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A Robust Approach to Channel Estimation and
Detection for Multi-Carrier CDMA

Rensheng Wang, Member, IEEE, and Hongbin Li, Member, IEEE

Abstract— We present a robust approach to channel estimation
and multiuser detection (MUD) for multi-carrier CDMA by
explicitly taking into account prior channel estimation errors.
Specifically, robust channel estimates and MUD receivers are
obtained by optimizing the worst-case performance over a
properly selected bounded uncertainty set. Although the prior
channel estimation error is not bounded, it is beneficial to refine
the estimate over a properly chosen bounded uncertainty set.
Numerical results show that linear MUD detectors resulting from
our robust approach yield improved performance over those that
ignore the prior estimation errors.

Index Terms— Robust estimation, multi-carrier (MC) code-
division multiple-access (CDMA), multiuser detection (MUD).

I. INTRODUCTION

MUD for MC-CDMA has received a lot interests re-
cently. Numerous MUD schemes have been proposed

(see [1] and references there). While these schemes are derived
from different principles, they usually rely on prior channel
estimates. However, channel estimates always contain some
estimation errors, and most MUD schemes are sensitive to
such errors.

We develop herein robust channel estimation and MUD
schemes by explicitly considering prior channel estimation
errors. Our schemes build on recent developments in robust
adaptive beamforming, which deals with bounded uncertainty
in prior knowledge of the steering vector of the antenna array
[2]– [4]. While uncertainty on the steering vector in array
processing is usually bounded, channel estimation errors have
an infinite support and is generally unbounded. Even so, we
found it beneficial to optimize the worst-case performance
over a properly chosen bounded uncertainty set. Our strategy
is to improve detection robustness against small to moderate
channel estimation errors within the bounded set. We discuss
how to choose a bounded parameter set for our problem by
using the Chebyshev inequality.

A different robust detector is proposed in [5]. The idea is
to minimize the interference subject to a set of probability
bounded constraints that take into account channel estimation
errors. The authors showed that the underlying stochastic
programming problem can be simplified to a convex non-
linear programming problem or approximated by a second-
order cone programming problem. In contrast, our approach
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is different and involves only scalar optimization. Finally,
we note that only channel uncertainty is considered in the
sequel. Robust detectors that deal with channel and covariance
estimation errors is considered in [6].

II. DATA MODEL

Consider a baseband MC-CDMA (uplink) system with P
sub-carriers and K active users. The mth information symbol
for the kth user, dk(m), is modulated by a P × 1 spreading
code ck. After a P -point inverse discrete Fourier transform
(IDFT) and parallel-to-serial (P/S) conversion, a cyclic prefix
(CP) is inserted to avoid inter-symbol interference. Then, the
signal is sent out from the transmitter and passes through a
channel with impulse response hk ∈ C

L×1, which lumps to-
gether the transmitter/receiver filters and the physical channel.
At the receiver, the received signal is first serial-to-parallel
(S/P) converted, followed by CP removal and discrete Fourier
transform (DFT). We assume that the delay spread is within
the CP duration, so that the output of the DFT processor during
the mth symbol interval can be expressed as

y(m) = Sd(m) + e(m),

where d(m) = [d1(m), . . . , dK(m)]T , e(m) contains the ad-
ditive channel noise and possibly unmodeled interference, and
S = [s1, · · · , sK ] with sk = CkFhk, for k = 1, . . . , K,
Ck=diag{ck}, and F ∈ C

P×L denoting the DFT matrix with
the klth element given by P−1/2 exp{−j2π(k−1)(l−1)/P}.
The problem of interest is to develop robust linear MUD
schemes by taking into account imperfect channel estimates
ĥk obtained by some standard channel estimator.

III. PRELIMINARIES

A. Linear Multiuser Detection

Suppose user signature S is known (by using some channel
estimator), the zero-forcing (ZF) detector is given by WZF =
S(SHS)−1, where we have ignored any possible unmodeled
interference in e(m). If any unmodeled interference is present,
we can use the ZF minimum variance (ZF-MV) criterion:

WZF-MV = arg min
W

tr{WHRyW}, s.t. WHS = IK

=R−1
y S(SHR−1

y S)−1,
(1)

where Ry�E{y(m)yH(m)}. The ZF-MV will reduce to the
MV detector if only a single user, say user 1 is detected:

wMV = R−1
y s1(sH

1 R−1
y s1)−1. (2)

For the ZF-MV detector, the minimum output power is

V � tr{(SHR−1
y S)−1}, (3)

which will be used for robust receiver design in Section IV-B.
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B. Channel Estimation

Suppose M training symbols are available. Let
y�[yT (1), . . . ,yT (M)]T , which can be expressed as

y =

⎡

⎢
⎣

d1(1)C1F · · · dK(1)CKF
...

. . .
...

d1(M)C1F · · · dK(M)CKF

⎤

⎥
⎦

⎡

⎢
⎣

h1

...
hK

⎤

⎥
⎦ +

⎡

⎢
⎣

e(1)
...

e(M)

⎤

⎥
⎦

�Ah + e.

An initial channel estimate can be obtained by least-squares:
ĥ = (AHA)−1AHy, whose estimation error is ∆h =
ĥ − h = (AHA)−1AHe. We assume e is zero-mean white
Gaussian with E{eeH} = σ2I. While this assumption may
be violated if e contains unmodeled interference, it allows a
simple way to bound the uncertainty set (see Section IV-A).
Hence, ∆h is zero-mean Gaussian with covariance matrix

cov{∆h} = σ2(AHA)−1. (4)

Let A = (AHA) and Aij the ijth L × L sub-
matrix of A: Aij = FHCiCjF

∑M
m=1 d∗i (m)dj(m),

i, j = 1, . . . , K. For independent and identically distributed
(i.i.d.) training symbols, the sample cross-correlation rij �
1
M

∑M
m=1 d∗i (m)dj(m) = O(M−1/2), i �= j, which means

that rij approaches zero (which is the statistical cross-
correlation) at rate M−1/2 as M increases. Hence, for large
M , A = M(IKL+O(M−1/2)) and, in turn, A−1 = 1

M IKL+
O(M−3/2) [7, p. 58] (i.e., inverse of a perturbed matrix).
Therefore, for large M , we have cov{∆h} ≈ σ2

M IKL, and
cov{∆hk} ≈ σ2

M IL. Let β�‖∆hk‖2. Then, β is χ2 distributed
with 2L degrees of freedom [8], whose mean µβ and variance
σ2

β are given by

µβ =E{β} ≈ σ2L/M ; σ2
β = var{β} ≈ σ4L/M2, (5)

which are used to bound the uncertainty set. Note that ap-
proximation is not needed for orthogonal training. Although
for non-orthogonal training and small M (which are used in
Section V), our approximation may be inaccurate, it still offers
a guideline how to set the ambiguity set. Simulation results
show that the proposed approach is insensitive to the size of
the uncertainty set.

IV. ROBUST CHANNEL ESTIMATION AND MUD

A. Bounding Channel Estimation Error

Although β = ‖∆hk‖2 is unbounded, by the Chebyshev
inequality, the channel estimation error is bounded in prob-
ability: Pβ(|β − µβ | > δβ) ≤ σ2

β/δ2
β , where δβ is any

positive number. For sufficiently large δβ , we can ignore
the unbounded channel estimation error, which is a small-
probability event, and consider a bounded set Pβ(β ≤ µβ +
δβ) ≥ 1− σ2

β/δ2
β . Let εk�µβ + δβ denote a chosen boundary

of β. Then

Pβ(‖∆hk‖2 ≤ εk) ≥ 1 − σ2
β/δ2

β , (6)

where Pβ(‖∆hk‖2 ≤ εk) is henceforth referred to as the
Chebyshev bounding probability. Recall our strategy is to
improve detection robustness against small to moderate chan-
nel estimation errors within a bounded set. For a chosen

Chebyshev bounding probability Pβ (say, Pβ = 0.9), we
can determine the corresponding boundary εk by setting the
two sides of (6) equal. In particular, we have εk = µβ +√

σ2
β/(1 − Pβ). In light of (5), we can rewrite εk as εk =

1
M

(
L +

√
L/(1 − Pβ)

)
σ2.

B. Robust Channel Estimation and MUD

Since the ZF-MV detector is known to be sensitive to signal
mismatch due to errors in ĥ, we consider robust channel
estimation by maximizing the following multi-channel output
power (cf. (3)): V (h) = tr{[SH(h)R−1

y S(h)]−1}. Note that
V (h) is a highly nonlinear function in h (due to the outer
matrix inversion). Instead, we utilize an upper bound of
V (h) that is tight for high SNR (see [9]). Specifically, rather
than maximizing tr{[SH(h)R−1

y S(h)
]−1}, we can minimize

tr
{
SH(h)R−1

y S(h)
}

.
Our robust channel estimate is obtained by the following

constrained optimization:

h̃ = arg min
h

tr
[
SH(h)R−1

y S(h)
]
, s.t. ‖ĥ − h‖2 ≤ ε, (7)

where ε =
∑K

k=1 εk denotes the total amount of uncertainty
for all users. The cost function can be simplified as follows:
tr

[
SH(h)R−1

y S(h)
]

=
∑K

k=1 hH
k FHCkR−1

y CkFhk. Let
Φk�FHCkR−1

y CkF , Note that Φk ≥ 0, and they are
independent of each other. Then, the problem in (7) reduces
to K separate optimization problems:

h̃k = arg min
hk

hH
k Φkhk, s.t. ‖ĥk − hk‖2 ≤ εk. (8)

Since the solution of (8) will evidently occur on the boundary
of the uncertainty set, we can solve (8) by the Lagrange
multiplier [3] as below:

h̃k = ĥk − (I + λΦ−1
k )−1ĥk,

where λ can be determined by setting ‖(I+λΦ−1
k )−1ĥk‖2=εk

(see [3] for details). Once h̃k is obtained, the signature vectors
are updated as: s̃k = CkF h̃k, and S̃=[s̃1, · · · , s̃K ]. The robust
ZF-MV detector is given by [cf. (1)]

W̃robust ZF-MV = R−1
y S̃(S̃HR−1

y S̃)−1. (9)

When only a single spreading code is available, the robust
ZF-MV detector reduces to a robust MV detector [cf. (2)]

w̃robust MV = R−1
y s̃1(s̃H

1 R−1
y s̃1)−1. (10)

Compared with the conventional MUD schemes, our robust
approach requires the following extra computations:

1) Compute Φk = FHCkR−1
y CkF . ⇒ O(P 2L) flops

2) Compute Φ−1
k . ⇒ O(L3) flops

3) Solve (8) for λ by a Newton search scheme.

Both the conventional and robust approaches require com-
puting Ry and its inverse, which involve O(P 3) flops and
dominates the overall complexity (since in practice P � L).
The complexity involved in the Newton search is negligible
since the cost function is scalar and monotonically decreasing
(see [3]). As such, the robust approach is only slightly more
involved than the conventional approach.
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Fig. 1. Receiver output SINR versus the normalized channel uncertainty
εk/E{‖hk‖2} when SNR=10dB and M = 15.
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Fig. 2. SINR versus input SNR when M = 50 and εk/E{‖hk‖2} = 0.1.

V. NUMERICAL RESULTS

We consider a K-user MC-CDMA (uplink) with BPSK
modulation, K=10, P=32, L=7 for hk and random spreading
codes ck. The channel vector hk is generated as L × 1
independent complex Gaussian random variables with zero
mean and identical variance 1

L , which are varied independently
from trial to trial. We have two sets of MUD detectors to
compare with. The first set consists of our proposed robust ZF-
MV detector (9) and the robust MV detector (10). The other
includes the standard ZF-MV detector (1) and the MV detector
(2), which ignore the estimation error of the prior channel
estimate. For both the conventional ZF-MV and robust ZF-MV
detectors, we further consider two different scenarios: one has
knowledge of the spreading codes and training symbols of all
10 users; the other has knowledge of 6 out of 10 users, i.e.,
we assume the presence of inter-cell interference (ICI) with 4
out of 10 users coming from a different cell.

Fig. 1 depicts the receiver output signal-to-interference-and-
noise ratio (SINR) for user 1 versus the normalized uncertainty
εk/E{‖hk‖2} when M=15 and SNR =10dB. Since the
conventional MUD detectors ignore the prior estimation errors,
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Fig. 3. BER versus input SNR when M = 50 and εk/E{‖hk‖2} = 0.1.

they are independent of εk. It is seen that the robust detectors
are insensitive to the choice of εk. We notice significant
improvements for all the robust detectors relative to their non-
robust counterparts. We next examine the output SINR and
BER respectively of all the six detectors versus the input
SNR, when M = 50 training symbols are used to obtain
initial channel estimates and we set εk/E{‖hk‖2} = 0.1. Fig.
2 shows that, as the input SNR increases, the performance
gap between the robust detectors and the non-robust detectors
increases. For the average BER performance shown in Fig. 3,
the conventional ZF-MV with ICI and MV detectors have an
irreducible error floor due to poor initial channel estimates.

VI. CONCLUSIONS

We have proposed a robust approach to channel estimation
and MUD for MC-CDMA. Numerical results illustrate that the
proposed robust detector yields improved performance over
the standard detector that ignores the prior estimation errors.
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