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Abstract—Instantaneous frequency rate (IFR) estimation for
high-order polynomial phase signals (PPSs) is considered. Specif-
ically, an IFR estimator with only a second-order nonlinearity
is proposed. The asymptotic mean-squared error (MSE) of the
proposed IFR estimator is obtained via a multivariate first-order
perturbation analysis. Our results show that the proposed es-
timator yields a smaller MSE and a lower signal-to-noise ratio
(SNR) threshold than a popular IFR estimator involving higher
nonlinearity. The proposed IFR estimator is also extended to
estimate the phase parameters of a PPS. Numerical studies are
presented to illustrate the performance of the proposed estimator.

Index Terms—Instantaneous frequency rate, polynomial phase
signal, statistical signal processing.

I. INTRODUCTION

I NSTANTANEOUS frequency rate (IFR) reveals the
rate-of-change of the frequency, which is proportional to

the acceleration of a moving target [1]. Consider a polyno-
mial-phase signal (PPS):

(1)

where is the order of the PPS, the amplitude, the in-
stantaneous phase (IP) and the phase parameters, re-
spectively. The IFR is defined as the second derivative of
the IP [2]:

(2)

The problem of interest is to estimate the IFR from noisy obser-
vations of . Three cases are of interest.

1) (linear frequency-modulated (FM) signals): the
IFR is often referred to as the chirp-rate, which can be es-
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I. Djurović is with the Electrical Engineering Department, University of Mon-
tenegro, Podgorica 81000, Montenegro (e-mail: igordj@ac.me).

B. Himed is with the AFRL/RYRT, Dayton, OH 45433 (e-mail: Braham.
Himed@wpafb.af.mil).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LSP.2009.2024857

timated by well-established methods (e.g., [3] and refer-
ences therein).

2) (quadratic FM signals): the IFR is linearly propor-
tional to the time (cf. (2)), and can be estimated using the
cubic phase function (CPF) [2].

3) (high-order PPSs): the IFR is a nonlinear function of
, and can be estimated using the high-order phase function

(HPF) [4].
For the high-order PPS, a th-order HPF is defined as [4]

where is the length of a lag window,
denotes a set of lag-coefficients,

is used to impose complex conjugation if
or none if , and denotes the index in the

IFR domain. The HPF order and coefficient sets and are
chosen such that the HPF is centered along the IFR of the signal
[5, Proposition 1]. Note that the HPF with , and

reduces to the CPF [2].
For high-order PPSs, the HPF often involves high-order

nonlinearity. For example, a fourth-order PPS requires .
Such high-order nonlinearity results in a large mean-squared
error (MSE) and a high SNR threshold in IFR estimation. We
herein propose an IFR estimator with only a second-order
nonlinearity. Analytical results via a multivariate first-order
perturbation analysis show that the proposed IFR estimator is
asymptotically unbiased and provides a smaller MSE and a
lower SNR threshold than the HPF-based approach.

II. PROPOSED IFR ESTIMATOR

A. IFR Estimation for High-Order PPSS

Consider the phase of a bilinear transformation
for a th order PPS:

where . Note that the resulting phase is a polyno-
mial in with even orders only, and each even order term is
associated with a corresponding even-order derivative of the IP.
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In particular, the coefficient of the second-order term is the
IFR of the signal.

In order to obtain these phase derivatives, a multidimensional
matched filter can be applied:

(3)
where denotes the indices of the even-
order phase derivatives. Note that is the IFR index for the
proposed function in (3). When , the proposed function
reduces to the CPF. In the absence of noise, the squared-magni-
tude of is maximized along the phase derivatives, i.e.,

.
Now consider a noisy PPS , where

is a complex white Gaussian noise with zero mean and variance
. The proposed estimator is given by

(4)

where is defined similarly as in (3)
with replaced by .

Remark 1: The multidimensional matched filter in (3) is re-
lated to the local polynomial Fourier transform (LPFT) and the
local polynomial Wigner distribution (LPWD) [6], [7], but there
are several notable differences. First, the LPFT and the LPWD
were used to estimate the instantaneous frequency (IF) while
our focus is IFR estimation. Second, the LPFT uses a -dimen-
sional matched filter while the proposed function (3) involves
only a -dimensional matched filter. Third, the LPWD esti-
mates the odd-order phase derivatives, while the proposed func-
tion estimates the even-order phase derivatives.

The proposed function (3) is similar to the CPF [4] in that
both use the same second-order moment of the observed signal.
As shown in Section II-C, the proposed function reduces to the
CPF for a PPS with order less than 4. For higher-order PPSs,
however, the CPF becomes inapplicable, whereas the proposed
function can still offer statistically consistent IFR estimation.

B. Asymptotic Bias and MSE

The asymptotic bias and MSE of the estimator (4) are ob-
tained. The detailed analysis is presented in Appendix, which
leads to the following result.

Proposition 1: For a th-order noisy PPS, the
phase-derivative estimates obtained in (4) are all asymp-
totically unbiased and their asymptotic MSEs are given by

(5)

where is an matrix with the -th element

(6)

and the SNR is defined as .

From Proposition 1, the MSEs of the estimates are inde-
pendent of the phase parameters of the PPS. At high
SNR, the MSEs are all approximately proportional to ,
while at low SNR they are proportional to . Moreover,
the th estimate, i.e., , has an MSE inversely proportional
to . Hence, the larger the window length, the lower the
MSE. As such, for a given SNR and time , the asymptotic
MSEs of the estimates are minimized by using the maximum
window length given by 1)
in the asymmetric sampling case with ; and
2) in the symmetric sampling case with

, where is the number
of samples and we assume is odd.

C. Illustrative Examples of and

1) The PPS With Order and : Since
, reduces to

which is the CPF in [2]. In this case, the matrix reduces to a
scalar 1/45. According to Proposition 1 in the symmetric sam-
pling case, the minimum MSE of the IFR estimate for a given
SNR and time is

(7)

which agrees with the result derived in [4, eq. (40)].
2) The PPS With Order and : In this case,

with is

The estimates based on are and
. According to Proposition 1, the MSEs of both

and estimates are

(8)

(9)

For comparison, the MSEs of the HPF-based IFR estimator are
proportional to due to a sixth-order nonlinearity
[4, Section III], whereas the MSEs of the proposed IFR esti-
mator are proportional to (cf. (8)) at low SNR. This
implies that the proposed IFR estimator exhibits a much lower
SNR threshold than the HPF-based method, which will be nu-
merically verified in Section IV.

III. ESTIMATION OF OTHER PHASE PARAMETERS

As a by-product, the proposed estimator (4) can be utilized to
estimate some phase parameters of a PPS. For example, consider
a fourth-order PPS with phase

. The in Section II-C2 can be used
to obtain two estimates, namely in the domain and

in the domain. The latter can be
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Fig. 1. MSEs of parameter estimates for a fourth-order PPS, (a) IFR estimate;
(b) Phase parameter � estimate.

used to estimate . The MSE of the estimate can easily be
derived from (9):

(10)

at high SNR. Meanwhile, the frequently used technique for
estimation employs the high-order ambiguity function (HAF)
[8]. The MSE of the HAF-based estimator is

(11)

at high SNR [8]. A comparison between (10) and (11) shows that
our estimator provides a much lower MSE at high SNR. More-
over, since the Cramér–Rao bound (CRB) for is

[9], the proposed estimator is asymptoti-
cally efficient at high SNR.

IV. NUMERICAL EXAMPLES

Consider a fourth-order PPS with parameters ,
, and

. The IFR is estimated at , which is the
middle point of the observations. Fig. 1(a) shows the MSEs
obtained by analysis and simulation as a function of SNR for
the proposed and, respectively, the HPF-based IFR estimators
with two window sizes and (i.e., the max-
imum length at ). We have the following observations:
1) At high SNR, the simulation agrees with the analysis for the
MSE of the proposed estimator for both and ;
2) The MSE of the proposed estimator with attains
the CRB at high SNR; 3) With either window size, the MSE
of the proposed estimator is generally lower than that of the
HPF-based method at high SNR; 4) The proposed estimator
gives a lower SNR threshold (of about 6 dB lower) than the
HPF-based estimator.

We now consider the phase parameter estimation for the
fourth-order PPS as explained in Section III. The MSE of the

estimate is obtained at . The proposed estimator uses
with . The MSEs obtained by analysis

and simulation are shown in Fig. 1(b). It is seen that, for SNR
above 1 dB, the MSE obtained by simulation for the proposed

estimator agrees with its theoretical result in (10). The MSE
of the proposed estimator also reaches the CRB at high SNR.

In addition, the SNR threshold is 11 dB for the HAF-based
estimator, whereas it is 1 dB for the proposed estimator.

V. CONCLUSION

We have proposed an IFR estimator with a second-order non-
linearity. The asymptotic bias and MSE of the proposed esti-
mator for a PPS with an arbitrary order have been obtained by
using a multivariate first-order perturbation analysis. We have
also discussed how to use the proposed estimator for the esti-
mation of other phase parameters of a PPS. In particular, we
showed that the estimator for a fourth-order PPS is asymp-
totically efficient at high SNR.

APPENDIX

ASYMPTOTIC BIAS AND VARIANCE

The asymptotic bias and variance of the estimator (4) are
obtained using a multivariate first-order perturbation analysis
which extends the univariate first-order perturbation analysis in
[10]. For a noisy PPS , the
can be decomposed into a noise-free component and
a noisy component :

where
. Let denote ,

i.e., the objective function in (4). The can further
be decomposed into and within a first-order
approximation [10]:

(12)

(13)

where denotes the real part of . On one hand,
from (3), the noise-free term is maximized at

. On
the other hand, the noisy term , acting like a random
perturbation, moves the global maximum from to ,
where is assumed to be small in an
asymptotic sense. Our purpose here is to obtain the bias and
variance of the estimates.

Noting that and are, respectively, the maxima of
and , we have

(14)

(15)

where . A first-order Taylor series expansion of
(15) around leads to
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(16)
Due to (14), the first term of (16) is zero and, as a result, we can
represent the above equations in a matrix form

(17)

where

(18)

and here follows from the following result

with , and the approximation
if . Furthermore,

(19)

where denotes the imaginary part of ,

and here follows from the following result

As a result, the error vector can be expressed as

(20)

Taking the expectation on both sides of (20) yields

(21)

since
for

any and [8] which results in . Therefore,
from (21), all estimates are asymptotically unbiased.

The covariance matrix of the estimate from (20) is

(22)

where the diagonal elements give the variance of the esti-
mates, and the -th element of is

(23)

where follows from the fact that
, and is due to

(24)

(25)

Equation (24) can be verified by using

, where denotes the Kronecker
delta function. Finally, combining (18), (22) and (23) yields (5).
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