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A New Parametric GLRT for Multichannel
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Abstract—A parametric generalized likelihood ratio test
(GLRT) for multichannel signal detection in spatially and tempo-
rally colored disturbance was recently introduced by modeling the
disturbance as a multichannel autoregressive (AR) process. The
detector, however, involves a highly nonlinear maximum likelihood
estimation procedure, which was solved via a two-dimensional it-
erative search method initialized by a suboptimal estimator. In this
paper, we present a simplified GLRT along with a new estimator
for the problem. Both the estimator and the GLRT are derived
in closed form at considerably lower complexity. With adequate
training data, the new GLRT achieves a similar detection perfor-
mance as the original one. However, for the more interesting case
of limited training, the original GLRT may become inferior due to
poor initialization. Because of its simpler form, the new GLRT also
offers additional insight into the parametric multichannel signal
detection problem. The performance of the proposed detector
is assessed using both a simulated dataset, which was generated
using multichannel AR models, and the KASSPER dataset, a
widely used dataset with challenging heterogeneous effects found
in real-world environments.

Index Terms—Generalized likelihood ratio test, maximum likeli-
hood estimation, parametric detection, space-time adaptive signal
processing.

I. INTRODUCTION

W E consider multichannel signal detection in the pres-
ence of spatially and temporally colored disturbance, a

problem also known as space-time adaptive processing (STAP)
in radars [1]. Although the optimal matched filter (MF) is well
understood, which performs joint spatial and temporal whitening
using the space-time covariance matrix of the disturbance, this
matrix is rarely known a priori and has to be replaced by some
estimate, e.g., the sample covariance matrix obtained from
homogeneous and target-free training data. A number of sample
covariance matrix-based STAP detectors have been proposed
(e.g., [2]–[6]). While these classical detectors set a good un-
derstanding of the multichannel signal detection problem, the
challenge with them is that training data are often limited in
many practical scenarios, e.g., detection in heterogeneous,
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dense-target, and/or multistatic induced nonstationary environ-
ments, which causes significant performance loss due to lack of
sufficient secondary data that are needed to form a reliable co-
variance matrix estimate. This has led to recent development of
STAP techniques with reduced training requirement, including
partially adaptive or reduced-rank detection (e.g., [7]–[11]),
parametric STAP detection [12]–[22], and others.

Parametric STAP detectors have recently gained considerable
interest due to their remarkable ability of offering significant
performance improvement over classical detectors in training
limited cases. Specifically, the parametric adaptive matched filter
(PAMF) [12], one of the first in this class, models the disturbance
signal as a parametric multichannel autoregressive (AR) process.
The parametric model allowssignal whitening throughan inverse
moving-average filter, which replaces the standard whitening
process using a full-dimensional space-time covariance matrix
estimate found in classical STAP detectors. The immediate
benefit brought by the parametric model is reduced unknown
parameters to be estimated and, in turn, reduced training and
computational requirements. The multichannel AR process has
been found to be an effective tool to model real-world airborne
radar clutter for STAP detection [14], [23], [24]. It is alsoversatile
in capturing the temporal and spatial correlation of disturbance
signals in other radar and array processing applications (e.g.,
[13], [25], and [26]). The PAMF detector is shown to be equiva-
lent to a parametric Rao detector in [16]. The equivalence leads
to analytical expressions for the asymptotic performance of the
PAMF detector. Efficient implementations of the PAMF detector
capitalizing on the inherent computational structure of the mul-
tichannel AR model are reported in [17] and [18]. Meanwhile,
extensions of the multichannel AR modeling to nonstationary
cases for STAP detection are investigated in [19]–[22].

The parametric generalized likelihood ratio test (GLRT)
[16] is a recent addition into the parametric STAP family.
An interesting observation made in [16] is that it is possible
to trade range training with the number of pulses within a
coherent processing interval (CPI). Specifically, the traditional
way of learning the clutter statistic is to use the signals received
over adjacent range cells near the test range as the training
signals, assuming that the target is a rare event and that the
clutter statistic does not change much over the neighborhood
of the cell under test. This assumption is clearly violated in
heterogeneous dense-target environments, which is why the
sample covariance matrix-based detectors do not perform well
in such cases. In contrast, [16] shows that the clutter statistic
can be extracted from the temporal pulses over a CPI; in the
extreme case, this can be achieved exclusively from the test
signal, without using any range training, provided that the
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number of pulses is large enough. The performance of the
parametric GLRT has been examined using simulated and real
data in various training limited cases [23], [24].

There are still critical unresolved issues with the parametric
GLRT. Specifically, it involves highly nonlinear parameter es-
timation that has no closed-form solution. An iterative search-
based procedure is employed in [16], which is seen to be compu-
tationally intensive. Moreover, the iterative searching requires
an initial guess of the unknown parameter. A two-step estimator
is presented for that purpose, which starts with a least squares
(LS) estimation step by ignoring the temporal/spatial correla-
tion, followed by a refining step. While this estimator is an
asymptotic maximum likelihood (AML) estimator, its perfor-
mance is limited by the coarse LS estimator and, as we show
in Section V, may not perform well when the number of pulses
is small. Finally, the parametric GLRT, due to its complicated
nonlinear form, offers little insight into how it functions. This is
different from other parametric STAP detectors (e.g., [14] and
[15]), which have a clear interpretation of sequential temporal
and spatial whitening (see discussions in Section IV for details).

To address the above issues, we present herein a new es-
timator for the estimation problem underlying the parametric
GLRT. The new estimator is in closed form and computationally
simple. Unlike the earlier AML estimator, it does not need an
initial guess and, thus, is not hindered by poor initialization. The
new estimator also leads to a simplified parametric GLRT, of-
fering additional insight unavailable with the original GLRT. In
general, the new GLRT achieves similar detection performance
as the original one. But in the more challenging case when the
number of pulses is limited, the new GLRT may outperform the
original GLRT (which employs an iterative search-based esti-
mation procedure initialized by the AML estimator). The per-
formance loss of the latter is primarily due to the poor initial
parameter estimate provided by the AML estimator.

The remainder of this paper is organized as follows. Section II
contains the data model and a summary of the original GLRT
of [16], where an underlying nonlinear amplitude estimation
problem is also highlighted. A new amplitude estimator is in-
troduced in Section III, which leads to a simplified parametric
GLRT presented in Section IV. Numerical results and conclu-
sions are provided in Sections V and VI, respectively.

II. DATA MODEL AND PARAMETRIC GLRT

A. Data Model

The problem of interest is to detect a 1 multichannel
signal with unknown amplitude in the presence of spatially
and temporally correlated disturbance (e.g., [1])

(1)

where denotes the number of spatial channels and the
number of temporal observations (i.e., snapshots). It will be con-
venient to express the 1 vectors in terms of their spatial

1 components, i.e.,

(2)

and similarly and are decomposed into and ,
respectively. In the sequel, is referred to as the test signal,

as the steering vector (assumed known to the detector),
and as the disturbance signal (i.e., clutter and noise) that
may be correlated in space and time. In addition to the test
signal , there may be a set of training or secondary signals

, , that are target-free: .
The binary composite hypothesis testing problem is to select

between and . A standard assumption
in STAP detection (e.g., [1]–[8]) is that the disturbance signals

are independent and identically distributed (i.i.d.) with
distribution , where is the unknown space-time co-
variance matrix. The parametric STAP detectors [12], [14]–[16]
further assume that the disturbance signal , ,
can be modeled as a -channel process

(3)

where denotes the unknown AR coeffi-
cient matrices and denotes the spatial noise vectors
that are assumed to be temporally white but spatially colored
Gaussian noise , where denotes the un-
known spatial covariance matrix.

B. Parametric GLRT

To introduce the necessary notation and also to facilitate com-
parison, we briefly summarize the parametric GLRT [16] as fol-
lows. The parametric GLRT first finds the ML estimates (MLEs)
of the unknown parameters under both hypotheses, which are
next used to compute the test statistics. Amplitude estimation
under turns out to be the key problem, as the other parame-
ters can be readily obtained once an estimate of is available.
Specifically, the MLE of is given by

(4)

where , , and are , , and
matrices defined as

(5)

(6)

(7)
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and the regression vectors are defined as
and

,
. Once is obtained, the parametric GLRT

is given by

(8)

where1 , denotes the corresponding
test threshold and and denote the ML estimates
of the spatial covariance matrix under the null and alternative
hypotheses

(9)

(10)

with

(11)

The MLE (4) is highly nonlinear and cannot be solved in
closed form. Iterative search over a two-dimensional parameter
space (note that is complex-valued) is typically employed,
which is computationally intensive (as the matrix determinant
has to be evaluated for every update of ) and, in general, con-
verges only to a local minimum. To address this problem, an
AML estimator was introduced in [16]. The AML estimator in-
volves a two-step process. In particular, it first computes the LS
of the amplitude

(12)

which effectively ignores the spatiotemporal correlation of the
disturbance signal. Then, the initial estimate is refined through
a weighed LS process (see [16] for details). Although the AML
estimate can be shown to be asymptotically efficient, it is af-
fected by the limited performance of the initializing LS esti-
mator, in particular when the data size is small.

In closing this section, we briefly comment on the stability
issue. In general, the multichannel AR process used to model
the disturbance signal has to be stable to ensure that the re-
sulting AR signal is wide-sense stationary [27]. A constrained
ML estimator that maximizes the likelihood function under the
constraint that the AR coefficient matrices form a stable multi-
channel filter is highly involved and generally not suitable for
practical applications. In contrast, the estimators considered in
this paper, including the ML and AML estimators as well as the
one introduced in the next section, do not impose this constraint
in the interest of computational simplicity. Although the esti-
mated AR model obtained by any of these estimators is not guar-
anteed to be stable, extensive numerical studies using simulated
and experimental data show that these unconstrained estimators
yield good estimation and detection performance at acceptable
complexity.

1While the scaling factor � can be dropped from the test statistic, it was re-
tained in [16] to simplify the asymptotic analysis.

III. AMPLITUDE ESTIMATION

The exact MLE (4) minimizes the determinant of the -de-
pendent matrix

which is the Schur complement (see, e.g., [28]) of the block
matrix

(13)

It is well known that the determinant of a block matrix like (13)
can be expressed in terms of its Schur complement [28]

Using the above result, the cost function in (4) is equivalent to

(14)

By using (5)–(7), along with new definitions of regression
vectors

(15)

(16)

can be decomposed into an -dependent component and
an -independent one

(17)

where the new steering matrix and data matrix are given
as

(18)

(19)

Similarly, can be decomposed as

(20)

where

(21)

(22)

Using (17) and (20), an asymptotically equivalent expression for
(14) is derived in Appendix I

(23)

where

(24)
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(25)

with denoting the projection matrix to the orthogonal com-
plement of the range of

(26)

where denotes the Moore–Penrose pseudoinverse of
while the other projection matrix is similarly defined using
the matrix .

Based on the asymptotic expression (23), a closed-form esti-
mate of the amplitude is given by (see Appendix II)

(27)

Note that (27) is also an AML estimate, since the underlying
approximations (see Appendixes I and II) of the likelihood
function were made in the asymptotic sense. For convenience,
the AML estimator of [7] is henceforth referred to as AML1,
whereas the new amplitude estimate (27) is referred to as
AML2. While both estimators are AML, it should be noted
that, unlike AML1, which involves a two-step estimation
process initialized by the LS estimator, AML2 is in closed
form, requiring only a one-step calculation. As we show in
Section V, the two estimators perform similarly when the data
size is large; however, in the more challenging case with limited
data, AML1 yields a notably worse performance due to the
coarse initial estimate provided by the LS estimator.

IV. NEW PARAMETRIC GLRT

Given the AML2 amplitude estimate (27), the spatial co-
variance matrix estimates (9) and (10) can be obtained in
closed form, which also lead to a closed-form expression of
the parametric GLRT test statistic. In particular, we show in
Appendix III that the test statistic (8) can be expressed as

(28)
To gain additional insight into the test statistic and the behavior
of the general parametric GLRT, it is shown in Appendix IV that
the test statistic can be equivalently expressed as

(29)

where and are 1 1 vectors defined
in (15) and (16) and is a block whitening matrix

(30)

with individual component matrix given by (52)–(54) in
Appendix IV.

From (29), it is seen that the parametric GLRT performs a
partial spatiotemporal whitening across 1 dimensions
(i.e., the size of the regression vectors formed from the
test signal) using the whitening matrix . Recall that a fully
adaptive STAP detector such as Kelly’s GLRT [3] performs
a joint spatiotemporal whitening across all dimensions,
whereas the parametric Rao or PAMF detector performs suc-
cessive (as opposed to joint) whitening, i.e., temporal whitening
followed by spatial whitening [14], [15]. Hence, the parametric
GLRT is positioned between the two cases. This allows the
parametric GLRT to utilize a parametric model and provide
data efficiency just like the Rao, meanwhile exploiting more
degrees of freedom for more effective interference rejection
and detection. This corroborates earlier numerical results [16],
which shows that the parametric GLRT in general outperforms
the parametric Rao when the data available for estimation
become very limited.

V. NUMERICAL EXAMPLES

In this section, several simulation results are provided to illus-
trate the performance of the proposed estimation and detection
techniques. We consider simulated data generated using an AR
model and the KASSPER data [29], which were obtained from
more realistic clutter model. For the first case, the disturbance
signal is generated as a multichannel AR(2) process with AR
coefficient and spatial covariance matrix ; these parameters
are set to ensure that the AR process is stable and is a valid
covariance matrix, but otherwise randomly selected. The signal
vector corresponds to a uniform equispaced linear array with
randomly selected normalized spatial and Doppler frequencies.
The signal-to-(interference plus noise) ratio (SINR) is defined
as

SINR (31)

A. Estimation

We focus here on the challenging case with zero range
training, i.e., , which is of great interest for applications
in heterogeneous environments. Under this setup, we consider
two subcases with 1) , i.e., a moderate value for the
number of pulses within a CPI; and 2) , a more limited
scenario. For both cases, we compare the estimator (12),

of [16], (27), and the estimator (4)
initialized by AML1 (this consideration is motivated by the
fact that AML1 provides the best known initial estimate prior
to this work).

Fig. 1 presents the mean-squared error (MSE) of the am-
plitude estimate obtained by each estimator, along with the
Cramér–Rao bound (CRB), a lower bound for any unbiased es-
timator, versus the SINR when and . It is seen
that, in this case, the AML1 and AML2 amplitude estimates are
nearly identical to the ML estimate, while the LS amplitude es-
timate shows the worst performance among all estimators.

The results for the case of are shown in Fig. 2. We
see that the AML1 estimate is worse than the AML2 estimate
in the current case, whereas the ML estimate is the worst due
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Fig. 1. MSEs of amplitude estimate �� versus SINR when � � �, � � ��,
and � � �.

Fig. 2. MSEs of amplitude estimate �� versus SINR when � � �, � � ��,
and � � �.

to inaccurate initialization and local convergence. This clearly
shows the limitation of the iterative search-based ML estimator.

B. Detection

Here, we report the detection performance under the same
setup as in Figs. 1 and 2. We compare the various parametric
GLRTs, including [i.e., GLRT (8) with the
AML1 estimator], [GLRT (8) with the ML esti-
mator], and [GLRT (28) with the new AML2
estimator]. Also included in the comparison are the asymptotic
result provided by the parametric GLRT (see [16]) and the
ideal MF, which assumes exact knowledge of and, therefore,
cannot be used in practice but offers a baseline for comparison.
Here, we set the probability of false alarm as .

Fig. 3 shows the probability of detection versus SINR for
various detectors when the number of temporal samples
and no range training data is available. It is seen that the GLRT/
AML2 slightly outperforms the GLRT/ML and GLRT/AML1,
but overall they are quite similar, and all are within 3 dB from

Fig. 3. Probability of detection � versus SINR when � � ����, � � �,
� � ��, and � � �.

Fig. 4. Probability of detection � versus SINR when � � ����, � � �,
� � ��, and � � �.

the ideal MF detector. The limited sample case of is de-
picted in Fig. 4, where the GLRT/AML2 achieves significantly
better results than the GLRT/ML and GLRT/AML1. The poor
performance of the GLRT/ML is due to the poor amplitude esti-
mate, which, as shown earlier in Fig. 2, is caused by inaccurate
initialization and local convergence.

C. KASSPER Dataset

In the above simulation, the disturbance is generated by an
AR process, which matches the assumed model of the para-
metric detectors. To show the detection performance in a more
realistic environment, we use the KASSPER dataset, which,
first, is not generated from an AR model and, in addition, con-
tains many challenging real-world effects, including heteroge-
neous terrain, array errors, and dense ground targets (see [29]
for a detailed description of the KASSPER dataset).

Fig. 5 shows the probability of detection versus SINR in the
training-free case, where the number of spatial channels
is and the number of temporal samples is . All

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 25, 2010 at 11:41 from IEEE Xplore.  Restrictions apply. 



322 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 1, JANUARY 2010

Fig. 5. Probability of detection � versus SINR for the KASSPER dataset
when � � ����, � � ��, � � ��, and � � �.

parametric detectors use an AR(1) process to model and esti-
mate the disturbance. Results show that the new GLRT/AML2
generally outperforms GLRT/AML1 and is slightly better than
GLRT/ML at high SINR.

The parametric GLRT effectively trades range training for
temporal pulses within a CPI and if the number of the latter
is large relative to the number of unknowns to be estimated, de-
termined by (number of spatial channels) and (AR model
order). In general, for low-order AR models, the parametric
GLRT can provide good detection performance (e.g., within 3
dB from the MF bound) if [16]. This is not the case
for Fig. 5, where and we see a performance gap of
about 7 dB. To close the gap, we consider the case when the
parametric detectors utilize range training signal while
the other parameters are kept the same.

There are two guard cells between the test cell and the training
cell. In practical radar systems, is usually an even number, as
training data are often taken from both sides of the test cell. Here,
we choose corresponding to a more restrictive case.

The results are depicted in Fig. 6. It should be noted that in the
KASSPER data, clutter across range cells is not i.i.d. [29]. Still,
a small amount of training is useful to the parametric detector
in the current case, all yielding improved detection performance
less than 3 dB from the MF bound. This is due to the fact that
the effect of clutter variation across a small area (i.e., for small

) is negligible. On the other hand, for a data-demanding non-
parametric covariance matrix-based STAP detector, has to be
very large, in which case the effect of range-dependent clutter
on such detectors can no longer be neglected [29].

VI. CONCLUSION

A new parametric GLRT for multichannel adaptive signal de-
tection has been proposed. The detector builds on a new closed-
form solution for the underlying nonlinear estimation problem.
The new parametric GLRT obviates the need for initial param-
eter estimation as required by an earlier scheme, is computation-
ally simpler, and provides generally improved detection perfor-
mance when training data are limited. Due to its data efficiency,

Fig. 6. Probability of detection � versus SINR for the KASSPER dataset
when � � ����, � � ��, � � ��, and � � �.

our new parametric GLRT and the underlying estimator are par-
ticularly useful for detection and estimation in training limited
environments.

APPENDIX I
DERIVATION OF (23)

Starting from (14), the determinant of can be written as

(32)

Consider the idempotent matrices and and assuming the
number of sample data is large enough, i.e., , we have

rank and rank (33)

where rank denotes the rank of a matrix. Then, we have [26]

(34)
Let denote the eigenvalues of the matrix (34), which
satisfies according to (34). Then

(35)
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where the approximation (a) holds in a first-order sense. Simi-
larly, the determinant of can be expressed as

(36)
and

(37)

Then, combining (32) and (35)–(37) and ignoring the items in-
dependent of result in the asymptotically equivalent expres-
sion in (23).

APPENDIX II
DERIVATION OF THE AMPLITUDE ESTIMATOR

Following Appendix I and noting that

(38)

and

(39)

we can approximate (23) as

(40)

where the approximation , for , was in-
voked. The cost function is a quadratic function with re-
spect to . It is easy to show that minimizing (40) with respect
to leads to the AML2 amplitude estimate given by (27).

APPENDIX III
DERIVATION OF THE NEW PARAMETRIC GLRT

Using the Schur complements, we can write (8) as

The right-hand side of the above equation can be further simpli-
fied using asymptotic approximations [see (35) and (36)]

Replacing the exact ML estimate with the AML2 amplitude es-
timation results in the approximate parametric GLRT

GLR (41)

which is the matrix form of (28).

APPENDIX IV
ALTERNATIVE FORM OF THE PARAMETRIC GLRT

Let

(42)

and be similarly defined. The matrix can
be rewritten as , where is
given by (21). By invoking the formula of the block matrix pseu-
doinverse [30], we have

(43)

where

(44)

and

(45)

Expanding (43) yields

(46)

From (24) and (25), the can be

(47)

where

(48)

(49)

(50)
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Applying the block matrix inversion lemma twice, first on
and then on , we have

(51)

where

(52)

(53)

(54)

Inserting the above results in (28) followed by simple manipu-
lations, we can see that the parametric GLRT test statistic (28)
is equivalent to (29).
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