonstrate the effectiveness of the proposed detector.

Index Terms—Adaptive detection, hypothesis test, subspace in-
terference.

I. INTRODUCTION

D ETECTION of a deterministic multichannel signal
known up to an unknown (complex) scaling factor in

the presence of a colored noise is a fundamental problem in
many applications, including wireless communications, seismic
analysis, sonar and radar [1]. Given an 1 complex output
vector from spatial and/or temporal sampling, the problem of
interest involves a binary composite hypothesis testing [2]–[6]:

(1)

where is the known steering vector, is an unknown
complex-valued amplitude, is a complex Gaussian noise with
zero-mean and covariance matrix , i.e., .
If is known, the generalized likelihood ratio test (GLRT)

turns out to be the conventional matched filter (MF) [5]:

(2)

If has a subspace structure, i.e., [2],
[3], where the interference subspace is spanned by the columns
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of , , and is the variance of the thermal
noise, the GLRT turns out to be the decorrelated matched sub-
space detector [3, Case B, eq. (9)]. If is unknown, training
signals , , with the same covariance matrix ,
are adaptively used to estimate the covariance matrix . The
classical Kelly’s GLRT [4] and adaptive matched filter (AMF)
[5] are solutions in this category. If has a subspace structure
for adaptive detection, the maximum invariant framework can
be applied [6].
We consider here a different scenario where the target in-

curs an additional subspace interference under the alternative
hypothesis, which is absent from the null hypothesis. Mathe-
matically, we have

(3)

where denotes a noise under which may
collectively account for the thermal noise, clutter, and jamming
signals, while denotes the noise
under which, in addition to , includes a target-induced
subspace interference. Alternatively, is statistically equiv-
alent to , where the target-induced interfer-
ence subspace matrix is assumed to be known and

is complex Gaussian distributed with zero mean and
unknown covariance matrix , i.e., . We further
assume that the range spaces of and are linearly indepen-
dent. A related work on the covariance mismatch between the
two hypotheses is [7], which considers a noise power mismatch,
i.e., and . In this letter, we
consider a subspace model for the target-induced interference,
which is different from the model used in [7].
We have several reasons to consider the subspace model of

target-induced interference. One example is wireless commu-
nications in dense multipath (urban or indoor) environments,
where in addition to the line-of-sight (LOS) signal component,
there may exist a large number of multipath components ar-
riving from different directions at different time delays. The
LOS component is relatively strong and can be treated as a de-
terministic signal, whereas the target-induced multipath com-
ponents consisting of many randomly attenuated and delayed
copies of the LOS target signal are often considered to be sto-
chastic. Such disturbance can be described using a properly se-
lected subspace with unknown coordinates . Meanwhile, the
covariance matrix in this case may include other sources
of disturbances (inter-cell interference, thermal noise, and jam-
ming signals). Another example is the multiple-input multiple
output (MIMO) radar which usually assumes the transmitters
transmit orthogonal probing waveforms with zero cross-corre-
lation. As recently shown in [8], such ideal waveform separa-
tion is impossible across all Doppler frequencies and time de-
lays. Hence, target-induced residuals due to non-ideal waveform
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separations cannot be ignored. Since these target residuals only
appear when a target is present (the alternative hypothesis), our
subspace model of target-induced interference provides an ef-
fective way to represent such target residuals.
The purpose of this letter is to develop a detection scheme for

the binary hypothesis testing problem in (3).

II. PROPOSED DETECTOR

First, a pre-whitening process converts (3) to

(4)

where and . It is seen that the un-
known parameters, i.e, the nuisance parameter and the signal
parameter , are both within the alternative hypothesis. Subse-
quently, we apply the principle of GLRT and the detector takes
the form of

(5)

where and are, respectively, the likelihood
functions under both hypotheses:

(6)

with a positive definite matrix .

A. Likelihood Function Under the Alternative Hypothesis

In the following, we compute and for

the likelihood function under . Let
, where

(7)

Denote its eigenvalue decomposition (EVD) as ,
with being a unitary matrix and a diagonal matrix. We have

(8)

where

(9)

is an matrix with orthonormal columns. Hence

(10)

It follows that

(11)

where the projection matrix is independent of since

(12)

The determinant of is

(13)

where is the -th diagonal element of . Let
and denote as its -th element.

As a result, the negative log-likelihood function under is

(14)

Hence, the estimate of can be determined from the estimates
of (viz. of (9)) and the diagonal matrix .

B. Estimation of (viz and ) and

For a given , the cost function is

(15)
Taking the derivative of the above cost function with respect to
and equating it to zero yield the ML estimate of

(16)

Substituting , into the cost
function (15), we have

(17)

Recognizing that the last term

where , is not a function of , the cost function
reduces to

(18)

where denotes the first
elements of . Similarly, the energy of , denoted as :

(19)

is not a function of . Subsequently, the optimization can pro-
ceed as follows according to the value of .
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• : This means that , . The cost
function (18) reduces to

(20)

Since is not a function of , the estimate of is

(21)

where is an arbitrary unitary matrix. Then, under this
condition, the cost function (17) reduces to

(22)

and the amplitude can be estimated as

(23)

• : Under this condition, the estimate of has one
column given by (without loss of generality, we assume
the first column)

(24)

and the remaining columns are orthonormal to .
It follows and (18) reduces to

(25)

In Appendix, we prove that the minimized cost function of (18)
is (25), which is obtained by of (24). With (18) reducing to
(25), the cost function (17) becomes

(26)

as a function of . The minimizer of (26) (found via searching)
gives the estimate of , denoted as , when .
Remark: The above estimates of and are obtained on a

condition on of (19) which is a function of and hence cannot
be checked. To address this issue, we can use an estimate of
along with some estimate of . For simplicity, we use of (23)
in (19):

(27)

with . Now (27) provides a way to check
which pair of estimates, versus , should be
used. Clearly, this is an ad hoc procedure, although numerical
results show it works well.

C. Proposed Detector

Replacing the above estimates in likelihood function (14)
under and with the likelihood function (6) under , the
proposed detector of (5) becomes

if
if

(28)

where is given by (27): and
. It is easy to show that and

can be expressed in terms of and :

(29)

and , where coincides
with the conventional MF. It is noted that the quantity rep-
resents the energy of the observed signal after double projec-
tion into 1) the orthogonal complement of the whitened steering
vector (via or ) and 2) the whitened interference
subspace (via ). It is seen that the proposed
detector uses a two-step procedure: 1) compute the quantity
from the observation and compare it with the integer 1 (note
that 1 is the energy of the whitened noise under ); 2) if ,
a conventional matched filter is used; otherwise, the modi-
fied detector is used.

III. PERFORMANCE EVALUATION

In this section, simulation results are provided to demon-
strate the performance of the proposed detector (28). We com-
pare it with 1) the clairvoyant MF (denoted as MF1) which
takes into account the covariance mismatch and also has knowl-
edge of the subspace covariance matrix ; and 2) the conven-
tional MF of (2) (denoted as MF2) which does not take into
account the covariance mismatch between and . It is ex-
pected that the MF1, albeit practically inapplicable, gives a per-
formance benchmark or upperbound on the proposed detector
and the MF2. In all simulation examples, we consider the case
where and the steering vector is given by the Fourier
basis vector with

, i.e., . The signal-to-noise ratio
(SNR) is defined as

(30)

where the noise covariance matrix is chosen as
, with . The target-induced subspace interference

with is generated by using
with and the covariance matrix
is chosen as with , where is prop-

erly chosen to meet the preset covariance mismatch ratio

(31)

The performance is evaluated in terms of the receiver operating
characteristic (ROC) by using Monte-Carlo trials.
Fig. 1 shows the ROC performance of the proposed detector

when in two cases of covariance mismatch (a)
; and (b) . The results confirm that the pro-

posed detector has better performance than the MF2 detector
which is unaware of the target-induced interference. Comparing
Fig. 1(a) with (b) also reveals that the performance gain over the
MF2 detector is higher when the covariance mismatch is larger.
In both cases, the MF1 detector provides a reference on the op-
timal detection performance. It is seen that the proposed detector
is closer to the optimal bound when the mismatch is larger.
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Fig. 1. Receiver operating characteristic (ROC) curves when and
in cases of (a) ; and (b) .

IV. CONCLUSION AND FUTURE WORK

We have considered a binary hypothesis testing with a covari-
ance mismatch between the two hypotheses, caused by target-
induced subspace interference. The proposed detector involves
a two-step procedure: First, it computes the energy of the doubly
projected received signal. Conditioned on the energy, a conven-
tional matched filter or a modified detector is then chosen to
compute the test statistic. Simulation results show the effective-
ness of the proposed detector. It is noted that our estimator in-
volves an ad-hoc but simple procedure in determining the en-
ergy of the residual, and hence is only an approximate ML esti-
mator. A future topic of interest is to find and compare with the
exact ML estimator.

APPENDIX

In this appendix, we usemathematical induction to prove that
the minimized cost function (18) is given by of (25), which
is obtained by the estimate of (24).
First, we consider the base case when there is only one

nonzero element in , say with
. In this case, the cost function

(18) reduces to which is the
same as the minimum cost function of (25), achieved by

in (24).
Next, we assume that the cost function (18) is minimized

when there are nonzero elements in , i.e.,

(32)

with . We need to prove that,
when there are nonzero elements in ,

, with . Depending on
the sum of the first elements of and the -st entry, we
have the following four cases.

Case A – and : the cost func-
tion (18) reduces to and we always
have , due to and
the inequality if as applied to .

Case B – and : the cost func-
tion (18) reduces to with

, which is still larger than the minimum cost function
in (25) because, in this case

(33)

since if .
Case C – and : we have the

cost function (18)

(34)

where the first inequality is due to (32) and the second inequality
follows from the inequality , and

, applied to components and .
Case D – and : we have

(35)

since if and .
As a result, this completes the inductive step and closes the

proof.
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