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Abstract—This paper addresses the problem of multiuser
code-timing estimation for asynchronous uplink code-division
multiple-access (CDMA) systems with aperiodic spreading codes
and bandlimited chip waveforms. Two decorrelating code-timing
estimation schemes, namely the frequency-domain least-squares
(FLS) and frequency-domain weighted least-squares (FWLS)
estimators, are developed. The two proposed estimators offer
different tradeoffs between complexity and estimation accuracy.
A critical step for decorrelating-based estimation is to decompose
the received signal into subsignals of shorter duration. We discuss
how to perform the decomposition to ensure improved identifia-
bility and statistical stability of the proposed schemes. Due to a
unique signal structure in the frequency domain, both the FLS
and FWLS estimators admit efficient implementations that result
in significant complexity reductions. The Cramér–Rao bound for
the estimation problem under study is derived and used as an
assessment tool for the proposed estimators. Numerical results
show that both of the proposed estimators can support overloaded
systems (with more users than the processing gain) in multipath
fading environments and significantly outperform a conventional
technique based on matched-filter processing.

Index Terms—Aperiodic/long spreading codes, bandlimited chip
waveforms, code-division multiple access (CDMA), parameter es-
timation, synchronization.

I. INTRODUCTION

CODE-TIMING estimation or acquisition is a challenging
problem in wireless mobile CDMA systems, due to

channel impediments such as fading, multipath propagation,
and multiple-access interference (MAI). Traditional acquisition
techniques are typically based on matched-filter (MF) pro-
cessing [1, ch. 5], which models the MAI as an additive white
noise without taking into account any inherent structure. They
were found inadequate in multiuser environments, especially
when there exist significant power variations among users,
which cause the so-called near-far problem [2].

A. Prior Work

A wealth of recent studies on multiuser code acquisition
aimed to enhance the performance by exploiting the struc-
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ture of the MAI. They use explicit training (e.g., [3]–[7]),
or work in a blind (self-recovering) fashion (e.g., [8]–[13]).
While these schemes offer improved performance over the
MF-based techniques in near-far environments, they also
rely on the crucial assumption that the system employs short
(or symbol-periodic) spreading codes and rectangular chip
waveforms that are not bandlimited. In contrast, most practical
CDMA systems, including the IS-95 standard and the majority
of 3G CDMA-based wireless networks (e.g., [14]), use long
(or aperiodic) spreading codes, to randomize the interference,
and bandlimited chip waveforms, such as the square-root
raised-cosine pulses.

In principle, the above techniques can be extended to band-
limited systems with short codes (see, e.g., [15]). Most such ex-
tensions require intensive iterative nonlinear searches over the
parameter space. Alternatively, bandlimited pulses can be dealt
with in the frequency domain, usually at a lower complexity
(e.g., [16] and [17]). However, these frequency-domain based
schemes, like the time-domain based techniques in [3]–[13],
rely on a symbol-level cyclostationary signal structure imposed
by short-code spreading and, therefore, cannot be applied to
long-code systems.

A major challenge in dealing with long codes is that the
aforementioned cyclostationary reliance has to be dropped.
Along this line, there have been a number of recent studies on
channel estimation for long-code CDMA (e.g., [18]–[21] and
references therein). The complementary research on multiuser
code-timing estimation or acquisition, however, appears more
scarce, partly due to the nonlinear nature of the problem. Among
limited studies, Mantravadi and Veeravalli [22] developed an
acquisition scheme for a scenario in which the code-timing of
only one user is to be estimated, while the code-timings and
spreading codes for all other users are assumed known. A sim-
ilar scheme for frequency-selective channels was considered
in [23]. More recently, Buzzi and Poor [24] proposed both
centralized and decentralized acquisition schemes in flat-fading
channels. Their schemes, however, assume rectangular chip
waveforms. As noted by the authors, it is nontrivial to extend
their schemes to the bandlimited case.

B. Current Contributions

In this paper, we consider multiuser code-timing estimation
for asynchronous (i.e., uplink) CDMA with long spreading
codes and bandlimited chip waveforms in frequency-selective
channels. Like the centralized scheme of [24], we assume
that the data symbols and spreading codes for all users are

1053-587X/$20.00 © 2005 IEEE
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known, and seek joint estimation of their code-timings and
channel attenuations. We consider decorrelating based estima-
tion techniques which entail relatively low complexity. Two
decorrelating code-timing estimators are developed, one based
on least-squares (LS) while the other on weighted LS (WLS)
processing in the frequency domain. For brevity, they will be
henceforth referred to as the FLS and FWLS estimators. A
critical step for decorrelating based estimation is to decom-
pose the received signal into subsignals of shorter duration.
We discuss how to form such subsignals, in a way leading to
improved identifiability and numerical stability of the proposed
estimators.

While decorrelating based code acquisition is known for
short-code CDMA (e.g., [7]), direct application to long-code
CDMA is impractical due to excessive computational com-
plexity and storage requirement (see [21] for discussions on
decorrelating based channel estimation for long-code CDMA).
In this paper, we develop efficient implementations of the
proposed decorrelating FLS and FWLS estimators, which is
made possible by exploiting a unique signal structure in the
frequency domain. This results in reduction of complexity by
orders of magnitude compared with direct implementations.
Another contribution of this work is an expression of the CRB
for the problem under study (note that the CRB in [24] is for
rectangular chip pulses). Numerical simulations show that the
proposed FLS and FWLS estimators can support overloaded
systems (systems with more users than the processing gain) in
frequency-selective channels and achieve significantly better
acquisition performance than a MF-based technique.

The rest of the paper is organized as follows. In Section II,
we introduce the data model for bandlimited long-code CDMA,
and formulate the problem of interest. In Section III, we develop
the decorrelating FLS and FWLS estimators. Their efficient im-
plementations are presented in Section IV. The CRB expres-
sion is derived in Section V, followed by numerical results in
Section VI. Finally, we summarize this work in Section VII.

Notation: Vectors (matrices) are denoted by boldface lower
(upper) case letters; all vectors are column vectors; superscripts

, , and denote transpose, conjugate, and conjugate
transpose, respectively; denotes linear convolution; de-
notes the smallest integer no less than the argument; denotes
the identity matrix; diag denotes a diagonal or block
diagonal matrix, which should be clear in context; denotes
the Kronecker product; and finally, denotes the elementwise
Hadamard product.

II. PROBLEM FORMULATION

Consider an asynchronous -user DS-CDMA system in the
uplink (mobile-to-base) with long (aperiodic) spreading codes.
Let denote the bandlimited chip waveform assumed iden-
tical for all users. The transmitted signal for user is

where is the number of symbols used for code acquisition,
the symbol period, the th symbol of user , and

the time-varying spreading waveform that modulates the th
symbol of user :

Here and henceforth, is the number of chips per symbol
(i.e., processing gain), the chip interval, and

the spreading code of the th symbol for
user .

The spread spectrum signal passes through a frequency-
selective channel with distinct propagation paths. The base-
band signal received at the base station, after chip-matched fil-
tering, is (e.g., [25])

(1)

where and are, respectively, the channel attenuation and
code-timing for the th path of user , the channel noise,
and the output of the chip-matched filter with impulse
response given input :

(2)

and where . It is noted that
lumps together the time-varying spreading waveform as well as
data symbols for user .

The problem of interest is to estimate the multiuser multipath
code-timings , , , from the received signal . As a
side product, we will also provide estimates for the channel at-
tenuations . Like the centralized scheme of [24], we assume
that all users are transmitting training symbols. We also assume
that the base station knows the number of propagation paths ,
determined by prior channel measurements and characterization
[14] along with some statistical model order detection scheme
(e.g., [26] and references therein).

We provide herein a brief discussion why bandlimited chip
waveforms complicate the above estimation problem. Specifi-
cally, if the chip waveform is rectangular, then the chip-matched
filter (CMF) at the receiver front reduces to an integrate-and-
dump filter (IDF) [8]. In that case, the IDF outputs are lin-
early dependent on the fractional delays along with a finite
number of uncertainties on the integer delays [8] (see equations
(2)–(4) therein).1 Many earlier proposed acquisition schemes for
short-code systems, e.g., [5], [8], and [12], employ a cost func-
tion that is quadratic in the IDF outputs and, in turn, quadratic in
the fractional delays. Hence, those schemes can be conveniently
implemented via a finite number of quadratic optimizations.2

With bandlimited chip waveforms, the above property is lost.
The cost functions of the above schemes become highly non-
linear. The difficulty is further complicated by long spreading
codes because of the loss of cyclostationarity.

1The delay parameter � can be written as � = (p + � )T , where
T is the sampling interval, 0 � p < N � 1 is an integer called the integer
delay, and 0 � � < 1 is the fractional delay.

2Some schemes incur a cost function that is a ratio of quadratic terms, which
makes them slightly more involved.
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Despite the challenges, two standard approaches can be used
to solve the above nonlinear parameter estimation problem. One
is the matched filter (MF) approach [1, ch. 5], by which one cor-
relates the received signal with the desired signature wave-
form (supposing user is of interest) and identifies the
peaks of the correlator output. The MF estimator ignores the
MAI and is optimum only in a single-user environment (see,
e.g., [5]). The other approach is based on ML estimation, which
is statistically optimum but computationally highly involved. In
particular, it solves a -dimensional nonlinear least squares
(NLS) problem that minimizes the energy of the residual signal

with respect to

the unknowns and , where , and note
that each complex-valued is counted as two real unknowns.
Exact ML estimates are difficult to find due to the exponential
complexity involved in the multidimensional NLS problem. Ap-
proximate implementations based on iterative one-dimensional
searches are possible; however, accurate initialization for such
implementations is critical (e.g., [27] and references therein).

In view of the above discussions, the objective of this work
is to develop alternative suboptimum techniques that are not as
computationally demanding as the ML estimator and, mean-
while, are immune to the MAI problem that plagues the MF
method. The proposed schemes may also be used to initialize
the ML based schemes if further improvement in estimation ac-
curacy is of interest.

III. DECORRELATING CODE-TIMING ESTIMATION

We present herein two code-timing estimators that rely
on decorrelating operation for interference cancellation and
parameter estimation. Unlike the MF and ML estimators which
process the received signal over the whole observation
time, our proposed estimators decompose into subsignal
blocks of shorter duration. As will be shown in Section III-B,
such a decomposition is necessary for decorrelating opera-
tion. The proposed estimators also rely on frequency-domain
processing, which is found more convenient to deal with band-
limited chip waveforms than time-domain based processing
(e.g., [16] and [17]). The two proposed estimators—one
employing frequency-domain least squares (FLS) for decorre-
lating while the other utilizing frequency-domain weighted LS
(FWLS)—offer different tradeoffs between performance and
complexity.

In the following, we first discuss how to decompose into
subsignals and their structure in the frequency domain. We then
introduce the FLS and FWLS based decorrelating schemes. Fol-
lowing decorrelation, a multitude of methods can be used to de-
rive the code-timings from the decorrelated signals. We discuss
the one based on the well-known MUSIC algorithm [28].

A. Subsignal Formation and Frequency-Domain Structure

Several approaches can be utilized to decompose into
subsignal blocks. One is to split into nonoverlapping blocks
of duration seconds, where . An alternative way
is to form overlapping blocks. We adopt the latter, which has at
least two advantages, namely, improved identifiability and im-
proved statistical stability, respectively, over the former. These

will be discussed in more details in Sections III-B and IV-B,
respectively.

To elaborate, we split into overlapping subsignal blocks

of duration seconds as follows: ,
and zero elsewhere, . The decom-

position process is also depicted graphically in Fig. 1(a). Note
that any two adjacent blocks and are offset by

sec, which is appropriate when . For larger
delays, we can increase the offset between adjacent blocks. For
example, if it is known a priori that , we can
define , , and zero else-
where, and so that two adjacent blocks are offset
by . Note that the maximum delay depends on the cell size
and transmission rate and can be determined a priori.

For simplicity, we assume in the sequel that .
This implies that the transmission of symbols leads to an
observation for at most sec. In turn, we have

a total of subsignal blocks formed
as above. Let be decomposed into overlapping blocks

of duration sec: ,
and zero elsewhere, which is also illustrated

graphically in Fig. 1(b). Note that is formed by the th,
th, , and th symbols of the stream. Due

to the constraint on the maximum delay, is contributed by
from all users, plus the residual intersymbol interfer-

ence (ISI) caused by the th symbol preceding
and the th symbol that follows. The residual ISI
is not modeled due to the unknown delay. The above decompo-
sition is illustrated in Fig. 1(c) for the th path of user . Hence,
we can write [cf. (1)]

(3)
where lumps together the channel noise and residual
ISI from all users and all propagation paths.

For digital processing, is sampled with a sam-

pling interval ,
, where is an integer called

oversampling factor. Typically, we choose or . Let
. It follows from (3) that3

(4)

where and are vectors formed from
and , respectively. Note that may

have a few zeros at the beginning and/or in the end determined
by .

Next, we take the discrete Fourier transform (DFT) of both
sides of (4). Note that consists of data sym-
bols modulating a bandlimited spreading waveform [cf. (2)],
whose spectrum typically tapers off at the end frequencies
(i.e., frequencies close to , where denotes
the sampling frequency) [29]. In the presence of channel

3We henceforth use notation �(�) to denote a time-domain quantity if its fre-
quency-domain counterpart is also used for estimation.
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Fig. 1. (a) Splitting received signal y(t) into overlapping subsignal blocks y (t) of duration M T : y (t) starts at t = �T and ends at t = (� +M )T ,
and two adjacent blocks y (t) and y (t) overlap by (M � 1)T . (b) Splitting transmitted signal x (t) for user k into overlapping subsignal blocks x (t)
of duration (M � 1)T : x (t) starts at t = �T , similar to y (t), but ends at t = (�+M � 1)T ; two adjacent blocks x (t) and x (t) overlap
by (M � 2)T . (c) Graphical illustration of contribution to the �th received subsignal block y (t) from the lth path of user k : y (t) = x (t� � ) + ISI,
where contributions from other users and other paths of user k are not shown, and the residual inter-symbol interference (ISI) is due to u (t) = d (� �

1)s (t � (�� 1)T ) and u (t) = d (�+M � 1)s (t � (�+M � 1)T ).

noise, the end frequencies have a lower signal-to-noise ratio
(SNR) than at the middle (i.e., low) frequencies. Hence,
we will discard the end frequencies to avoid the noise am-
plification caused by frequency decorrelation to be applied
later. To this end, let be the matrix
with the th element given by (assuming is even):

. Note that
computes the -point shifted DFT so that the DC fre-

quency is shifted to the middle. Let denote the DFT

frequency selection parameter, and . Let
be formed from the middle

rows of (equivalently, by deleting the first and last
rows). Then, discarding the end-fre-

quency samples of the DFT of is equivalent to computing

. By the time-shifting property of Fourier trans-
form, we have

diag (5)

where , and denotes the vector
formed by samples of with zeros padded at the tail

[note that zero-padding is needed since has duration of
], and

(6)

Equation (5) holds only approximately because of the aliasing
caused by the blocking/windowing operation that produces

. Such windowing widens slightly the spectrum, and
sampling at a rate introduces some small aliasing due to
spectral folding, which will eventually lead to a small bias in
the parameter estimate. The aliasing, however, can be neglected
compared to the noise/interference induced estimation error
[29].

Let , ,

, and .
Following the above discussions, we have

(7)
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where includes both the spectrum of as well
as any aliasing-induced error. The above equations are funda-
mental to the proposed estimators, which follow a two-step pro-
cedure. Specifically, we first use a decorrelating procedure to
eliminate MAI and obtain an unstructured estimate of ;
then, the structure is imposed on to yield
estimates of and .

B. Decorrelating

Let , ,

and . Then, (7) can be compactly written as

(8)

where , and

...
...

...
...

Applying least-squares (LS) on the frequency-domain (8), the
decorrelating FLS estimator is given by

(9)

Substituting (8) into (9), we have .
Hence, the MAI is fully eliminated. It should be noted, however,
that the correlation of the residual interference, due to ISI and
aliasing, in is ignored. The FLS estimate can be improved by
appropriate weighting that takes into account the correlation of
the residual interference. Doing so leads to the FWLS estimator:

(10)

where denotes a weighting matrix which, ideally, should be
chosen as the covariance matrix of in order to minimize the
variance of the estimate [30]. Before we discuss how to obtain

, we highlight two important issues that need be properly
addressed for such decorrelating estimators:

1) Rank: To ensure identifiability, both (9) and (10) require
that is tall and has full column rank.

2) Complexity: Although the idea of decorrelating is straight-
forward, direct application of (9) or (10) is in general not
feasible due to the high complexity and large memory
requirement. Consider, for example, a modest scenario
with , , , (hence,

), , and
(i.e., no frequencies discarded). In this case, is of size
29 440 3200. Clearly, it is impractical to invert a matrix
of this size.

The complexity issue will be addressed in Section IV, where
efficient implementations of (9) and (10) are presented by ex-
ploiting the structure of and . We discuss in the following

the rank of and the relevant issue of how to choose the block
length or, equivalently, .

Note that is formed by blocks of diagonal ma-
trices. To ensure is tall, we have to choose such that

. This corroborates our earlier statement that it is nec-
essary to split into shorter blocks for decorrelating. The
condition is necessary but not sufficient for to be
full rank. However, increasing , which makes taller, in-
creases the likelihood of having a full-rank matrix. This explains
why we chose overlapping, rather than nonoverlapping, in split-
ting into blocks, which results in larger for fixed and

. Increasing has another advantage of providing sufficient
averaging for better statistical stability, which will be detailed
in Section IV, when we discuss the implementation issue. In
our simulation, we never experienced a rank-deficient , most
likely due to the fact that the spreading codes are independent
for different users, whereas for the same user, the spreading code
changes independently from symbol to symbol (aperiodic long
code). Discarding frequency samples at the end frequencies,
the places where spectral nulls are usually located also helps
to make full rank. Finally, it is important to note that since

is known at the base station, we can always check its rank
condition. Should it be rank deficient or ill conditioned, we can
discard certain rows of (accordingly, the corresponding ele-
ments of ) so that the resulting matrix is full rank and, thus,
ensure identifiability.

The above discussion seems to suggest that should be
chosen small so that is as large as possible. There is a tradeoff,
however, due to the residual ISI contained in . In particular,
if is too small, the residual interference may be significant
compared to the desired signal in each block, and ignoring the
interference can degrade the performance of the FLS estimator
quite a bit. While the FWLS estimator can handle some addi-
tional interference, the residual ISI, in general, cannot be fully
eliminated since the optimum weighting matrix is unknown
(see discussions later). Hence, for both FLS and FWLS, it is im-
portant to keep the residual interference small by choosing
large enough. We found that a choice of is sufficient,
provided that the power variations among different users is less
than 20 dB (also see numerical examples in Section VI). Note
that power variation in real systems is in general much smaller
due to the use of power control [14].

To summarize, we recommend choosing while
keeping . In the event that is still rank deficient or
ill conditioned, we remove some rows of (especially those
containing small entries, which correspond to spectral nulls) to
ensure identifiability.

Finally, we discuss how to obtain the weighting matrix
for the FWLS estimator (10). The optimum weighting matrix
for linear estimator is given by the covariance matrix

[30], which is unknown and has to
be estimated. Finding an unstructured estimate of the

matrix is an ill-defined problem, since we have more
unknowns than data samples. Hence, we have to impose certain
structure on to make its estimation feasible. In the following,
we assume , where captures
the correlation within adjacent samples in the frequency do-
main. While this assumption is ad hoc, it leads to quite good
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estimation results, as we will see in Section VI. With this as-
sumption, we can obtain an estimate of , using either (7) or
(8), as follows:

(11)

where denotes the initial FLS estimate given by
(9), is the th subvector formed
from , i.e., , and

. Using this estimate in (10), we have
the following FWLS estimate:

(12)

C. Code-Timing and Attenuation Estimation

Let be either or , and let be the th segment
corresponding to user . We then have

(13)

where denotes the estimation error. Note that is an
Vandermonde matrix with the th column given by

(6). We can see that, effectively, consists of a group of
complex sinusoids with frequency
and amplitude . Hence, the problem reduces to a sinu-
soidal parameter estimation problem, and a multitude of
methods can be used (see, e.g., [28]) to estimate the si-
nusoidal parameters. In what follows, we briefly discuss
the one based on the well-known MUSIC [31] algorithm.
Specifically, let and form overlap-
ping subvectors ,

. In general, should be large
enough to provide good estimation accuracy but not close to

[28]. Next, compute

(14)

Let its eigendecomposition be ,
where is a diagonal matrix formed by the largest eigen-
values, spans the signal subspace, and

spans the noise subspace that is orthogonal to
. Let , and . The

frequency estimates can be obtained as the phases of the
roots of the following polynomial that are closest to the unit

circle [28, Sec. 4.6]:

(15)

Then, the code-timing estimates are given by
. Following code-timing estimation, the

attenuations can be estimated using (13):

(16)

IV. EFFICIENT IMPLEMENTATIONS

As mentioned before, direct applications of (9) and (12) are
in general impractical. In this section, we discuss efficient im-
plementations of the proposed FLS and FWLS estimators by ex-
ploiting the sparse structure of the large matrices in (9) and (12),
which can reduce the complexity significantly. We first present
an efficient implementation for the FLS estimator (9). We then
extend it to the FWLS estimator (12). Finally, we summarize the
complexity of the proposed efficient implementations.

A. Implementation for FLS

The complexity of (9) is dominated by the calculation of
and its inverse . Let

...
. . .

... (17)

where the th submatrix diag is diagonal, with

(18)

For notational brevity, define and . We
show in Appendix A that due to the block structure of , can
be efficiently computed as follows:

(19)

where the Matlab colon operator is used to simplify the nota-
tion. Specifically, denotes a

submatrix formed by rows ,
and columns of . As shown in Ap-
pendix A, has the same structure of in (17). For later use,
let diag denote the th subblock
of .

We next summarize the implementation of the FLS estimator
(9) along with its computational complexity.

• Step 1: Compute using (18).
Total flops.

• Step 2: Compute (i.e., ) using (19).
Total flops.

• Step 3: Compute , where
is determined by

Total flops. (20)

• Step 4: Compute by

Total flops. (21)
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B. Implementation of FWLS

For the FWLS estimator (12), let .
Let denote the th subblock of . Note
that is block diagonal:

diag (22)

The diagonal blocks can be computed as
follows. Let (recall diag ) be sliced into
equal-length subvectors: .
Then, it is ready to verify

(23)

Although is no longer diagonal, its block diagonal struc-

ture can be exploited for efficient calculation of .
In particular, we show in Appendix B that has the same
structure as . Let diag

be the th subblock of , where
, . Then, can be efficiently computed

as

...
. . .

...

...
. . .

...

(24)

We next summarize the implementation of the FWLS esti-
mator (12) and its complexity as follows:

• Step 1: Compute using (22) and (23).
Total flops.

• Step 2: Compute (i.e., ) using (24).
Total flops.

• Step 3: Compute
. Let

be the th segment of , which can be computed as

diag

Total flops (25)

where and denote the th seg-
ment of and , respectively.

• Step 4: Compute . Let
be the th segment of , which can

be computed as

Total flops. (26)

C. Complexity

We now compare the complexity of the above effi-
cient implementations with direct implementations of
(9) and (12). First, let us examine the FWLS estimator.
From Section IV-B, it is straightforward to show that the
complexity of the efficient implementation of is

flops. In general, we have
. Hence, the complexity can be further approximated

to be . On the other hand, direct implementation
has a complexity of about . Hence, the efficient
implementation for the FWLS estimator reduces the complexity
approximately by a factor of .

Computational saving for the FLS estimator is even more
pronounced. In particular, the complexity associated with the
efficient implementation in Section IV-A is

. Supposing is comparable to , the complexity
is approximately . Meanwhile, direct implemen-
tation of (9) still has a complexity of about . Thus,
the efficient implementation for the FLS estimator reduces the
complexity approximately by a factor of .

The above analysis reveals that the efficient FLS estimator
is about times faster than the efficient FWLS estimator. In
general, the former is slightly inferior to the latter in terms of ac-
quisition performance (see Section VI). Hence, the efficient FLS
estimator is the recommended one in most cases from the com-
putational perspective. Their difference in estimation accuracy
could be significant though, especially when the MAI is very
strong (i.e., in a near–far environment with interfering powers
30 dB higher than that of the desired signal; see Section VI).
The FLS estimator suffers from some performance loss in such
cases due to the residual interference that is ignored by the esti-
mator. See Section VI for numerical examples.

V. CRAMÉR–RAO BOUND

As a benchmark for the proposed estimators, we derive in
this section the Cramér–Rao bound (CRB) for the estimation
problem under study. The CRB provides a lower variance bound
for all unbiased estimators and has been routinely used as an
assessment tool. It is useful to present our derivation here since
the CRB for code-timing estimation with long code and band-
limited waveform appears not available in the literature.

Recall the received signal as defined in (1). Denote

the sampled signal by ,
. We collect all samples in a vector:

. Likewise, let
and be vectors formed by samples
of and , respectively. Then, we have
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, which is similar to (4) ex-
cept that we now include all received samples, rather than sam-
ples within a block there. Hence, there is no residual ISI, and
is only due to the channel noise. Multiplying the above equation
with , where denotes the
DFT matrix, yields

(27)

where , , and diag
diag , with denoting an vector
formed from samples of (with no delay) padded
with zeros at the tail, and

Let , , and
Re , the latter collecting all unknown

parameters of interest, where .
By the Slepian–Bang formula, the CRB for the unknown

vector is given by (e.g., [28, App. B])

CRB Re

Re (28)

where we used the fact that
, as-

suming the channel noise is white, and where denotes the
variance of the time-domain samples of the noise.

Let

, and
. It can be shown that the

partial differentiations in (28) can be evaluated as

(29)

where

(30)

(31)

Substituting (29) into (28) yields

CRB Re

where

...
. . .

...

...
. . .

...

...
. . .

...

Finally, we note that the CRB derived here is approximate and
may not be achieved since (27) ignores the aliasing caused by
windowing [cf. (5)]. Our numerical results, however, show that
the performance of the proposed estimators is quite close to this
lower bound.

VI. NUMERICAL RESULTS

We consider a -user asynchronous CDMA system with
BPSK modulation, aperiodic long spreading codes, and band-
limited chip waveforms. The spreading codes are randomly
generated with processing gain , and normalized to
unit energy per symbol interval (i.e., scaled by ). The
bandlimited chip waveform is a square-root raised-cosine pulse
oversampled with . We simulate a frequency-selective
Rayleigh fading channel with propagation paths for
each user, and the path gain is a complex Gaussian random
variable with zero-mean and identical variance , where

denotes the average power of user . We consider a near-far
scenario whereby the average power of the desired user, say
user one, is scaled to unity: , while all interfering users
transmit at an identical mean power , . The
near–far ratio (NFR) is defined as in decibels.

Two performance measures are considered. One is the proba-
bility of correct acquisition, which is defined as the probability
of the event that the code-timing estimate is within a half chip
of the true code-timing. The other measure, which character-
izes the acquisition accuracy at a finer scaler, is the root mean-
squared error (RMSE) of the code-timing estimate normalized
by the chip duration , given correct acquisition. For the multi-
path case, we evaluate the performance measures for each path
and present the average results averaged over all path estimates.
In the sequel, we compare the proposed decorrelating FLS and
FWLS estimators with the matched filter (MF) scheme briefly
discussed in Section II (also see [1, ch. 5]). All results presented
next are based on 400 independent Monte Carlo trials, for which
the code-timings, attenuations, data symbols, and channel noise
are changed independently from one trial to another.

We first examine the user capacity, i.e., the number of users
that can be supported within the system, of the three schemes
in multipath fading channels. Fig. 2 depicts their performance
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Fig. 2. Performance versus K (user capacity) in multipath fading channels
with N = 16,M = 100,M = 6, SNR = 15 dB, and NFR = 10 dB.

Fig. 3. Performance versusM (acquisition time) in multipath fading channels
with N = 16,K = 5,M = 6, SNR = 15 dB, and NFR = 10 dB.

when (number of symbols used for acquisition),
(block size), the DFT frequency selection parameter

(see Section III-A), SNR dB, and NFR dB.
It is seen from Fig. 2 that the proposed FLS and FWLS estima-
tors can support overloaded systems (i.e., systems with )
with little performance degradation and, hence, are MAI-resis-
tant. Meanwhile, the MF estimator degrades quickly as in-
creases. Fig. 2 shows that the FWLS estimates are statistically
more accurate than the FLS estimates and closer to the CRB de-
rived in Section V. Note that the CRB is invariant to . Although
not shown here due to space limitations, we found that the em-
pirical bias of the proposed estimators is at least one order of
magnitude smaller than their RMSE. As such, they can be con-
sidered as (approximately) unbiased, and the CRB is a suitable
lower bound.

We next consider the impact of the observation time on ac-
quisition. The simulation parameters are identical to those in the
previous example, except that we now fix users and vary

Fig. 4. Performance versus the SNR in multipath fading channels with N =

16,K = 5,M = 100,M = 6, and NFR = 10 dB.

Fig. 5. Performance versus near–far ratio (NFR) in multipath fading channels
with N = 16,K = 5,M = 100,M = 6, and SNR = 15 dB.

from 20 to 100. The results are depicted in Fig. 3. We see that
the proposed FLS and FWLS estimators require much shorter
observation time for acquisition (i.e., faster acquisition) than the
MF estimator. For example, the FWLS estimator achieves cor-
rect acquisition even with symbols. In terms of RMSE,
the FWLS yields again the most accurate code-timing estimates.

The next example shown in Fig. 4 illustrates the performance
of the three methods at different SNR, when , ,
and the other parameters are identical to those in the previous
examples. The advantage of the FLS and FWLS estimators over
the MF estimator is again evident. The RMSE results indicate
that the FWLS estimator appears the only one that is SNR con-
sistent, i.e., whose RMSE continues to decrease as the SNR
increases. The inconsistency of the MF estimator is not sur-
prising, due to the MAI that is not accounted for. For the FLS
estimator, it is caused by the residual interference discussed in
Section III-B.
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Fig. 6. Performance versus the normalized Doppler rate f T in time-varying
multipath fading channels with N = 16,K = 5,M = 60,M = 6, SNR =

15 dB, and NFR = 10 dB.

We proceed to examine the near–far resistance of the three
estimators. Fig. 5 depicts their performance as a function of
the NFR when , , SNR dB, and the
other parameters are identical to those in the previous exam-
ples. It is seen that the MF estimator, whose performance de-
grades quickly when NFR dB, is not near–far resistant in
general. The FLS estimator is able to hold correct acquisition up
to NFR dB, which is quite impressive given the relatively
small processing gain employed here. The FWLS esti-
mator is least sensitive to the near–far problem, achieving a good
acquisition performance even with an NFR as high as 30 dB.
Note that a lower SNR yields similar probability of acquisition
in this case, but the RMSE is higher.

For mathematical tractability, the proposed FLS and FWLS
estimators were derived based on the assumption that the
channel remains unchanged within an observation time of
sec. We now relax this assumption, and test their performance
in both time- and frequency-selective channels. The channel
attenuations are varied every sec, according
to the Jakes’ model [32], and the fading rate is characterized
by the normalized Doppler frequency , where is the
maximum Doppler frequency and the symbol interval.
Fig. 7 depicts the performance of the three estimators as a
function of , when , , SNR dB, and
NFR dB. It is seen that the proposed estimators perform
reasonably well in slow fading channels (i.e., ;
see Fig. 6). As the fading rate further increases, their per-
formance falls off quickly. In general, code acquisition for
long-code bandlimited CDMA in fast fading channels is a
much more challenging problem, and good multiuser acquisi-
tion schemes for such a scenario have yet to be discovered.

Finally, we briefly comment on the need for , which is the
number of path for user , for the proposed estimators. It is
noted that does not need to be known during the decorre-
lating stage, as in Section III-B. The decorrelating stage, which
is the major focus of our paper, produces an estimate that
lumps all path contributions in the frequency domain into a

single vector. The knowledge of is needed only during the
second parameter estimation stage as in Section III-C, where
we apply a standard sinusoidal parameter estimation algorithm,
namely MUSIC, to fit a complex sinusoidal model to the esti-
mated vector . Model order (i.e., ) selection and its impact
on sinusoidal parametric model fitting are well studied ([28]
and references therein). For the MUSIC estimator, which is a
subspace based technique, overestimating will lead to delay
estimates for paths that do not exist. Nevertheless, the delay es-
timates for existing paths are generally not very affected, pro-
vided that the estimated signal subspace dimension is much
smaller than the estimated noise subspace dimension, i.e.,

, where is the estimated value of [see (14)]. The
condition is easily satisfied since can be chosen to be much
larger than . On the other hand, underestimating will re-
sult in acquisition of the strongest paths, missing the weaker
ones, provided that the signal eigenvectors are not mistaken as
noise eigenvectors and used for estimation. The latter can be
prevented by using only the eigenvectors associated with rela-
tively small eigenvalues for delay estimation.

VII. CONCLUSIONS

In this paper, we have investigated the problem of decorre-
lating-based multiuser code-timing estimation for CDMA sys-
tems with long spreading codes and bandlimited chip wave-
forms. We have developed two decorrelating FLS and FWLS
code-timing estimators by utilizing LS and WLS processing in
the frequency domain. We have shown that direct implementa-
tions of these decorrelating estimators are, in general, not real-
istic due to high complexity. To address this difficulty, we have
developed efficient implementations of the proposed estimators
by exploiting the sparse structure of the large matrices involved.
We have shown that such efficient implementations lead to sig-
nificant complexity reductions compared with direct implemen-
tations for the FWLS and, especially, FLS estimators. We have
found that the identifiability and statistical stability of the pro-
posed decorrelating estimators are closely related to a signal de-
composition process that is critical for decorrelating estimation
and provided guidelines how to perform the decomposition to
improve the identifiability and stability of the proposed estima-
tors. We have derived the CRB for the estimation problem under
study, which is useful to benchmark the proposed and any future
estimators for the problem. We have presented extensive simu-
lation results, which show that the FWLS estimator is extremely
robust to the MAI and near–far problem, and leads to very accu-
rate estimation in general; meanwhile, the FLS estimator is com-
putationally more appealing than the FWLS estimator and offers
good acquisition in most interference environments of practical
interest.

APPENDIX A
EFFICIENT CALCULATION OF FOR FLS

In this Appendix, we provide a constructive proof of the
efficient algorithm (19) for inverting in the FLS estimator.
Our proof also leads to the block extension (24) for the FWLS
estimator.



WANG AND LI: DECORRELATING MULTIUSER CODE-TIMING ESTIMATION 2379

Fig. 7. Graphical illustration of obtaining C fromG by adjacent row/column permutations, where M N = 3 and K = 2, in Example 1. (a) Original matrix
G or D . (b) Swap rows 3 and 4, and columns 3 and 4, by P D P . (c) Swap rows 2 and 3 and columns 2 and 3, by P P D P P =

diagfC ;D g, which gives PPP = P P . (d) Swap rows 4 and 5 and columns 4 and 5 by P P P D P P P = diagfC ;C ;C g,
which gives PPP = P .

Let the th element of be , . Let

,
. Note that is given by

...
. . .

... (32)

Let diag , which
can be obtained from by row and column permutations. Al-
though there are numerous alternatives to get from , we
discuss next a solution that involves only successive permuta-
tions of adjacent rows and columns. Doing so, we are able to
present the solution conveniently in a recursive fashion.

Let be the permutation matrix obtained by per-
muting the th and st rows of . Then,

permutes the th and st rows of ,
permutes the th and st columns of ,

and is a symmetric orthogonal matrix [33]. One can

see that moves up
the st row and, respectively, the st
column of to the second row and second column via
the adjacent row and column permutations
(also see the example below). To facilitate our presenta-
tion, let be such that its th subblock

diag ,
and . One can verify that

and .
Our solution consists of finding batch permuta-

tion matrices (formed by product of multiple matrices like
) and applying them in succession

on (i.e., ), which ultimately leads to . For ,
it can be verified that

(33)

where . It is important
to note that has the same structure as that of

, due to the use of adjacent row and column permu-
tations (also see the example below). Likewise, we can form

in a similar fashion, which gives

diag (34)

where we recall that .
Example 1: For illustration purposes, consider the simple

case where and . The process of adjacent
row and column permutation is depicted in Fig. 7. According
to the previous discussion, we need two batch permutation ma-
trices to complete the permutation. Fig. 7(a) shows the original

or . Fig. 7(b) shows , which permutes rows
3 and 4 and columns 3 and 4, respectively, of . Next, we swap
rows 2 and 3 and columns 2 and 3 of , as shown in
Fig. 7(c), which shows the same structure as in (33). Note that
like , is formed by diagonal blocks. In addition, note
that the first batch permutation matrix is . Fi-
nally, we swap rows 4 and 5 and columns 4 and 5, as shown
in Fig. 7(d), which gives , which is block diagonal, and the
second batch permutation matrix is .
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Let . Then, (34) can be simplified to
. Since is orthogonal, we have

(35)

(36)

where diag . Since and are
both block diagonal, (36) and (35) indicate that and have
the same structure, and [also see (32) and recall ]

which is identical to (19).

APPENDIX B
EFFICIENT CALCULATION OF FOR FWLS

Let diag , where

...
. . .

...

(37)

Similar to the FLS estimator, can be obtained from by row
and column permutations. However, it can be made more effi-
cient in the current case by permuting adjacent groups of rows
or columns. In particular, we slice into equal-sized
groups of rows (or groups of columns), where the first group of
rows (columns) are formed by rows (columns) , the
second group of rows (columns) are formed by rows (columns)

, and so on and so forth. Let
, where is the permutation matrix obtained

by permuting the th and st rows of . Then, we can
verify that permutes the th and st groups of
rows of , whereas permutes the th and st
groups of columns.

Let and
be the starting and ending indices for matrix permu-

tations. Let , ,
which denotes the th batch permutation matrix. Then, by direct
verification, we have

diag (38)

Let . Then, (38) reduces to . It
follows that ( is orthogonal)

(39)

(40)

where diag . Since both and
are block diagonal, (39) and (40) show that and have
the same structure. This, along with (37), indicates (24), where
we recall that .
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