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Robust Multiuser Detection for Multicarrier
CDMA Systems
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Abstract—Multiuser detection (MUD) for code-division mul-
tiple-access (CDMA) systems usually relies on some a priori
channel estimates, which are obtained either blindly or by using
training sequences, and the covariance matrix of the received
signal, usually replaced by the sample covariance matrix. How-
ever, such prior estimates are often affected by errors that are
typically ignored in subsequent detection. In this paper, we present
robust channel estimation and MUD techniques for multicarrier
(MC) CDMA by explicitly taking into account such estimation
errors. The proposed techniques are obtained by optimizing
the worst case performance over two bounded uncertainty sets
pertaining to the two types of estimation errors. We show that
although the estimation errors associated with the prior channel
estimate and the sample covariance matrix are generally not
bounded, it is beneficial to optimize the worst case performance
over properly chosen bounded uncertainty sets determined by a
parameter called bounding probability. At a slightly higher com-
putational complexity, our proposed robust detectors are shown
to yield improved performance over the standard detectors that
ignore the prior estimation errors.

Index Terms—Multicarrier code-division multiple access (MC-
CDMA), multiuser detection (MUD), robust channel estimation,
robust MUD.

I. INTRODUCTION

MULTICARRIER (MC) code-division multiple-access
(CDMA), a popular multiple-access scheme for broad-

band transmission [1], [2], has received much research interest
recently. So far, numerous multiuser detection (MUD) schemes
for MC-CDMA have been proposed (see [3]–[6] and references
therein). While these MUD schemes may be derived from
different principles, they usually rely on some prior estimate of
the channel, obtained by either a blind or a training-sequence
assisted channel estimation algorithm. However, channel esti-
mation are usually affected by errors and most of existing MUD
schemes are known to be sensitive to such errors. Moreover, for
effective interference suppression, many MUD schemes also
require an estimate of the covariance matrix of the received
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signal, which is typically the sample covariance matrix. The
sample covariance matrix converges slowly, resulting in a poor
estimate of the true covariance matrix when the number of
samples of the received signal is relatively low [7], [8].

In this paper, we develop robust multiuser detection schemes
that explicitly account for both channel and covariance matrix
estimation errors. Our schemes build on recent developments in
robust adaptive beamforming (RAB) [9]–[13], which can suc-
cessfully deal with uncertainty in the antenna steering vector.
Although RAB in the form of diagonal loading has been known
for more than two decades in the array processing community
(see [9] and [14]), it was unclear how to choose the diagonal
loading factor precisely and relate it to the amount of uncertainty
of the steering vector. The problem was studied in several recent
studies that involve optimizing the worst case performance over
a bounded ambiguity set determined by the amount of uncer-
tainty on the steering vector [15]–[19]. It was shown the diag-
onal loading can be computed exactly by a interior point method
[18] or a Newton search over a one-dimensional (1-D) bounded
set [15], [16], among other approaches.

While the uncertainty on the steering vector in array pro-
cessing is usually bounded, this is not the case in our problem,
where the prior channel estimation errors and the sample
covariance matrix estimation errors are unbounded. Even so,
it turns out beneficial to optimize the worst case performance
over a properly chosen bounded uncertainty set. By using
the Chebyshev inequality [20], we show that, in either case
involving channel estimation error or covariance matrix esti-
mation error, a bounded uncertainty set can be determined by a
parameter referred to as the Chebyshev bounding probability.
By choosing the Chebyshev bounding probability sufficiently
large (e.g., ), we neglect the small-probability event that
the estimation error exceeds the chosen bounded set. This is be-
cause in that case the prior estimation is so poor and our robust
schemes are not expected to help (in fact, few methods will
succeed when the initial estimates are very poor). Hence, our
strategy is to try to achieve robustness against small-to-medium
prior estimation errors. This makes our work distinct from
earlier RAB studies.

Driven by the advances in RAB, robust detection and esti-
mation for wireless communications is receiving more atten-
tion. It is interesting to note that a similar approach [21], which
was brought to our attention by one reviewer, was considered
for robust linear detection in multiuser multiple-input multiple-
output (MIMO) systems. The Chebyshev inequality was em-
ployed there to simplify a probability constrained optimization-
based receiver, which requires nonlinear programming, to one
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that requires only second-order programming, which is compu-
tationally much simpler. Although the problems addressed are
different, the idea behind [21] and our work is to ensure the
probability that the design constraint is violated is small. In [22],
robust blind MUD was considered for synchronous CDMA sys-
tems to deal with user signature mismatch. Different from our
approach, it was assumed that the mismatch is bounded with
a known upper bound. Other recent relevant studies in wireless
communications can be found in the references of [21] and [22].

Our robust channel estimation and MUD schemes are first
developed based on batch processing. We also extend them for
adaptive implementations. We show that in the latter case, the
uncertainty set pertaining to the estimation error contributed
by the sample covariance matrix is no longer fixed and should
decrease as more and more symbols are received. As such,
time-varying covariance estimation errors are employed in our
adaptive implementations. To allow variable uncertainty set in
adaptive implementation is another unique feature of our work.

To exemplify the usefulness of our robust design, we con-
sider a class of standard linear MUD receivers, including the
minimum variance (MV) detector (e.g., [23]–[25]) assuming
knowledge of only one user’s spreading code and training,1

and the zero-forcing MV (ZF-MV) detector [26], [27] with
spreading codes and training of multiple users. In the latter case,
we consider two scenarios with or without residual unmodeled
interference [e.g., intercell interference (ICI)]. We discuss
robust versions of these detectors obtained from our robust
design. We compare the performance of these MUD detectors
driven by training-based channel estimates and our robust
channel estimates. Numerical results show that our proposed
robust schemes yield significant performance improvements
over the standard detectors that ignore the prior channel and
sample covariance matrix estimation errors.

The rest of the paper is organized as follows. In Section II,
we introduce the MC-CDMA data model and formulate the
problem of interest. In Section III, we first review a class of
linear MUD receivers. Then, we examine estimation errors in
the initial channel estimate and the sample covariance matrix. In
Section IV, we develop our robust channel and MUD schemes.
Adaptive implementations are discussed in Section V, followed
by numerical results in Section VI. Finally, we draw conclusions
in Section VII.

A. Notation

Vectors (matrices) are denoted by boldface lower (upper) case
letters; all vectors are column vectors; , , and de-
note the conjugate, transpose, and conjugate transpose, respec-
tively; denotes the Frobenius norm; denotes the
identity matrix; denotes a diagonal matrix; and finally,

denotes the trace a matrix.

II. DATA MODEL AND PROBLEM FORMULATION

Consider a baseband MC-CDMA (uplink) system with
subcarriers and active users. For the th user, each transmit

1While the MV principle can be employed for blind channel estimation, we
assume that the channel estimation is initially obtained by training (and refined
by our robust techniques).

symbol is modulated by a 1 preassigned spreading code
(frequency domain spreading). After a -point inverse discrete
Fourier transform (IDFT) and parallel-to-serial (P/S) conver-
sion, a cyclic prefix (CP) is inserted between successive symbols
to avoid inter-symbol interference. Then, the signal is sent out,
passing through an 1 fading channel , which lumps to-
gether the transmit/receiver filters and the physical channel. At
the receiver, the received signal is first serial-to-parallel (S/P)
converted, followed by CP removal and discrete Fourier trans-
form (DFT). We assume that the propagation delay spread is
within the duration of the CP so that the output of the DFT
processor during the th symbol interval can be expressed as
(e.g., [28])

(1)

where and denote user ’s transmission power and
data symbol, respectively, with denoting
user ’s spreading code, denotes the DFT ma-
trix with the th element given by ,
and is the disturbance containing the additive channel
noise and possibly unmodeled interference (e.g., ICI). Since the
transmission power and channel impulse response cannot
be separated from one another in channel estimation, they are
treated as a combined channel vector . Then, (1)
can be rewritten as

We consider MUD schemes that require the channel state in-
formation (CSI) for multiuser interference (MUI) suppres-
sion. The true CSI can never be known exactly and has to be
replaced by some channel estimate which is inevitably sub-
ject to estimation error. The problem of interest is to develop
robust linear MUD schemes by taking into account imperfect
channel estimate , along with the other type of imperfection
occurred in the estimation of the covariance matrix of ,
which is often needed in many MUD schemes.

III. PRELIMINARIES

To facilitate our discussion of the proposed robust MUD
scheme in Section IV, we first briefly review a class of linear
MUD receivers that utilize the ZF constraint or MV criterion
or a combination of both, as well as training-based channel
estimation with the least-squares (LS) criterion. Then, we
analyze the estimation error of the LS based channel estimator
and that of the sample covariance matrix. These analyses can
help us determine the boundaries of the uncertainty sets in our
robust MUD receiver design in Section IV.

A. Linear Multiuser Detection

Let , for ,
, and . Then

can be rewritten in a compact form
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The ZF detector, which assumes the signature vectors
are known at the receiver, is given by [29]

which detects all users simultaneously. The ZF detector ig-
nores any possible residual interference in (e.g., ICI or
unmodeled interference). To account for such residual interfer-
ence, we can use ZF-MV criterion (e.g., [26], [30])

(2)

(3)

where denotes the covariance matrix
of and in obtaining the second equality, we used a standard
constrained quadratic optimization result (e.g., [31, p. 283]).
The ZF constraint in (2) ensures that each row of passes
one user with unit gain but completely suppress (with zero gain)
the other interfering users. Meanwhile, the MV crite-
rion in (2) further cancels the residual/unmodeled interference
in .

The ZF-MV receiver reduces to the MV or minimum output
energy (MOE) detector [23]–[25] if , i.e., only a single
user, say user 1, is detected

(4)

We note that if and are known exactly, is the same
as the optimum linear minimum mean-squared error (MMSE)
detector [23], [24]; meanwhile, a similar ZF-MV approach was
used in [27] for deriving group blind MUD schemes.

The minimum output power of the ZF-MV detector is

(5)

which can be verified by substituting (3) into the cost function in
(2). The minimum output (5) will be used in our robust receiver
design in Section IV.

B. Channel Estimation

While the above MUD detectors are based on different
principles and prior knowledge, they all rely on the CSI.
Suppose training symbols are available. We stack as

. Then

...
. . .

...
...

...

where we assume that we have the training information of all
users and, therefore, is known. The LS estimate of is given
by

(6)

Note that, if there is no residual interference in , the LS
channel estimate in (6) is equivalent to the optimum maximum-
likelihood (ML) estimate [32].

The channel estimation error of (6) is

(7)

Suppose contains white Gaussian noise with .
While this assumption is not satisfied in the presence of residual
interference, this is a simple and suitable assumption if the sta-
tistical property of the residual interference is unknown. Fol-
lowing the assumption, is zero-mean Gaussian (conditioned
on the training symbols) with covariance matrix

(8)

Let and the th sub-
matrix of : ,

. For independent and identically dis-
tributed (i.i.d.) training symbols, the sample cross-correlation

, ,
which means that approaches zero (which is the statis-
tical cross-correlation) at rate as increases. Hence,
for large , and, in turn,

[33, p. 58] (i.e., inverse of a
perturbed matrix). Substituting (i.e., ) into (8),
for large , we have

(8a)

Recall that . We can further infer that

(9)

Let us denote . Clearly, is distributed with
degrees of freedom [34], whose mean and variance

are given by

(10)

The above calculation is used to choose the size of the uncer-
tainty set. Simulation results in Section VI show that the per-
formance of the proposed approach is insensitive to the choice.
Hence, an estimate of suffices. Note approximation is
not needed for orthogonal training. Although for nonorthogonal
training and small , the above approximation may be inaccu-
rate, it still offers a guideline regarding how to set the ambiguity
set. Nonorthogonal training and relatively small are used in
our computer simulation. Our results show significant perfor-
mance improvement can still be obtained with the proposed ap-
proach in such cases.

C. Covariance Matrix Estimation

Note that is used in the ZF-MV (3) and MV (4) detectors
for interference suppression. In reality, the true covariance ma-
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trix is not available and usually substituted by the sample
covariance matrix

(11)

While is the ML estimate of , the above linear mul-
tiuser detectors suffer from small , due to the well-known
convergence problem. We next characterize the estimation er-
rors in . In particular, we consider estimation error

. Let and be the th element
of and , respectively. Then

is a sum of random variables. As shown in Appendix I, the
mean and variance of are given by

(12)

We will use the above statistics of for robust MUD design in
Section IV.

IV. ROBUST MULTIUSER DETECTION

In this section, we will develop a class of robust MUD
schemes by taking into account the estimation errors in and

. Our schemes optimize the worst case performance over
bounded sets of the above estimation errors. First, we discuss
how to bound the above estimation errors.

A. Bounding Channel Estimation Error

Although is distributed and, therefore, not
bounded, by the Chebyshev inequality, the unbounded channel
estimation error is bounded in probability

(13)

where and denote the mean and variance, respectively,
of , which are given in (10), and is any positive number.
The right-hand side of (13) can be made very small by choosing
a large . We will ignore the unbounded channel estimation
error, which is a small-probability event for sufficiently large

, and consider a bounded set

(14)

Let denote a chosen boundary of . Then

(15)

where is henceforth referred to as the
Chebyshev bounding probability. Although we can choose a
sufficiently large to make the Chebyshev bounding proba-
bility approach 1, it is not worth seeking robustness when
the channel estimation error is too large (see Section I). Hence,
our strategy is to improve detection robustness against small to
moderate channel estimation errors. For a chosen Chebyshev
bounding probability (say, ), we can determine
the corresponding boundary by setting the two sides of (15)
equal. In particular, we have

(16)

In light of (10), we can rewrite as

(17)

B. Bounding Covariance Matrix Estimation Error

Likewise, we can bound covariance matrix estimation error
by the Chebyshev inequality

(18)

where and denote the mean and variance, respectively, of
, which are given by (12), and is a positive number. Again,

we can ignore the unbounded small-probability event (for suffi-
ciently large ) and consider a bounded set

(19)

It will be more convenient to work with the estimation error
instead of . To this end, let denote the boundary
for . Then

(20)

For a given Chebyshev bounding probability , we set the two
sides of (20) equal in order to determine the boundary , which
is given by

(21)

In light of (12), we have

(22)

C. Robust Channel Estimation and MUD

The ZF-MV detector in (3) is sensitive to signal mismatch due
to errors in (equivalently, ) and errors in . Next, we de-
velop a class of robust ZF-MF detectors by accounting for such
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imperfect prior estimation. We consider channel estimation by
maximizing the following multichannel output power [cf. (5)]:

(23)

subject to certain constraints (to be specified). The idea is after
interference suppression [enforced by the ZF-MV criterion in
(2)], we should maximize the output power to avoid signal can-
cellation (e.g., [24]).

It turns out computationally involved to use (23), which is
highly nonlinear in (due to the outer matrix inversion). In-
stead, we utilize an upper bound of obtained in a similar
manner as in [30] by using the Schwartz inequality

(24)

which yields

(25)

Following a similar proof in [30], we can show that
the above bound is asymptotically tight for high signal-
to-noise ratio (SNR). Therefore, rather than maxi-
mizing , we can minimize

. Our channel estimate is obtained by
considering the following constrained optimization:

(26)

where . In plain English, we seek to optimize the
cost function over two spherical constrained sets centered on
the initial estimates with radius determined by their statistical
uncertainty. Our updated estimates optimize the best worst case
performance over the two uncertainty sets.

The cost function can be simplified as follows:

(27)

Note that , for , and
they are independent of each other. Moreover, for a fixed , we
have

(28)

which is also independent of different users. Therefore, by sub-
stituting into (26), the problem in (26) reduces to separate
optimization problems

(29)

Let . Since the solution of (29)
will evidently occur on the boundary of the uncertainty set (i.e.,
the worst case), then

(30)

where the inequality constraint has been replaced by a quadratic
equality constraint. The problem in (30) can be solved by using
the Lagrange multiplier, in a manner similar to [15]. Specifi-
cally, Let

(31)

Then, the new channel estimate is obtained by taking the partial
derivative and setting it to zero

(32)

which yields

(33)

The Lagrange-multiplier can be calculated by setting

(34)

Let the eigenvalue decomposition (EVD) of be
, , and

with . Then, can
be rewritten as

(35)

Since is monotonically decreasing, we can determine a
unique solution lie in the upper and lower bounds given by (cf.
[15])

(36)
Once is obtained, our robust channel estimate is given by

(37)

In turn, the signature vectors for MUD are updated as follows:

(38)
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TABLE I
SUMMARY OF THE ROBUST AND STANDARD MUD DETECTORS AND COMPLEXITIES

The robust ZF-MV detector (multiuser spreading codes are
known) is given by [cf. (3)]

(39)
When only a single spreading code is available, the robust
ZF-MV detector reduces to a robust MV detector [cf. (4)]

(40)

The proposed robust MUD detectors along with the com-
plexity (in terms of the number of flops) involved in each step
is summarized in Table I. Note that the complexity of Step 1,
which is identical for both the robust and standard detectors,
depends on a particular channel estimator used and, therefore,
is not listed. For the LS estimator discussed in Section III-B,
the complexity is (ignoring the
lower order terms). Also note that the Newton search in Step
6 involves 1-D search, as shown in (35) and (36). The variable
complexity involved in the search is not listed since it is negli-
gible compared to other matrix/vector manipulations. For com-
parison, the standard detectors along with their complexities are
also listed in Table I. It is seen that the extra steps of the robust
detectors involve only slight increase in complexity since is
much smaller compared to in practical systems. As such, the
robust and standard detectors have a comparable complexity.

V. ADAPTIVE IMPLEMENTATION

The above robust MUD schemes are presented in batch-pro-
cessing form, based on a collection of the received signals
during symbols. In a more realistic scenario, we may have

training symbols followed by data symbols which
form a data packet. It is often desirable to detect the re-
ceived signal in a symbol-to-symbol manner, as opposed to
the above batch-processing. In this section, we discuss the
symbol-by-symbol adaptive implementation of the proposed
robust MUD detectors.

First, we note that the sample covariance matrix

(41)

becomes more and more accurate as increases. This is also
reflected in (22), which shows that the covariance matrix estima-
tion error decrease in as increases. As such, the size
of the uncertainty set in (26) with respect to covariance matrix
estimation should be time varying and decrease with

(42)

where is a constant
and independent of . With time-varying size of the uncertainty
set, we have the adaptive robust ZF-MV and MV for the th
received symbol, given by

(43)

and, respectively

(44)

We note that the computational complexity with (43) and (44) is
high since the matrix inverse has
to recomputed for every . In the following, we discuss how to
efficiently and adaptively compute it. Based on the definition of

, we have

(45)
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In the presence of a variable diagonal loading factor , we
have

(46)

where we used the fact that
[cf. (42)]. It facilitates obtaining a recursive expression for cal-
culating if is replaced by .
Doing so has little impact on the performance as long as
is not too small (recall that ). As such, we can drop
the last term at the right-hand side of (46), which is equivalent
to slightly changing the size of the uncertainty set associated
with the sample covariance matrix. Note that the proposed ro-
bust detectors are insensitive to such minor adjustment of the
uncertainty set size, as shown in the numerical examples in Sec-
tion VI. Therefore

(47)

Let and . Then

(48)

where is a variable forgetting factor, changing from
symbol to symbol. It is clear that the standard recursive least
square (RLS) like iteration can be used (using the matrix
inversion lemma) [35]

(49)

In summary, our adaptive implementations for the proposed ro-
bust MUD consist of the following steps.

• Step 1: Initialization :
– 1.a : Form from
training symbols, and use (6) to com-

pute .
– 1.b : Compute by (41), by

(42), and matrix inverse .
• Step 2: Adaptive estimation and MUD :
for
– 2.a : Compute , i.e.,

, by (49).

– 2.b : Compute
.

– 2.c : Perform the EVD of .

– 2.d : Solve (34) for by a Newton
search scheme (e.g., by Matlab function
fminbnd).
– 2.e : Compute the robust channel esti-

mate by (37) and form .
– 2.f : Compute the robust MUD detectors

by (43) or by
(44).
end.

The complexity of the adaptive implementations can be an-
alyzed in the same way as the one done for the batch versions.
The results are similar except that the inverse matrix computa-
tion is simplified to flops by the RLS im-
plementation.

VI. NUMERICAL RESULTS

We consider a -user MC-CDMA (uplink) system with bi-
nary phase shift key (BPSK) modulation, subcarriers,

for and random spreading codes . The channel
vector is generated as 1 independent complex Gaussian
random variables with zero mean and identical variance ,
and varied independently from trial to trial. In the following ex-
amples, the number of active users is ten.

We have two sets of multiuser detectors under consideration.
The first set consists of our proposed robust ZF-MV detector
in (39), which assumes knowledge of the spreading codes and
training symbols of multiple users, and the robust MV detector
in (40), which assumes the spreading code and training sym-
bols of only the desired user. The other set includes the standard
ZF-MV detector in (3) and the MV detector in (4), which ignore
the estimation errors in the prior estimates of the CSI and the
data covariance matrix. For both the conventional ZF-MV and
robust ZF-MV detectors, we further consider two different sce-
narios: one has knowledge of the spreading codes and training
symbols of all ten users; the other has knowledge of six out of
ten users, i.e., we assume the presence of ICI with four out of
ten users coming from a different cell unknown to the detector at
the basestation (of the current cell). Therefore, we have a total of
six different MUD detectors, namely our robust ZF-MV (39),
robust ZF-MV (with ICI) (39), robust MV (40), standard
ZF-MV (3), standard ZF-MV (with ICI) (3), and standard
MV (4) detectors for comparison.

We first examine the impact of the size of the uncertainty
set pertaining to the initial channel estimate [cf. (15)] when

, SNR dB, and . Fig. 1 de-
picts the receiver output signal-to-interference-and-noise ratio
(SINR) for user 1 as a function of the normalized
when the variance [cf. (8a)] of the initial channel estimation
error is fixed2. Since the conventional MUD detectors ignore the
prior estimation errors, they are independent of . While the ro-
bust detectors require a choice of , they are insensitive to the
choice. Notable improvements are observed for all robust detec-
tors relative to their nonrobust counterparts. Compared with the

2The results are obtained over 200 independent channel realizations
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Fig. 1. Receiver output SINR performance versus the normalized channel
uncertainty � =Efkh k g when P = 32, L = 7, K = 10, M = 50,
�=EfkR kg = 0:2, and SNR = 10 dB.

Fig. 2. Receiver output SINR versus the normalized covariance matrix
uncertainty �=EfkR kg when P = 32, L = 7, K = 10, M = 50,
� =Efkh k g = 0:1, and SNR = 10 dB.

standard nonrobust detectors, the robust detectors obtain around
5–8-dB improvements.

We next investigate the impact of the size of the uncertainty
set related to the initial sample covariance matrix estimate [cf.
(18)]. We keep the same set of simulation parameters as in the
previous example except that and the size
of the uncertainty set, , is varying. The results are
shown in Fig. 2. Again, the proposed robust schemes are not
sensitive to the selections of and, compared to the standard
nonrobust MUD detectors, obtain significant improvements.

One may wonder how the proposed robust detectors compare
to the standard detectors when initial estimates are sufficiently
accurate. To find out an answer, we consider a case where the
amount of the prior estimation error varies but the assumed size
of the uncertainty set is fixed. In particular, Fig. 3(a) depicts

the performance as a function of the channel estimation error
when , , and

. It may seem strange that even with perfect
channel estimate (i.e., zero estimation error), the robust detec-
tors still outperform the standard ones by over 5 dB. The perfor-
mance gap is caused by the error in the sample covariance matrix
obtained with symbols. We next replace the sample co-
variance matrix with the true covariance matrix, so that channel
estimation error is the only type of error that affects the perfor-
mance, and repeat the above simulation. The results are shown
in Fig. 3(b). It is seen that with zero estimation error, both the ro-
bust and standard detectors perform almost identically.3 Mean-
while, even with small estimation error, the standard detectors
degrade quickly, and the gap between the standard and our ro-
bust detectors increases as the estimation error increases.

We proceed to compare the output SINR performance of
the proposed robust and the standard nonrobust detectors as a
function of the input SNR, when the number of training sym-
bols , and .
In Fig. 4, it is seen that the robust detectors outperform the
standard nonrobust detectors substantially, especially in the
higher SNR regime. The robust ZF-MV detector, which utilize
the spreading codes and training for all ten users, achieves
the best performance. The robust ZF-MV detector with ICI,
which utilizes knowledge of six out of all ten users’ spreading
codes and training, shows some degradation relative to the
robust ZF-MV detector without ICI. Finally, the robust MV
detector utilizes knowledge of a single user information and, as
expected, is the worst of the three robust detectors.

In the last example, we examine the average bit-error rate
(BER) performance of all the six detectors versus the input SNR,
where we consider adaptive implementations of the proposed
and standard detectors. We use training symbols,
while and are chosen as the same in the previous example.
As shown in Fig. 5, when the input SNR varies from 2 to 12 dB,
the performance gap between the robust detectors and the non-
robust detectors increases. Moreover, the conventional ZF-MV
with ICI and MV detectors have an irreducible error floor due
to poor initial channel estimates.

VII. CONCLUSION

In this paper, we have proposed a class of robust MUD de-
tectors to seek enhanced robustness against prior estimation er-
rors in the initial channel estimate and the sample covariance
matrix. Specifically, robust MUD detectors have been obtained
by optimizing the worst case performance over two separate
bounded uncertainty sets pertaining to the aforementioned es-
timation errors. We have shown that, although the prior estima-
tion errors are generally unbounded, it is beneficial to optimize
the worst case performance over properly chosen bounded un-
certainty sets which are determined by a bounding probability.
Numerical results show that the proposed robust schemes yield
improved performance over those that ignore the prior channel
estimation and sample covariance matrix estimation errors.

3Note that in this case, the Standard MV detector is optimum since it reduces
to the linear MMSE receiver.
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Fig. 3. Receiver output SINR versus the normalized initial channel estimation error Efk�h k =kh k g when P = 32, L = 7, K = 10, � =Efkh k g =
0:1, and �=EfkR kg = 0:2. (a) Using a sample covariance matrix R̂ obtained with M = 50; (b) Using the true R .

Fig. 4. Receiver output SINR versus the input SNR when P = 32, L = 7,
K = 10, M = 50, � =Efkh k g = 0:1, and �=EfkR kg = 0:2.

Fig. 5. Average BER versus the input SNR when P = 32, L = 7, K = 10,
M = 100, � =Efkh k g = 0:1, and �=EfkR kg = 0:2.

APPENDIX

DERIVATIONS OF AND

The sample covariance matrix is a unbiased estimate of
, i.e., . Let be the th element of .

The unbiasedness can be easily checked

(50)

Using (50), we can rewrite the mean of as follows:

(51)

Note that in (51), we have utilized the fact both and
are Hermitian matrices and, therefore, and

. Furthermore

(52)
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(54)

(58)

where we have used the standard result on the fourth-order mo-
ment of Gaussian random variables in the second equality [31].
Substituting (52) into (51), we have

(53)

Next we compute . Let .
Then, using the standard result on the fourth-order moment of
Gaussian random variables, we have (54), shown at the top of
the page, where we have utilized the fact that

. We first consider the item with the
most general case in (54), i.e.,

(55)

Here, can be rewritten as

(56)

Substituting (56) into (55), we have

(57)

Based on (57), (54) can be simplified as (58), shown at the top
of the page. Using (53) and (58), we have

(59)

REFERENCES

[1] S. Hara and R. Prasad, “Overview of multicarrier CDMA,” IEEE
Commun. Mag., vol. 35, no. 12, pp. 126–133, Dec. 1997.

[2] N. Yee, J.-P. Linnartz, and G. Fettweis, “Multicarrier CDMA in indoor
wireless radio networks,” in Proc. IEEE PIMRC, Yokohama, Japan, Sep.
1993, pp. 109–113.

[3] S. Sigdel, K. M. Ahmed, and R. M. A. P. Rajatheva, “Performance evalu-
ation of multicarrier CDMA uplink system with antenna array and mul-
tiuser detection over correlated multipath channel,” in Proc. 2002 IEEE
Veh. Technol. Conf., vol. 4, Vancouver, BC, Canada, Sep. 24–28, 2002,
pp. 1958–1962.

[4] W. Nabhane and H. V. Poor, “Blind joint equalization and multiuser
detection in dispersive MC-CDMA/MC-DS-CDMA/MT-CDMA chan-
nels,” in Proc. 2002 Military Commun. Conf., vol. 2, Aneheim, CA, Oct.
7–10, 2002, pp. 814–819.

[5] F. Verde, “Subspace-based blind multiuser detection for quasi-syn-
chronous MC-CDMA systems,” IEEE Signal Process. Lett., vol. 11,
pp. 621–624, Jul. 2004.

[6] J. Li, K. B. Letaief, and Z. Cao, “Reduced-complexity MAP-based iter-
ative multiuser detection for coded multicarrier CDMA systems,” IEEE
Trans. Commun., vol. 52, no. 11, pp. 1909–1915, Nov. 2004.

[7] I. S. Reed, J. D. Mallett, and L. E. Brennan, “Rapid convergence rate
in adaptive arrays,” IEEE Trans. Aerosp. Electron. Syst., vol. 10, pp.
853–863, 1974.

[8] B. D. Carlson, “Covariance matrix estimation errors and diagonal
loading in adaptive arrays,” IEEE Trans. Aerosp. Electron. Syst., vol.
24, no. 4, pp. 397–401, Jul. 1988.

[9] H. Cox, R. M. Zeskind, and M. M. Owen, “Robust adaptive beam-
forming,” IEEE Trans. Acoustics Speech Signal Process., vol. ASSP-35,
no. 10, pp. 1365–1376, Oct. 1987.

[10] D. D. Feldman and L. J. Griffiths, “A projection approach to robust
adaptive beamforming,” IEEE Trans. Signal Process., vol. 42, no. 4, pp.
867–876, Apr. 1994.

[11] C. C. Lee and J. H. Lee, “Robust adaptive array beamforming under
steering vector errors,” IEEE Trans. Antennas Propag., vol. 45, no. 1,
pp. 168–175, Jan. 1997.

[12] A. B. Gershman, “Robust adaptive beamforming in sensor arrays,” Int.
J. Electron. Commun., vol. 53, pp. 305–314, Dec. 1999.

[13] S. Shahbazpanahi, A. B. Gershman, Z. Luo, and K. M. Wong, “Robust
adaptive beamforming for general-rank signal models,” IEEE Trans.
Signal Process., vol. 51, no. 9, pp. 2257–2269, Sep. 2003.



WANG et al.: ROBUST MULTIUSER DETECTION FOR MULTICARRIER CDMA SYSTEMS 683

[14] M. H. Er and A. Cantoni, “An alternative formulation for an optimum
beamformer with robustness capability,” in IEE Proc. Commun. Radar
Signal Process., vol. 132, 1985, pp. 447–460.

[15] J. Li, P. Stoica, and Z. Wang, “On robust Capon beamforming and
diagonal loading,” IEEE Trans. Signal Process., vol. 51, no. 7, pp.
1702–1715, Jul. 2003.

[16] , “Doubly constrained robust capon beamformer,” IEEE Trans.
Signal Process., vol. 52, no. 9, pp. 2407–2423, Sep. 2004.

[17] S. Q. Wu and J. Y. Zhang, “A new robust beamforming method with an-
tennae calibration errors,” in Proc. IEEE Wireless Commun. Networking
Conf., vol. 2, New Orleans, LA, Sep. 1999, pp. 869–872.

[18] S. A. Vorobyov, A. B. Gershman, and Z.-Q. Luo, “Robust adaptive
beamforming using worst case performance optimization,” IEEE Trans.
Signal Process., vol. 51, no. 2, pp. 313–324, Feb. 2003.

[19] K. Zarifi, S. Shahbazpanahi, A. B. Gershman, and Z. Luo, “Robust blind
multiuser detection based on the worst case performance optimization
of the MMSE receiver,” IEEE Trans. Signal Process., vol. 53, no. 1, pp.
295–305, Jan. 2005.

[20] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
3rd ed. New York: McGraw-Hill, 1991.

[21] Y. Rong, S. A. Vorobyov, and A. B. Gershman, “A robust linear receiver
for uplink multi-user MIMO systems based on probability-constrained
optimization and second-order cone programming,” presented at the 3rd
IEEE Sensor Array Multichannel Signal Process. Workshop, Barcelona,
Spain, Jul. 18–21, 2004.

[22] S. Shahbazpanahi and A. B. Gershman, “Robust blind multiuser detec-
tion for synchronous CDMA systems using worst case performance opti-
mization,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2232–2245,
Nov. 2004.

[23] M. L. Honig, U. Madhow, and S. Verdú, “Blind adaptive multiuser de-
tection,” IEEE Trans. Inf. Theory, vol. 41, no. 7, pp. 944–960, Jul. 1995.

[24] M. K. Tsatsanis and Z. Xu, “Performance analysis of minimum vari-
ance CDMA receiver,” IEEE Trans. Signal Process., vol. 46, no. 11, pp.
3014–3022, Nov. 1998.

[25] Z. Xu, P. Liu, and X. Wang, “Blind multiuser detection: From MOE
to subspace methods,” IEEE Trans. Signal Process., vol. 52, no. 2, pp.
510–524, Feb. 2004.

[26] J. B. Schodorf and D. B. Williams, “A constrained optimization ap-
proach to multiuser detection,” IEEE Trans. Signal Process., vol. 45,
no. 1, pp. 258–262, Jan. 1997.

[27] X. Wang and A. Host-Madson, “Group-blind multiuser detection for
uplink CDMA,” IEEE J. Sel. Areas Commun., vol. 17, no. 9, pp.
1971–1984, Nov. 1999.

[28] O. Edfors, M. Sandell, J.-J. van de Beek, D. Landström, and F. Sjöberg,
“An introduction to orthogonal frequency-division multiplexing,” Luleå
Univ. Technol., Luleå, Sweden, Res. Rep./1996:16, 1996.

[29] S. Verdú, Multiuser Detection. Cambridge, U.K.: Cambridge Univ.
Press, 1998.

[30] H. Li, “Blind channel estimation for multicarrier systems with narrow-
band interference suppression,” IEEE Commun. Lett., vol. 7, no. 7, pp.
326–328, Jul. 2003.

[31] P. Stoica and R. L. Moses, Introduction to Spectral Analysis. Upper
Saddle River, NJ: Prentice Hall, 1997.

[32] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Upper Saddle River, NJ: Prentice Hall, 1993.

[33] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Balti-
more, MD: Johns Hopkins Univ. Press, 1996.

[34] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-
Hill, 2000.

[35] S. Haykin, Adaptive Filter Theory, 3rd ed. Upper Saddle River, NJ:
Prentice Hall, 1996.

Rensheng Wang (M’05) received the B.E. and
M.E. degrees from Harbin Institute of Technology,
Harbin, China, in 1995 and 1997, respectively,
and the Ph.D. degree from Stevens Institute of
Technology, Hoboken, NJ, in 2005, all in electrical
engineering.

From 1997 to 2000, he was a Researcher at the In-
stitute of Electronics, Chinese Academy of Sciences,
Beijing. He is currently a Research Associate with the
Wireless Network and Security Center (WiNSeC) at
Stevens Institute of Technology. His research inter-

ests lie in the general area of statistical signal processing, communication sys-
tems, and networks.

Dr. Wang received the Outstanding Research Award in 2002 and the Edward
Peskin Award in 2004 from Stevens Institute of Technology.

Hongbin Li (M’99) received the B.S. and M.S. de-
grees from the University of Electronic Science and
Technology of China (UESTC), Chengdu, in 1991
and 1994, respectively, and the Ph.D. degree from
the University of Florida, Gainesville, in 1999, all in
electrical engineering.

From July 1996 to May 1999, he was a Research
Assistant in the Department of Electrical and Com-
puter Engineering, the University of Florida. He was
a Summer Visiting Faculty Member at the Air Force
Research Laboratory, Rome, NY, in the summers of

2003 and 2004. Since July 1999, he has been an Assistant Professor in the De-
partment of Electrical and Computer Engineering, Stevens Institute of Tech-
nology, Hoboken, NJ. His current research interests include wireless communi-
cations, statistical signal processing, and radars.

Dr. Li is a member of Tau Beta Pi and Phi Kappa Phi. He received the Harvey
N. Davis Teaching Award in 2003 and the Jess H. Davis Memorial Award for ex-
cellence in research in 2001 from Stevens Institute of Technology, and the Sigma
Xi Graduate Research Award in 1999 from the University of Florida. He has
been an Editor for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

since January 2003 and an Associate Editor for the IEEE SIGNAL PROCESSING

LETTERS since January 2005.

Tao Li received the B.S. and M.S. degrees in com-
puter science and the Ph.D. degree in electrical en-
gineering from the University of Electronic Science
and Technology of China (UESTC), Chengdu, China,
in 1986, 1991, and 1995, respectively.

From 1993 to 1994, he was a Visiting Scholar at the
University of California, Berkeley. He is currently a
Professor with the Department of Computer, Sichuan
University, Chengdu, where he founded and directs
the Laboratory of Computer Networks and Informa-
tion Security. His research interests include computer

networks, information security, artificial intelligence, neural networks, artificial
immune system, computer communications, and wireless communications.


	toc
	Robust Multiuser Detection for Multicarrier CDMA Systems
	Rensheng Wang, Member, IEEE, Hongbin Li, Member, IEEE, and Tao L
	I. I NTRODUCTION
	A. Notation

	II. D ATA M ODEL AND P ROBLEM F ORMULATION
	III. P RELIMINARIES
	A. Linear Multiuser Detection
	B. Channel Estimation
	C. Covariance Matrix Estimation

	IV. R OBUST M ULTIUSER D ETECTION
	A. Bounding Channel Estimation Error
	B. Bounding Covariance Matrix Estimation Error
	C. Robust Channel Estimation and MUD


	TABLE I S UMMARY OF THE R OBUST AND S TANDARD MUD D ETECTORS AND
	V. A DAPTIVE I MPLEMENTATION
	• Step 1: Initialization :
	• Step 2: Adaptive estimation and MUD :
	VI. N UMERICAL R ESULTS

	Fig. 1. Receiver output SINR performance versus the normalized c
	Fig. 2. Receiver output SINR versus the normalized covariance ma
	VII. C ONCLUSION

	Fig. 3. Receiver output SINR versus the normalized initial chann
	Fig. 4. Receiver output SINR versus the input SNR when $P=32$, $
	Fig. 5. Average BER versus the input SNR when $P=32$, $L=7$, $K=
	D ERIVATIONS OF $E\{\gamma \}$ AND $ {\rm var}\{\gamma \}$
	S. Hara and R. Prasad, Overview of multicarrier CDMA, IEEE Commu
	N. Yee, J.-P. Linnartz, and G. Fettweis, Multicarrier CDMA in in
	S. Sigdel, K. M. Ahmed, and R. M. A. P. Rajatheva, Performance e
	W. Nabhane and H. V. Poor, Blind joint equalization and multiuse
	F. Verde, Subspace-based blind multiuser detection for quasi-syn
	J. Li, K. B. Letaief, and Z. Cao, Reduced-complexity MAP-based i
	I. S. Reed, J. D. Mallett, and L. E. Brennan, Rapid convergence 
	B. D. Carlson, Covariance matrix estimation errors and diagonal 
	H. Cox, R. M. Zeskind, and M. M. Owen, Robust adaptive beamformi
	D. D. Feldman and L. J. Griffiths, A projection approach to robu
	C. C. Lee and J. H. Lee, Robust adaptive array beamforming under
	A. B. Gershman, Robust adaptive beamforming in sensor arrays, In
	S. Shahbazpanahi, A. B. Gershman, Z. Luo, and K. M. Wong, Robust
	M. H. Er and A. Cantoni, An alternative formulation for an optim
	J. Li, P. Stoica, and Z. Wang, On robust Capon beamforming and d
	S. Q. Wu and J. Y. Zhang, A new robust beamforming method with a
	S. A. Vorobyov, A. B. Gershman, and Z.-Q. Luo, Robust adaptive b
	K. Zarifi, S. Shahbazpanahi, A. B. Gershman, and Z. Luo, Robust 
	A. Papoulis, Probability, Random Variables, and Stochastic Proce
	Y. Rong, S. A. Vorobyov, and A. B. Gershman, A robust linear rec
	S. Shahbazpanahi and A. B. Gershman, Robust blind multiuser dete
	M. L. Honig, U. Madhow, and S. Verdú, Blind adaptive multiuser d
	M. K. Tsatsanis and Z. Xu, Performance analysis of minimum varia
	Z. Xu, P. Liu, and X. Wang, Blind multiuser detection: From MOE 
	J. B. Schodorf and D. B. Williams, A constrained optimization ap
	X. Wang and A. Host-Madson, Group-blind multiuser detection for 
	O. Edfors, M. Sandell, J.-J. van de Beek, D. Landström, and F. S
	S. Verdú, Multiuser Detection . Cambridge, U.K.: Cambridge Univ.
	H. Li, Blind channel estimation for multicarrier systems with na
	P. Stoica and R. L. Moses, Introduction to Spectral Analysis . U
	S. M. Kay, Fundamentals of Statistical Signal Processing: Estima
	G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Bal
	J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-
	S. Haykin, Adaptive Filter Theory, 3rd ed. Upper Saddle River, N



