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Phased-Array-Based Sub-Nyquist Sampling for
Joint Wideband Spectrum Sensing and

Direction-of-Arrival Estimation
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Abstract—In this paper, we study the problem of joint wide-
band spectrum sensing and direction-of-arrival (DoA) estimation
in a sub-Nyquist sampling framework. Specifically, considering
a scenario where a number of uncorrelated narrow-band signals
spread over a wide (say, several GHz) frequency band, our objec-
tive is to estimate the carrier frequencies and the DoAs associated
with the narrow-band sources, as well as reconstruct the power
spectra of these narrow-band signals. To overcome the sampling
rate bottleneck for wideband spectrum sensing, we propose a new
phased-array-based sub-Nyquist sampling architecture with flexi-
ble time delays, where a uniform linear array is employed and the
received signal at each antenna is delayed by a flexible amount of
time and then sampled by a synchronized low-rate analog–digital
converter. Based on the collected sub-Nyquist samples, we calculate
a set of cross-correlation matrices with different time lags, and de-
velop a CANDECOMP/PARAFAC decomposition-based method
for joint DoA, carrier frequency, and power spectrum recovery.
Conditions for perfect recovery of the associated parameters and
the power spectrum are analyzed. Simulation results show that our
proposed method presents a clear performance advantage over ex-
isting methods, and achieves an estimation accuracy close to the
associated Cramér–Rao bounds using only a small number of data
samples.

Index Terms—Joint wideband spectrum sensing and direction-
of-arrival (DoA) estimation, compressed sensing, CANDE-
COMP/PARAFAC (CP) decomposition.
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I. INTRODUCTION

W IDEBAND spectrum sensing, which aims to identify the
frequency locations of a number of narrowband trans-

missions that spread over a wide frequency band, has been of a
growing interest in signal processing and cognitive radio com-
munications [1], [2]. It is noteworthy to point out that, although
the spectrum under monitoring has a large bandwidth, which is
the reason why the term “wideband spectrum sensing” is used in
this work, the source signals residing in the wide frequency band
are assumed to be narrowband signals. We will justify such an
assumption later in our paper. To perform wideband spectrum
sensing, a conventional receiver requires to sample the received
signal at a Nyquist rate, which may be infeasible if the spectrum
under monitoring is very wide, say, reaches several GHz. Also, a
high sampling rate results in a large amount of data which place
a heavy burden on subsequent storage and processing. One way
to overcome this issue is to divide the frequency spectrum under
monitoring into a number of separate frequency segments and
then sequentially scan these frequency channels. Nevertheless,
such a scanning scheme incurs a sensing latency and may fail
to capture short-lived signals. To alleviate the sampling rate re-
quirement and accomplish the wideband spectrum sensing task
in a one-shot manner without performing channel-by-channel
scanning, a variety of sub-Nyquist sampling schemes, e.g. [3]–
[6], were developed. The rationale behind such schemes is to
exploit the inherent sparsity in the frequency domain and for-
mulate wideband spectrum sensing as a sparse signal recovery
problem which, according to the compressed sensing theory [7],
[8], can perfectly recover the signal of the entire frequency band
based on compressed measurements or sub-Nyquist samples.
Furthermore, in [9]–[11], it was shown that it is even possible
to perfectly reconstruct the power spectrum without placing any
sparse constraint on the wideband spectrum under monitoring.

In some applications such as electronic warfare, one need
not only conduct wideband spectrum sensing, but also identify
the carrier frequencies and directions-of-arrival (DoAs) asso-
ciated with the narrowband signals that live within the wide
frequency band [12]. Besides, in massive MIMO or millimeter
wave systems where signals are transmitted via beamforming
techniques, the DoA information would allow a cognitive ra-
dio to more efficiently exploit the vacant bands [13]. In [14],
[15], ESPRIT-based methods were proposed for joint carrier
frequency and DoA estimation. These methods need to perform
a high-dimensional singular value decomposition (SVD) and
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thus involve a high computational complexity. In [16], a com-
putationally efficient tree-structured frequency-space-frequency
(FSF) multiple signal classification (MUSIC) based algorithm
was developed to jointly estimate the DoAs and carrier fre-
quencies. All these methods [14]–[16], however, require the
signal to be sampled at a Nyquist rate. Recently, with the ad-
vent of compressed sensing theories, the sparsity inherent in the
spectral and spatial domains was utilized to devise sub-Nyquist
sampling-based algorithms for joint wideband spectrum sensing
and DoA estimation. Specifically, in [17], a compressed sensing
method was developed in a phased array framework, where a
multicoset sampling scheme is performed at each antenna to col-
lect non-uniform samples. In practice, the multicoset sampling
can be implemented using multiple channels, with each channel
delayed by a different time offset and then sampled by a low-rate
analog-digital converter (ADC). It is also noteworthy to men-
tion that [17] not only assumes multicoset sampling in time, but
also in space, which leads to a sparse array and helps substan-
tially reduce its hardware complexity. In [18], [19], a simplified
sub-Nyquist receiver architecture was proposed, in which each
antenna output is connected with only two channels, i.e. a direct
path and a delayed path. An ESPRIT-based algorithm was then
developed for joint DoA, carrier frequency, and signal recon-
struction. In addition to the above time delay-based sub-Nyquist
receiver architectures, an alternative sub-Nyquist sampling ap-
proach, referred to as phased array-based modulated wideband
converter (MWC), was proposed in [13], [20] for carrier and
DoA estimation. The receiver utilizes an L-shaped array, with
each sensor implementing a single channel of the MWC. Re-
cently, another MWC-based sub-Nyquist sampling architecture
was proposed in [21], where a two-stage method was developed
for joint carrier frequency and DoA estimation.

In this paper, we propose a new sub-Nyquist receiver architec-
ture for joint wideband spectrum sensing and DoA estimation.
In our architecture, the received signal at each antenna is de-
layed by a flexible time shift and then sampled at a sub-Nyquist
sampling rate. Compared with existing sub-Nyquist receiver
architectures, e.g. [18], [19], [21], our proposed sub-Nyquist
scheme is simpler and easier to implement: it requires only one
ADC for each antenna output, thus leading to a lower hard-
ware complexity. Also, in our proposed architecture, the time
delays can be arbitrarily chosen as long as they satisfy a mild
condition, which relaxes the requirement on the accuracy of
time delay lines. From the collected sub-Nyquist samples, we
calculate a set of cross-correlation matrices with different time
lags, based on which a third-order tensor that admits a CAN-
DECOMP/PARAFAC (CP) decomposition can be constructed.
We show that the DoAs and the carrier frequencies, along with
the power spectra associated with the sources, can be recovered
from the factor matrices. The perfect recovery condition is ana-
lyzed. Our analysis shows that the overall sampling rate required
by our proposed method for perfect recovery is approximately
half of that required by other state-of-the-art methods, e.g. [18],
[20].

We notice that a CP decomposition-based approach was
proposed in [13] for joint DoA and carrier frequency estima-
tion. Different from our work, the construction of the tensor

in [13] has to rely on an L-shaped array and exploits the cross-
correlations between the two mutually perpendicular sub-arrays.
In addition, the PARAFAC analysis in [13] can only help extract
the DoA and carrier frequency information, while in our pro-
posed method, the DoA, carrier frequency, and power spectrum
associated with each source can be simultaneously recovered
from the CP decomposition. It was also brought to our attention
that another CP decomposition-based approach was recently
proposed in [22]. Nevertheless, there are some important dis-
tinctions between our work and theirs. Firstly, different from our
receiver architecture, the work [22] employs a multicoset sam-
pling scheme to sample the signal received by each antenna,
which involves a higher hardware complexity and requires a
precise time control on the time delay lines. Secondly, our work
and [22] have very different ideas in constructing their respec-
tive third-order tensors. Specifically, the third-order tensor in
[22] is constructed from original data samples, whereas ours is
constructed from a set of correlation matrices. The use of the
statistical information enables our proposed algorithm to accu-
rately estimate the carrier frequency and DoA parameters in a
low signal-to-noise regime. Such a merit is particularly useful
because wideband receivers usually have to operate in a low
signal-to-noise region.

The rest of the paper is organized as follows. In Section II, we
provide notations and basics on the CP decomposition. The sig-
nal model and related assumptions are discussed in Section III.
In Section IV, we propose a new phase-array based sub-Nyquist
receiver architecture. A CP decomposition-based method for
joint wideband spectrum sensing and DoA estimation is devel-
oped in Section V, along with the analysis of the uniqueness
of the CP decomposition. The exact recovery condition and
the extension to sparse arrays are discussed in Section VI. The
CRB analysis is conducted in Section VII. Simulation results
are provided in Section VIII, followed by concluding remarks
in Section IX.

II. PRELIMINARIES

To make the paper self-contained, we provide a brief review
on tensors and the CP decomposition. More details regarding
the notations and basics on tensors can be found in [23]. Simply
speaking, a tensor is a generalization of a matrix to higher-order
dimensions, also known as ways or modes. Vectors and matrices
can be viewed as special cases of tensors with one and two
modes, respectively. Throughout this paper, we use symbols ⊗,
◦, and� to denote the Kronecker, outer, and Khatri-Rao product,
respectively.

Let X ∈ CI1 ×I2 ×···×IN denote an N th-order tensor with its
(i1 , . . . , iN )th entry denoted by Xi1 ··· iN . Here the order N of
a tensor is the number of dimensions. Fibers are higher-order
analogues of matrix rows and columns. The mode-n fibers of
X are In -dimensional vectors obtained by fixing every index
but in . Slices are two-dimensional sections of a tensor, defined
by fixing all but two indices. Unfolding or matricization is an
operation that turns a tensor into a matrix. The mode-n unfolding
of a tensor X , denoted as X(n) , arranges the mode-n fibers to
be the columns of the resulting matrix. The CP decomposition
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Fig. 1. Schematic of CP decomposition.

decomposes a tensor into a sum of rank-one component tensors
(see Fig. 1), i.e.

X =
R∑

r=1

λra
(1)
r ◦ a(2)

r ◦ · · · ◦ a(N )
r (1)

where a(n)
r ∈CIn , the minimum achievable R is referred to as

the rank of the tensor, andA(n) � [a(n)
1 . . . a

(n)
R ] ∈ CIn ×R de-

notes the factor matrix along the n-th mode. Elementwise, we
have Xi1 i2 ···iN =

∑R
r=1 λra

(1)
i1 r
a

(2)
i2 r
. . . a

(N )
iN r

. The mode-n un-

folding of X can be expressed as X(n) = A(n)Λ(A(N ) � · · ·
A(n+1) �A(n−1) � · · ·A(1))T , where Λ � diag(λ1 , . . . , λR ).

III. SIGNAL MODEL

Consider a scenario in which K uncorrelated, wide-sense
stationary, and far-field narrowband signals spreading over a
wide frequency band impinge on a wideband uniform linear
array (ULA) with N receive antennas, where we assume N >
K. Let s(t) denote the combination of theK narrowband signals
in the time domain. s(t) can be expressed as

s(t) =
K∑

k=1

sk (t)ejωk t (2)

where sk (t) and ωk ∈ R+ denote the complex baseband sig-
nal and the carrier frequency (in radians per second) of the kth
source signal, respectively. Each source signal sk (t) is associ-
ated with an unknown azimuth DoA θk ∈ [0, π). We have the
following assumptions regarding the source signals:

A1 The multi-band signal s(t) is bandlimited to F =
[0, fnyq].

A2 TheK source signals {sk (t)} are assumed to be mutually
uncorrelated, wide-sense stationary, and bandlimited to
[−B/2, B/2], i.e. Bk ≤ B,∀k, where Bk denotes the
bandwidth of the kth source signal.

A3 TheK source signals {sk (t)} are assumed to be narrow-
band signals. In other words, the inverse bandwidth of
each signal is much larger than the time it takes to travel
across the array, i.e.

1/B � (N − 1)d/C (3)

where d denotes the distance between adjacent antennas
and C is the speed of light.

A4 Sources either have distinct carrier frequencies {ωk} or
distinct DoAs {θk}, i.e. for any two source signals, we
have (θi, ωi) 	= (θj , ωj ),∀i 	= j.

Assumption A4 is assumed to make signals distinguished
from one another. Note that this assumption is less restrictive

Fig. 2. Proposed phased-array based sub-Nyquist sampling architecture with
flexible time delays (PASS-FD).

than the one made in other works, e.g. [18], [20], which, in order
to remove the source ambiguity, require the quantity ωk cos(θk )
to be mutually different for different signals, i.e.

ωi cos(θi) 	= ωj cos(θj ) ∀i 	= j (4)

After collecting the received signal at the array, our objective
is to jointly estimate the DoAs {θk}, the carrier frequencies
{ωk}, as well as the power spectra associated with theK source
signals. To accomplish this task, we, in the following, propose
a new phased-array based sub-Nyquist receiver architecture.

IV. PROPOSED SUB-NYQUIST RECEIVER ARCHITECTURE

A. Proposed Receiver Architecture

In our receiver architecture, the received signal at each an-
tenna is delayed by a pre-specified factor Δn and then sampled
by a synchronous ADC with a sampling rate of fs = 1/Ts ,
where fs 
 fnyq. We have the following assumptions regarding
the delay factors and the sampling rate:

A5 The time delay factors {Δn} can take arbitrary values as
long as the following condition is satisfied

0 < (Δn+2 − 2Δn+1 + Δn )fnyq ≤ 1 (5)

for a certain n ∈ {1, . . . , N − 2}, and meanwhile they
are small enough

1/B � max
n

{Δn} (6)

such that the approximation in (7) holds valid.
A6 The sampling rate fs is no less than the bandwidth of the

narrowband source signal which has the largest band-
width among all sources, i.e. fs ≥ B.

As will be shown later in our paper, (5) is essential to iden-
tify the unknown carrier frequencies. The proposed receiver
architecture, termed as the Phased-Array based Sub-Nyquist
Sampling architecture with Flexible time Delays (PASS-FD),
is illustrated in Fig. 2. The analog signal observed by the nth
antenna can be expressed as

xn (t) =
K∑

k=1

sk (t− (n− 1)τk − Δn )

× ejωk (t−(n−1)τk −Δn ) + wn (t)

≈
K∑

k=1

sk (t)ejωk (t−(n−1)τk −Δn ) + wn (t) (7)
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where wn (t) represents the additive white Gaussian noise with
zero mean and variance σ2 , and τk denotes the delay between
two adjacent sensors for a plane wave arriving in the direction
θk and is given by

τk = d cos θk/C (8)

The approximation in (7) is due to the narrowband assumption
(3) and the relatively small values of the time delay factors. In
fact, from (3) and (6), we have

1/B � max
n

{Δn} + (N − 1)d/C

> max
n

{Δn} + (N − 1)τk (9)

Since the quantity (n− 1)τk + Δn is much smaller than the
inverse of the bandwidth of the signal, sk (t− (n− 1)τk − Δn )
can be well approximated by sk (t).

We adopt the following assumption for the distance between
two adjacent antennas

A7 The distance between two adjacent antennas d satisfies
d < C/(2fnyq), where C is the speed of light.

As will be shown later in our paper, this assumption is essen-
tial for the recovery of the DoAs. Also, from d < C/(2fnyq),
it can be easily verified that the narrowband condition (3) is
equivalent to

fnyq/B � (N − 1)/2 (10)

The above inequality implies that a signal can be considered
as a narrowband signal if its bandwidth is relatively small as
compared with fnyq, the range of the frequency band under
monitoring, which is usually the case for wideband spectrum
sensing and electronic warfare surveillance applications.

In practice, only the real part of xn (t) is observed and sam-
pled. Nevertheless, the corresponding imaginary part [xn (t)]
can be retrieved from the real part�[xn (t)] by passing the signal
through a finite impulse response (FIR) Hilbert transformer. The
complex analytic signal can also be roughly approximated by
computing the discrete Fourier transform (DFT) of the output of
each antenna and throwing away the negative frequency portion
of the spectrum [12].

B. Relation to and Distinction From Existing Architectures

We notice that a time delay-based sub-Nyquist architecture
was also introduced in [17]–[19]. Nevertheless, there are two
key distinctions between our architecture and theirs. Firstly, our
architecture has a simpler structure with only N delay chan-
nels, whereas the architecture proposed in [18] (see Fig. 3(a))
requires 2N channels in total, in which each antenna output
passes through two channels, namely, a direct path and a de-
layed path. As a consequence, the number of required ADCs for
the architecture [18] is twice the number of ADCs for our archi-
tecture. In [19], a modified architecture was proposed based on
[18]. It, however, still requires 2N channels, with anN -channel
delay network added to the first antenna. Secondly, for our pro-
posed architecture, the time delays can take arbitrary values as
long as the mild condition (5) is satisfied. In contrast, for other
architectures, e.g. [17]–[19], a precise time control is required

Fig. 3. Existing sub-Nyquist receiver architectures. (a) Sub-Nyquist sampling
architecture proposed in [18]. (b) Sub-Nyquist sampling architecture proposed
in [20].

such that the time delays across different channels are strictly
identical [18], [19], or the time delays must be integer multiples
of the Nyquist sampling interval [17]. Due to the inaccuracy
caused by the time shift elements, maintaining accurate time
delays on the order of the Nyquist sampling interval is difficult.
The inaccuracy in these delays will impair the recovery perfor-
mance. Our architecture is free from this issue because it allows
more flexible time delays and we can use the actual time delays
measured in practice for our proposed recovery algorithm.

In [13], [20], a phased-array MWC-based sub-Nyquist
sampling architecture (see Fig. 3(b)) was proposed for joint
wideband spectrum sensing and DoA estimation, in which an
L-shaped array is adopted, and the output of each sensor is mul-
tiplied by a same periodic pseudo-random sequence, low-pass
filtered and then sampled at a low rate. Compared to the phased-
array MWC-based sub-Nyquist sampling architecture, our
proposed delay-based scheme is much simpler to implement. In
[24], it is argued that the delay-based architectures suffer two
major disadvantages which include the need for high-precision
delay lines as well as specialized ADCs with high analog
bandwidth. Nevertheless, as discussed above, our proposed
architecture, different from other delay-based schemes [17]–
[19], has a relaxed requirement on the precision of delay lines.
Regarding the latter issue, we would like to clarify that many
standard low-rate ADCs actually have a relatively large analog
(full-power) bandwidth.1 For example, the commercial ADC
device ADS4122 has a sampling rate of 65 MHz, while its
analog bandwidth is up to 800 MHz. Some other low-rate ADCs
with affordable prices, such as ADC12D500, have an analog

1Here the analog bandwidth is an important specification of ADCs and de-
termines the highest frequency that can be handled by the device.
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bandwidth up to 2.7 GHz. Also, these ADCs usually have a
nearly flat spectral response within its analog bandwidth. On the
other hand, we agree that standard low-rate ADCs, when operat-
ing on its full analog bandwidth, may bring some distortion due
to the hardware imperfections. Such an issue should be taken
into account in system design and algorithmic development.

V. PROPOSED CP DECOMPOSITION-BASED METHOD

We first calculate the cross-correlation between two sensor
outputs xm (t1) and xn (t2). Recalling Assumption A2, we have

Rx
mn (t1 , t2) = E [xm (t1)x∗n (t2)]

=
K∑

k=1

Rs
k (t1 , t2)amka

∗
nk +Rw

mn (t1 , t2) (11)

where

Rs
k (t1 , t2) � E

[
sk (t1)ejωk t1 s∗k (t2)e

−jωk t2 ] (12)

denotes the autocorrelation of the k-th modulated source sig-
nal,Rw

mn (t1 , t2) � E [wm (t1)w∗
n (t2)] represents the autocorre-

lation of the additive noise and

ank � e−j ((n−1)τk ωk +Δn ωk ) (13)

Since the source signals are wide-sense stationary, the au-
tocorrelation Rs

k (t1 , t2) depends only on the time difference
t1 − t2 . As a result, the cross-correlation of the sensor outputs
Rx
mn (t1 , t2) depends on the time difference t1 − t2 as well. Let

Ts denote the sampling interval of the ADCs. The time differ-
ence has to be an integer multiple of the sampling interval, i.e.
t1 − t2 = lTs for l = −L, . . . , L. For notational convenience,
we define rxm,n (l) � Rx

mn (t+ lTs, t), rsk (l) � Rs
k (t+ lTs, t)

and rwm,n (l) � Rw
mn (t+ lTs, t). We can therefore express (11)

as a discrete-time form:

rxm,n (l) =
K∑

k=1

rsk (l)amka
∗
nk + rwm,n (l) (14)

for l = −L, . . . , L and m,n = 1, . . . , N .
Our objective is to recover the DoAs {θk}, the carrier fre-

quencies {ωk}, as well as the power spectra associated with the
K source signals based on the second-order statistics {rxm,n (l)}.
For each time lag l, we can construct a correlation matrixRx(l)
with its (m,n)th entry given by rxm,n (l). Also, it can be easily
verified that

Rx(l) =
K∑

k=1

rsk (l)aka
H
k +Rw (l) (15)

whereRw (l) denotes the cross-correlation matrix of the additive
noise with its (m,n)th entry given by rwm,n (l), and

ak � [a1k a2k . . . aN k ]T (16)

Since a set of cross-correlation matrices {Rx(l)}Ll=−L are avail-
able, we can naturally express this set of correlation matrices by
a third-order tensor Rx ∈ C(2L−1)×N×N whose three modes
respectively stand for the time lag l and the antenna indices,
and its (l,m, n)-th entry given by rxm,n (l). Notice from (15)

that each slice of the tensor Rx , Rx(l), is a weighted sum of
a common set of rank-one outer products. The tensor Rx thus
admits a CP decomposition which decomposes a tensor into a
sum of rank-one component tensors, i.e.

Rx =
K∑

k=1

rk ◦ ak ◦ a∗
k + Rw (17)

where ◦ denotes the outer product, Rw ∈ C(2L−1)×N×N with
its (l,m, n)-th entry given by rwm,n (l), and rk � [rsk (−L)
. . . rsk (L)]T .

DefineR � [r1 . . . rK ] and

A � [a1 . . . aK ] (18)

The three matrices {R,A,A∗} are referred to as factor matrices
associated with the noiseless version of Rx . We see that the
information about the parameters {θk , ωk} as well as the power
spectra can be extracted from the factor matrices. Motivated by
this observation, we propose a two-stage method which consists
of a CP decomposition stage whose objective is to estimate the
factor matrices and a parameter estimation stage whose objective
is to jointly recover the DoAs, carrier frequencies, and the power
spectra of sources based on the estimated factor matrices.

A. CP Decomposition

We first consider the scenario where the number of sources,
K, is known or estimated a priori via some conventional tech-
niques such as the Akaike information criterion (AIC) [25].
Clearly, the CP decomposition can be accomplished by solving
the following optimization problem

min
R̂,Â

∥∥∥∥∥Rx −
K∑

k=1

r̂k ◦ âk ◦ â∗
k

∥∥∥∥∥

2

F

(19)

where R̂ = [r̂1 . . . r̂K ], Â = [â1 . . . âK ], and ‖ · ‖F de-
notes the Frobenius norm. On the other hand, note that the CP
decomposition is unique under a mild condition. Therefore we
can use a new variable b̂k to replace â∗

k , which leads to

min
R̂,Â,B̂

∥∥∥∥∥Rx −
K∑

k=1

r̂k ◦ âk ◦ b̂k
∥∥∥∥∥

2

F

(20)

where B̂ � [b̂1 . . . b̂K ]. The above optimization can be effi-
ciently solved through an alternating least squares (ALS) pro-
cedure which alternatively updates one of the factor matrices
to minimize the data fitting error while keeping the other two
factor matrices fixed:

R̂
(t)

= arg min
R

∥∥∥(Rx
(1))

T − (B̂
(t−1) � Â(t−1)

)RT
∥∥∥

2

F
(21)

Â
(t)

= arg min
A

∥∥∥(Rx
(2))

T − (B̂
(t−1) � R̂(t)

)AT
∥∥∥

2

F
(22)

B̂
(t)

= arg min
B

∥∥∥(Rx
(3))

T − (Â
(t) � R̂(t)

)BT
∥∥∥

2

F
(23)

whereRx
(n) denotes the mode-n unfolding of Rx .
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If the knowledge of the number of sources,K, is unavailable,
more sophisticated CP decomposition techniques (e.g. [26]–
[28]) can be employed to jointly estimate the model order and
the factor matrices. The basic idea is to use low rank-promoting
priors or functions to automatically determine the CP rank of the
tensor. In [26], when the CP rank,K, is unknown, the following
optimization was employed for CP decomposition

min
R̂,Â,B̂

‖Rx − X‖2
F + μ

(
tr(R̂R̂

H
) + tr(ÂÂ

H
) + tr(B̂B̂

H
)
)

s.t. X =
K̂∑

k=1

r̂k ◦ âk ◦ b̂k (24)

where K̂ � K denotes an overestimated CP rank, μ is a
regularization parameter to control the tradeoff between low-
rankness and the data fitting error, R̂ = [r̂1 . . . r̂K̂ ], Â =
[â1 . . . âK̂ ], and B̂ = [b̂1 . . . b̂K̂ ]. The above optimization
(24) can still be solved by an ALS procedure [26]. The true
CP rank of the tensor, K, can be estimated by removing those
negligible rank-one tensor components after convergence.

B. Joint DoA, Carrier Frequency and Power Spectrum
Estimation

We discuss how to jointly recover the DoAs, carrier frequen-
cies, and power spectra of sources based on the estimated factor
matrices. As shown in the next subsection, the CP decomposi-
tion is unique up to scaling and permutation ambiguities under
a mild condition. More precisely, the estimated factor matrices
and the true factor matrices are related as

R̂ = RΛ1Π +E1 (25)

Â = AΛ2Π +E2 (26)

B̂ = A∗Λ3Π +E3 (27)

where {Λ1 ,Λ2 ,Λ3} are unknown nonsingular diagonal matri-
ces which satisfy Λ1Λ2Λ3 = I; Π is an unknown permutation
matrix; and E1 , E2 , and E3 denote the estimation errors as-
sociated with the three estimated factor matrices, respectively.
The permutation matrix Π can be ignored as it is common to all
three factor matrices. Also, since we have prior knowledge that
columns of A/

√
N have unit norm, the amplitude ambiguity

can be estimated and removed, in which case we can write

R̂ = RΛ̃1 + Ẽ1 (28)

Â = AΛ̃2 + Ẽ2 (29)

B̂ = A∗Λ̃3 + Ẽ3 (30)

where Λ̃1 , Λ̃2 , Λ̃3 are unknown nonsingular diagonal matrices
with their diagonal elements lying on the unit circle.

Notice that the kth column ofA is characterized by the DoA
and carrier frequency associated with the kth source. We now
discuss how to estimate {ωk} and {τk} from the estimated factor
matrix Â. Note that B̂ is also an estimate ofA. Therefore either
Â or B̂ can be used to estimate {ωk} and {τk}. Let âk denote

the k-th column of Â, and write

Λ̃2 = diag{e−jϕ1 , . . . , e−jϕK } (31)

where {ϕk} ∈ [0, 2π) are unknown parameters. To simplify our
exposition, we ignore the estimation errors Ẽ1 , Ẽ2 , and Ẽ3 .

Write z = rejϕ , and define arg(z) � mod(ϕ, 2π) where
mod(a, b) is a modulo operator which returns the remainder
of the Euclidean division of a by b. Recalling (13), we have

ηnk � mod (− arg(ânk ), 2π)

= mod ((n− 1)τkωk + Δnωk + ϕk , 2π) (32)

where ânk denotes the nth entry of âk . Let ηk � [η1k . . .
ηN k ]T and letDp denote a difference matrix defined as

Dp �

⎛

⎜⎜⎜⎝

−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . −1 1

⎞

⎟⎟⎟⎠ ∈ R(p−1)×p

To recover ωk , we conduct a two-stage difference operation as
follows

β
(1)
k = mod(DN ηk , 2π) (33)

β
(2)
k = mod(DN−1β

(1)
k , 2π) (34)

It can be easily verified that entries of β(1)
k and β(2)

k are respec-
tively given as

β
(1)
nk = mod (τkωk + (Δn+1 − Δn )ωk , 2π) ,

n = 1, . . . , N − 1 (35)

β
(2)
nk = mod ((Δn+2 − 2Δn+1 + Δn )ωk , 2π) ,

n = 1, . . . , N − 2 (36)

From (36), we can see that the information about the carrier
frequency ωk is extracted after performing the two-stage dif-
ference operation. By properly devising the time delay factors
{Δn}, we can ensure that for some n0 ∈ {1, . . . , N − 2}, the
condition (5) holds valid, i.e.

0 < (Δn0 +2 − 2Δn0 +1 + Δn0 )fnyq ≤ 1 (37)

The above condition implies

0 < (Δn0 +2 − 2Δn0 +1 + Δn0 )ωmax ≤ 2π (38)

where ωmax � max{ω1 , . . . , ωK }. Therefore ωk can simply be
estimated as

ω̂k =
β

(2)
n0 ,k

Δn0 +2 − 2Δn0 +1 + Δn0

(39)

In fact, for a careful selection of time delay factors {Δn}, the
condition (5) (i.e. (37)) may be satisfied for different choices
of n. As a result, we can obtain multiple estimates of ω̂k . To
improve the estimation performance, a final estimate of ω̂k can
be chosen as the average of these multiple estimates. We em-
phasize that the average operation is not necessarily needed by
our proposed algorithm. It is just an option which we can use
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to enhance the estimation accuracy. In other words, as long as
(37) holds valid for some n0 ∈ {1, . . . , N − 2}, perfect recov-
ery of the carrier frequency is guaranteed if noise and sample
covariance estimation errors are ignored.

Under Assumption A7, that is, d < C/(2fnyq), we have
|τkωmax| < π. Thus, substituting the estimated ω̂k back into
(35), τk can be obtained as

τ̂k =
mod

(
β

(1)
nk − (Δn+1 − Δn )ω̂k + π, 2π

)
− π

ω̂k
(40)

Note that for each β
(1)
nk , n = 1, . . . , N − 1, we can obtain an

estimate of τk . Therefore multiple estimates of τk can be col-
lected. Again, an average operation can be conducted to yield a
final estimate of τk . Based on τ̂k , an estimate of the associated
DoA θk can be readily obtained from (8).

We now discuss how to recover the power spectra of the
sources {sk (t)}. Let r̃sk (τ) � Rs

k (t+ τ, t), where τ ∈ R can be
any real value. The power spectrum of the kth source can thus
be expressed as the Fourier transform of r̃sk (τ), i.e.

S̃k (ω) =
∫ +∞

−∞
r̃sk (τ)e

−jωτ dτ (41)

Let Sk (ω) denote the discrete-time Fourier transform (DTFT)
of the autocorrelation sequence {rsk (l)}+∞

l=−∞, i.e.

Sk (ω) =
∞∑

l=−∞
rsk (l)e

−jω lTs (42)

According to the sampling theorem, S̃k (ω) and Sk (ω) are re-
lated as follows

Sk (ω) =
1
Ts

+∞∑

n=−∞
S̃k

(
ω + n

2π
Ts

)
(43)

Under Assumption A6, i.e. fs ≥ B ≥ Bk , the power spectrum
S̃k (ω) can be perfectly recovered by filtering Sk (ω) with a
bandpass filter, i.e.

S̃k (ω) =

{
TsSk (ω), ω ∈ [ωk − πfs, ωk + πfs ]

0, ω /∈ [ωk − πfs, ωk + πfs ]
. (44)

Given the estimated factor matrix R̂, the DTFT of the auto-
correlation sequence {rsk (l)} can be approximated as

Ŝk (ω) =
L∑

l=−L
r̂sk (l)e

−jω lTs (45)

When L is chosen to be sufficiently large, the estimation error
due to the time lag truncation is negligible. Also, although there
exists a phase ambiguity between the estimated autocorrelation
sequence r̂k and the true autocorrelation sequence rk , this phase
ambiguity can be removed by noting that the power spectrum
Sk (ω) is real and non-negative. In addition, the power spectrum
of each source is automatically paired with its associated DoA
and carrier frequency due to the reason that both R̂ and Â
experience a common permutation operation.

C. Uniqueness of CP Decomposition

We see that the uniqueness of the CP decomposition is crucial
to our proposed method. It is well known that the essential
uniqueness of CP decomposition can be guaranteed by Kruskal’s
condition [29]. Let kX denote the k-rank of a matrixX , which
is defined as the largest value of kX such that every subset
of kX columns of the matrix X is linearly independent. We
have the following theorem concerning the uniqueness of CP
decomposition.

Theorem 1: Let (X,Y ,Z) be a CP solution which decom-
poses a third-order tensor X ∈ Cd1 ×d2 ×d3 into p rank-one ar-
rays, whereX ∈ Cd1 ×p ,Y ∈ Cd2 ×p , andZ ∈ Cd3 ×p . Suppose
the following Kruskal’s condition

kX + kY + kZ ≥ 2p+ 2 (46)

holds and there is an alternative CP solution (X̂, Ŷ , Ẑ) which
also decomposes X into p rank-one arrays. Then we have X̂ =
XΠΛx , Ŷ = YΠΛy , and Ẑ = ZΠΛz , where Π is a unique
permutation matrix and Λx , Λy , and Λz are unique diagonal
matrices such that ΛxΛyΛz = I .

Proof: A rigorous proof can be found in [30]. �
Note that Kruskal’s condition cannot hold whenR = 1. How-

ever, in that case the uniqueness has been proven by Harshman
[31]. Kruskal’s sufficient condition is also necessary for R = 2
and R = 3, but not for R > 3 [30].

From the above theorem, we know that if

kR + kA + kA∗ ≥ 2K + 2 (47)

then the CP decomposition of Rx is essentially unique. Since
A∗ is the complex conjugate ofA, we only need to examine the
k-ranks ofA andR.

Note that the (n, k)th entry of A is given by ank =
e−j ((n−1)τk ωk +Δn ωk ) , which is a function of the time delay
factor Δn . It is not difficult to design a set of time delay factors
{Δn} such that kA = K. For example, we divide N antennas
into two groups S1 = {1, . . . ,K} and S2 = {K + 1, . . . , N}.
We set the delay factors in the first group to be linearly propor-
tional ton− 1, i.e. Δn = (n− 1)ν forn ∈ S1 , where ν ≥ 0 is a
constant. In this case, the firstK rows ofA form a Vandermonde
matrix:

A[1:K,:] = Vand(τ1ω1 + νω1 , . . . , τK ωK + νωK ) (48)

where Vand(φ1 , . . . , φK ) is defined as

Vand(φ1 , . . . , φK ) �

⎡

⎢⎢⎢⎣

e−j (0φ1 ) . . . e−j (0φK )

e−j (1φ1 ) . . . e−j (1φK )

...
. . .

...
e−j ((K−1)φ1 ) . . . e−j ((K−1)φK )

⎤

⎥⎥⎥⎦

Thus A is full column rank with kA = K as long as {ωkτk +
νωk} are distinct from each other. If we set ν = 0, we only
need {ωkτk}, i.e. {ωk cos θk}, are distinct from each other. For
the case where the quantities {ωk cos θk} for different source
signals may be identical, we can set ν 	= 0, in which case we
still have kA = K provided that the carrier frequencies {ωk} are
mutually different. In other words, as long as Assumption A4
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is satisfied, we can always set an appropriate value of ν to ensure
kA = K. For other more general choices of time delay factors
{Δn}, it can be numerically checked that the k-rank of A still
equals to K with a high probability, although a rigorous proof
is difficult.

Since we have kA = K, we only need kR ≥ 2 in order to sat-
isfy Kruskal’s condition. This condition kR ≥ 2 is met if every
two columns of R are linearly independent. Note that the kth
column ofR, rk , is a truncated autocorrelation sequence of the
kth modulated signal sk (t)ejωk t . Clearly, if the baseband sig-
nals {sk (t)} have distinct power spectra, then any two columns
of R are linearly independent, which implies kR ≥ 2. In prac-
tice, since source signals usually have different bandwidths, the
diverse power spectra condition can be easily satisfied. Even
if the baseband signals {sk (t)} have identical power spectra,
the autocorrelation sequences of any two modulated signals
{sk1 (t)e

jωk 1 t , sk2 (t)e
jωk 2 t} could still be linearly independent

as long as their carrier frequencies satisfy

mod {|ωk1 − ωk2 |, 2πfs} 	= 0 (49)

The above condition ensures that autocorrelation sequences
{rk} of different modulated signals have distinct exponential
terms {ejωk lTs } (see (12)). Due to the randomness of locations
of the carrier frequencies, the condition (49) is very likely to be
satisfied in practice. As a result, we have kR ≥ 2.

VI. DISCUSSIONS AND EXTENSIONS

A. Exact Recovery Condition

Here we provide a brief review and discussion of exact recov-
ery conditions for our proposed method. In fact, most of these
conditions have been summarized as basic assumptions listed in
Section III and Section IV.

First of all, for our proposed method, the number of antennas
is assumed to be greater than the number of source signals,
i.e. N > K. This condition implies that a minimum number
of antennas needed for our proposed algorithm is K + 1. On
the other hand, our proposed method requires the minimum
sampling rate per channel satisfies fs ≥ B. Therefore the overall
sampling rate, fos , defined as the total number of sampling
channels times the sampling rate per channel, should be no
smaller than

fos ≥ (K + 1)B (50)

This overall sampling rate condition (50) is less restrictive than
that of existing works, such as [18], [20]. Specifically, the work
[18] needs to satisfy fos ≥ (2K + 2)B because its number of
sampling channels is twice the number of antennas N and N
has to be greater thanK, i.e.N ≥ K + 1. For the work [20], its
number of sampling channels is identical to the number of an-
tennas which is no less than 2K + 1. Thus its overall sampling
rate has to satisfy fos ≥ (2K + 1)B. We see that the overall
sampling rate required by our proposed method for perfect sig-
nal/parameter recovery is about half of that required by [18],
[20]. Another point we would like to clarify is that our proposed
method does not need to impose a sparsity constraint on the fre-
quency domain. In fact, our proposed method allows for perfect

recovery even when the frequency domain is crowded with sig-
nals. Moreover, our proposed algorithm is capable of separating
narrowband signals with partially overlapping frequency bands,
as will be corroborated by our simulation results.

Another important characteristic of our proposed method is
its ability to accommodate flexible time delays. As discussed
earlier, the time delay factors can take arbitrary values as long
as Assumption A5 is satisfied. Although the uniqueness of CP
decomposition also involves design of time delay factors, as
analyzed in the previous section, for general choices of time
delay factors, we usually have kA = K such that the uniqueness
of CP decomposition can be guaranteed.

B. Extension to Array With Other Geometries

Our proposed algorithm is not only applicable to uniform
linear arrays, but can also be extended to arrays with other
geometries such as sparse arrays. Details of this extension are
discussed below.

Let {c1 , c2 , . . . , cM } ⊂ {1, . . . , N} denote the indices of an-
tennas which are selected from a uniform linear array, where
1 ≤ c1 < c2 < · · · < cM ≤ N and M > K. Following the ap-
proach in Section V, we construct a third-order tensor Rx ∈
C(2L−1)×M×M , with its (l,m, n)-th entry given by rxcm ,cn

(l).
Similar to (17), the tensor Rx can be expressed as

Rx =
K∑

k=1

rk ◦ āk ◦ ā∗
k + Rw (51)

where Rw ∈ C(2L−1)×M×M is a third-order tensor with its
(l,m, n)-th entry given by rwcm ,cn

(l) and āk � [ac1 k ac2 k

. . . acM k ]T . Define Ā � [ā1 . . . āK ]. The three matrices
{R, Ā, Ā∗} are factor matrices associated with the noiseless
version of Rx .

Next, we discuss how to estimate carrier frequencies and

DoAs from the factor matrix ˆ̄A estimated from the CP decom-
position. Since the columns of Ā/

√
M have unit norm, the

amplitude ambiguity can be estimated and removed. By ignor-

ing the estimation errors, ˆ̄A and Ā are related as ˆ̄A = ĀΛ,
where Λ is an unknown nonsingular diagonal matrix with its di-
agonal elements {e−jϕk } lying on the unit circle. Let ˆ̄ak denote

the kth column of ˆ̄A. We have

η̄mk � mod (− arg(âcm k ), 2π)

= mod ((cm − 1)τkωk + Δcm ωk + ϕk , 2π) (52)

where âcm k denotes the mth entry of ˆ̄ak . Let η̄k � [η̄c1 k . . .
η̄cM k ]T . Again, a two-stage difference operation is performed

to recover ωk and θk :

β̄
(1)
k = mod(DM η̄k , 2π) (53)

β̄
(2)
k = mod(DM−1β̄

(1)
k , 2π) (54)
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It can be easily verified that entries of β̄
(1)
k and β̄

(2)
k are respec-

tively given as

β̄
(1)
mk = mod

(
(cm+1 − cm )τkωk

+ (Δcm + 1 − Δcm )ωk , 2π
)
,

m = 1, . . . ,M − 1 (55)

β̄
(2)
mk = mod

(
(cm+2 − 2cm+1 + cm )τkωk

+ (Δcm + 2 − 2Δcm + 1 + Δcm )ωk , 2π
)
,

m = 1, . . . ,M − 2 (56)

Clearly, if there exists an m1 ∈ {1, . . . ,M − 2} which satisfies

cm 1 +2 − 2cm 1 +1 + cm 1 = 0 (57)

and

0 < (Δcm 1 + 2 − 2Δcm 1 + 1 + Δcm 1
)fnyq ≤ 1 (58)

then ωk can be perfectly extracted from (56). Substituting the
estimated ω̂k back into (55), τk (i.e. θk ) can be recovered from
(55) if there exists an m2 ∈ {1, . . . ,M − 1} which satisfies

cm 2 +1 − cm 2 = 1 (59)

From the above discussion, we see that our proposed algorithm
can be easily adapted to sparse arrays, provided that the index
set {c1 , c2 , . . . , cM } is properly chosen to satisfy (57) and (59)
for a certainm1 ∈ {1, . . . ,M − 2} andm2 ∈ {1, . . . ,M − 1}.
Also, it should be noted that the condition (5) placed on time
delay factors is now replaced by (58).

Lastly, we would like to emphasize that the problem consid-
ered in our paper is very different from the problem considered in
some sparse-array related works, e.g. [32]–[34]. In these works
[32]–[34], the carrier frequency of source signals is assumed to
be the same and known a priori, and the problem of interest is to
estimate the DoAs associated with different signals. Thus, sub-
Nyquist sampling is not necessarily needed in these works. In
fact, these works are mainly concerned about spatial compres-
sion and the design of the spatial sampling pattern to improve
the degree of freedom for array signal processing. In contrast,
our work considers the problem of joint spectrum sensing and
DoA estimation, in which the source signals spread over a wide
frequency band and the carrier frequencies of the source signals
are unknown a priori. To overcome the sampling rate bottle-
neck for wideband spectrum sensing, a sub-Nyquist sampling
architecture has to be employed.

VII. CRB ANALYSIS

In this section, we develop Cramér-Rao bound (CRB) results
for the joint DoA, carrier frequency, and power spectra estima-
tion problem considered in this paper. As is well known, the
CRB is a lower bound on the variance of any unbiased estimator
[35]. It provides a benchmark for evaluating the performance of
our proposed method. In addition, the CRB results illustrate the
behavior of the resulting bounds, which helps understand the
effect of different system parameters, including the noise power
σ2 , the number of antennas N and the number of samples Ns ,
on the estimation performance.

A. Signal Model

Recall that the analog signal at each antenna is sampled with a
sampling rate fs = 1/Ts . The sampled signal at the nth antenna
can be written as (cf. (7))

xn (lTs) =
K∑

k=1

anksk (lTs)ejωk (lTs ) + wn (lTs) (60)

The above signal model can be rewritten in a vector-matrix form
as

xl = Asl +wl , l = 0, . . . , Ns − 1 (61)

where A is defined in (18), xl � [x1(lTs) . . . xN (lTs)]
T ,

wl � [w1(lTs) . . . wN (lTs)]
T and

sl �
[
s1(lTs)ejω1 (lTs ) . . . sK (lTs)ejωK (lTs )

]T

Suppose we collect a total number of Ns (l = 0, . . . , Ns − 1)
samples. The received signal can thus be expressed as

X = AS +W (62)

whereX � [x0 . . . xNs−1 ], S � [s0 . . . sNs−1 ] andW �
[w0 . . . wNs−1 ]. Let x � vec(XT ), where vec(Z) denotes a
vectorization operation which stacks the columns of Z into a
single column vector. We have

x = Ãs+w (63)

where x � vec(XT ), w � vec(W T ), s � vec(ST ) and

Ã � A⊗ INs
(64)

in which In denotes an n× n identity matrix. We assume that
w ∼ CN (0, σ2IN ·Ns

) and s ∼ CN (0,Rs) follow a circularly-
symmetric complex Gaussian distribution, where Rs denotes
the source covariance matrix which needs to be estimated along
with other parameters. Note that in our proposed algorithm, the
additive noisew and the source signal s are not restricted to be
circularly-symmetric complex Gaussian. Here we make such an
assumption in order to facilitate the CRB analysis.

Under the assumption thatw and s are circularly-symmetric
complex Gaussian random variables, we can readily verify that
x also follows a circularly-symmetric complex Gaussian distri-
bution, i.e. x ∼ CN (0,Rx), where

Rx � E
[
xxH

]
= ÃRsÃ

H
+ σ2INNs

(65)

From Assumption A2, we know that Rs is a block diagonal
matrix, i.e.

Rs = diag(P 1 , . . . ,PK ). (66)

whereP k � E[s̃k s̃Hk ] denotes the autocorrelation matrix of the
kth signal, and s̃k is the transpose of the kth row of S, i.e. s̃k �
[sk (0Ts)ejωk (0Ts ) . . . sk ((Ns − 1)Ts)ejωk ((Ns−1)Ts ) ]T . Also,
in Assumption A2, each source is assumed to be wide-sense sta-
tionary. Therefore the autocorrelation matrixP k is a Hermitian-
Toeplitz matrix. Here Toeplitz means that it has diagonal-
constant entries, i.e. each descending diagonal from left to right
is constant. Let pk0 denote the constant for elements located on
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the main diagonal, and pkl , l ≥ 1, denote the constant for ele-
ments located on the lth diagonal below the main diagonal of
P k . Let

T l �
(

0 INs−l
0 0

)
∈ RNs×Ns

and T−l � T T
l . The autocorrelation matrix P k can thus be

expressed as

P k = pk0INs
+

L∑

l=1

[
pkl T−l + (pkl )

∗T l

]
(67)

whereL is chosen to be sufficiently large to ensure pkl =0 for l >
L. From (67), we can see thatP k is characterized by parameters

pk �
[
pk0 �(pk1 ) . . . �(pkL ) (pk1 ) . . . (pkL )

]
(68)

As a result,Rs is characterized by parameters

p � [p1 . . . pK ] (69)

On the other hand, notice that A is a parameterized matrix,
with each column of A determined by the DoA and the carrier
frequency of each source, i.e. {θk , ωk}. Unfortunately, the value
ranges for the DoA and the carrier frequency differ by orders of
magnitude, which may cause numerical instability in computing
the CRB matrix. To address this difficulty, we, instead, analyze
the CRB for the following two parameters {ξk , ψk} defined as

ξk � ωkτk , ψk � ωk/c (70)

where c is a parameter appropriate chosen (e.g. c = 109) such
that values of ξk and ψk roughly have the same scale. Also, we
define ξ � [ξ1 . . . ξK ] and ψ � [ψ1 . . . ψK ].

We see that the complete set of parameters to be estimated
include

α �
[
ξ ψ p σ2] (71)

Recall that x follows a complex Gaussian distribution with zero
mean and covariance matrix Rx . Therefore the log-likelihood
function of α can be expressed as

L(α) ∝ − ln |Rx | − xHR−1
x x (72)

B. Calculation of the CRB Matrix

Since the random vector x follows a circularly-symmetric
complex Gaussian distribution, we can resort to the Slepian-
Bangs formula [36], [37] to compute the Fisher information ma-
trix (FIM). According to the Slepian-Bangs formula, the (i, j)th
element of the FIM Ω is calculated as

Ωij = tr
(
R−1
x

∂Rx

∂αi
R−1
x

∂Rx

∂αj

)
(73)

where αi and αj denote the ith and the jth entries ofα, respec-
tively.

By utilizing the structures of Ã and Rs (cf. (64) and (66)),
Rx can be expressed as

Rx =
K∑

k=1

(akaHk ) ⊗ P k + σ2IN ·Ns
(74)

where ak , defined in (16), is the kth column ofA.

We first compute the partial derivative of Rx with respect to
ξk and ψk . From (13) and the definition of {ξk , ψk}, we can
write ank = e−j ((n−1)ξk +cΔn ψk ) . Thus we have

∂ak/∂ξk = −j · diag(0, . . . , N − 1) · ak (75)

∂ak/∂ψk = −j · c · diag(Δ1 , . . . ,ΔN ) · ak (76)

Combining (74) and (75)–(76), we have

∂Rx/∂ξk =
(
(∂ak/∂ξk )aHk + ak (∂aHk /∂ξk )

) ⊗ P k (77)

∂Rx/∂ψk =
(
(∂ak/∂ψk )aHk + ak (∂aHk /∂ψk )

) ⊗ P k (78)

Similarly, we can obtain the partial derivatives with respect to
other parameters as follows

∂Rx/∂(pk0 ) =
(
aka

H
k

) ⊗ INs
(79)

∂Rx/∂(�(pkl )) =
(
aka

H
k

) ⊗ (T−l + T l) (80)

∂Rx/∂((pkl )) =
(
aka

H
k

) ⊗ (jT−l − jT l) (81)

and

∂Rx/∂(σ2) = IN ·Ns
. (82)

After obtaining the FIM Ω, the CRB can be calculated as [35]

CRB(α) = Ω−1 . (83)

VIII. SIMULATION RESULTS

In this section, we carry out experiments to illustrate the
performance of our proposed method. In our simulations, we
set fnyq = 1 GHz. The distance between two adjacent antennas,
d, is set equal to d = 0.4 × C/fnyq in order to meet the condition
in Assumption A7. The number of antennas is set toN = 8, and
for simplicity, the time delay factors are set as

Δn =

{
0 s, n = 1, . . . , N/2

10−9 s, n = N/2 + 1, . . . , N
(84)

With this setup, the condition (5) can be satisfied for n =
N/2 − 1. The signal-to-noise ratio (SNR) is defined as SNR �
E[|s(t)|2 ]/σ2 .

We first consider the case in whichK = 3 uncorrelated, wide-
sense stationary sources spreading over the wide frequency
band (0, 1] GHz impinge on a ULA of N antennas. The DoAs
of these three sources are given respectively by θ1 = 2.051,
θ2 = 1.447, and θ3 = 0.361. The carrier frequencies and
bandwidths associated with these sources are set to f1 =
152 MHz, f2 = 323 MHz, f3 = 432 MHz, B1 = 20 MHz,
B2 = 20 MHz, and B3 = 15 MHz. The complex baseband sig-
nals are generated by passing the complex white Gaussian noise
through low-pass filters with different cutoff frequencies. Also,
the number of data samples used for calculating the correlation
matrices is set to Ns = 105. The sampling rate fs is chosen to
be fs = 28 MHz, which is slightly higher than the minimum
sampling rate fs ≥ B = max{B1 , B2 , B3} required for perfect
recovery of the power spectrum of the wide frequency band.
The SNR is set to 5 dB. Fig. 4(a) shows the true (marked with
‘�’) and the estimated (marked with ‘+’) carrier frequencies
and DoAs for the three sources. We can see that the estimated
carrier frequencies and DoAs coincide with the groundtruth
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Fig. 4. True and estimated carrier frequencies, DoAs, and power spectra of
sources, SNR = 5 dB.

well. Fig. 4(b) and 4(c) respectively depict the original power
spectrum and the estimated power spectrum of the wide fre-
quency band. It can be observed that our proposed method, even
with a low SNR and a sampling rate far below the Nyquist rate,
is able to accurately identify the locations of the occupied bands.

Next, we examine the scenario where frequency bands of
the narrowband sources overlap each other. Set K = 2. The
DoAs of these two sources are given respectively by θ1 = 2.064
and θ2 = 0.968. The carrier frequencies and bandwidths asso-
ciated with these two sources are set to f1 = 151.36 MHz, f2 =
161.36 MHz, B1 = 20 MHz, and B2 = 10 MHz. The power
spectra associated with the two sources are shown in Fig. 5(b),
from which we can see that the two sources partially overlap in
the frequency domain. The number of data samples Ns and the
sampling rate fs remain the same as in the previous example.
The SNR is set to 20 dB. The estimated carrier frequencies,
DoAs, and the power spectra of the two sources are plotted in
Fig. 5(a) and 5(c). We see that our proposed method works well
for sources with partially overlapping frequency bands. This
example shows that our proposed method not only can perform
wideband spectrum sensing, but also has the ability to blindly
separate power spectra of sources that have partial spectral over-
lap.

To better evaluate the performance of our proposed method,
we calculate the mean square errors (MSEs) for the follow-
ing sets of parameters {ξ,ψ,θ}: MSE(ψ) =

∑K
k=1 |ψk − ψ̂k |2 ,

Fig. 5. Estimated carrier frequencies, DoAs and power spectra for sources
that have partial spectral overlap, SNR = 20 dB.

MSE(ξ) =
∑K

k=1 |ξk − ξ̂k |2 , and MSE(θ)=
∑K

k=1 |θk − θ̂k |2 .
Recalling that in our analysis, instead of concerning {θk , ωk},
we define two new parameters ξk � ωkτk and ψk � ωk/c and
derive the CRB for {ξk , ψk} in order to avoid the numerical
instability issue. The estimation accuracy of the carrier frequen-
cies is quantified by the normalized mean square error (NMSE)
defined as NMSE (ω) =

∑K
k=1 |ωk − ω̂k |2/|ωk |2 . We compare

our proposed method, referred to as the CP-PASS-FD, with other
sub-Nyquist sampling-based joint angle and carrier frequency
estimation methods, namely, the joint-ESPRIT algorithm devel-
oped in the CaSCADE framework (referred to as CaSCADE)
[20], and the two-dimensional multi-resolution algorithm (de-
noted as 2DMR) developed in a time delay-based sub-Nyquist
sampling framework [18]. In [18], each antenna is followed by
two sampling channels. To make a fair comparison, we assume
N = 4 for [18] such that its number of sampling channels is
identical to that of our architecture. In [20], an L-shape array is
employed and its total number of antennas is 2T − 1, where T
denotes the number of antennas along each axis. Here we assume
T = 5. Thus the total number of sampling channels for [20] is
9, which is slightly larger than our method and [18]. Also, the
sampling rate per channel, fs , is assumed to be the same for all
these three methods. In addition, the competing algorithms [18],
[20] require the knowledge of the number of source signals, K.
Hence, for a fair comparison, we assume that the knowledge of
K is available to all algorithms in our experiments.
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Fig. 6. MSEs and NMSE vs. the number of samples per channel, where
N = 8 and SNR = 5 dB.

In this example, we set the number of sources K = 2. The
parameters associated with these two sources are given as:
f1 = 152 MHz, f2 = 437 MHz,B1 = 126 KHz,B2 = 63 KHz,
θ1 = π/4, and θ2 = π/3. The sampling rate is set to fs =
1.26 MHz. Figs. 6 and 7 depict the MSEs/NMSEs of respec-
tive sets of parameters vs. the number of samples Ns per chan-
nel, where we set SNR = 5 dB and SNR = 15 dB, respectively.
MSE/NMSE results are averaged over 1000 independent runs,
where the baseband complex source signals are randomly gener-
ated for each run. We see that our proposed method can achieve
an estimation accuracy close to the CRBs by using only a small

Fig. 7. MSEs and NMSE vs. the number of samples per channel, where
N = 8 and SNR = 15 dB.

number of data samples, e.g. Ns = 200. From Fig. 6(c)–(d)
and Fig. 7(c)–(d), it can be observed that our proposed method
achieves a much higher carrier frequency and DoA estimation
accuracy than the other two methods. This performance im-
provement is primarily due to the fact that our proposed method
utilizes both spatial and temporal correlations of received sig-
nals (i.e. correlation matrices with different time lags), whereas
the temporal correlation was neglected in the other two methods.
We also observe that the CaSCADE achieves a higher DoA es-
timation accuracy than the 2DMR, whereas the 2DMR obtains
a more accurate carrier frequency estimate than the CaSCADE.
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Fig. 8. MSEs and NMSE vs. SNR (dB), where N = 8 and Ns = 300.

This is because the CaSCADE and the 2DMR have different
orders in their estimation processes. For the 2DMR, the carrier
frequencies are estimated first and then the DoAs are extracted
based on the estimated carrier frequencies. For the CaSCADE,
the order is reversed, with the DoAs estimated first and then the
carrier frequencies. Due to the error propagation, the parame-
ters estimated in the latter stage incur larger estimation errors. In
Fig. 8, we plot the MSEs/NMSEs of different sets of parameters
as a function of the SNR, where Ns = 300 data samples per
channel are used. We see that our proposed method outperforms
the other two methods for most cases, and attains an accurate

estimate of the DoAs/carrier frequencies with the MSE (NMSE)
as low as 10−3 under a moderately high SNR.

IX. CONCLUSION

We considered the problem of joint wideband spectrum sens-
ing and DoA estimation in this paper. To overcome the sampling
rate bottleneck, we proposed a phased-array based sub-Nyquist
sampling architecture that is simpler in structure and easier for
implementation as compared with existing sub-Nyquist receiver
architectures. Based on the proposed receiver architecture, we
developed a CP decomposition-based method for joint DoA, car-
rier frequency, and power spectrum estimation. The conditions
for exact recovery of the parameters and the power spectrum
were analyzed. Our analysis suggests that the perfect recovery
condition for our proposed method is mild: to recover the power
spectrum of the wide frequency band, we only need the sampling
rate to be greater than the bandwidth of the narrowband source
signal which has the largest bandwidth among all sources. In
addition, even for the case where sources have partial spectral
overlap, our proposed method is still able to extract the DoA,
carrier frequency, and the power spectrum associated with each
source signal. CRB analysis for our estimation problem was also
carried out. Simulation results show that our proposed method,
with only a small number of data samples, can achieve an esti-
mation accuracy close to the associated CRBs.
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