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Abstract—This paper considers the problem of knowledge-aided
space-time adaptive processing (STAP) in nonhomogeneous en-
vironments, where the covariance matrices of the training and
test signals are assumed random and different from each other.
A Bayesian detector is proposed by incorporating some a priori
knowledge of the disturbance covariance matrices, and ex-
ploring their inherent block-Toeplitz structure. Specifically, the
block-Toeplitz structure of the covariance matrix allows us to
model the training signals as a multichannel auto-regressive (AR)
process. The resulting detector is referred to as the Bayesian
parametric adaptive matched filter (B-PAMF) which, compared
with nonparametric Bayesian detectors, entails a lower training
requirement and alleviates the computational complexity. Numer-
ical results show that the proposed B-PAMF detector outperforms
the standard PAMF test in nonhomogeneous environments.

Index Terms—Bayesian detection, nonhomogeneous environ-
ments, parametric adaptive matched filter, space-time adaptive
signal processing.

I. INTRODUCTION

T RADITIONAL space-time adaptive processing (STAP)
usually assumes a homogeneous environment, where the

test signal shares the same covariance matrix with the training
signals [1]. For nonhomogeneous environments, several
models have been proposed. One involves partial homogeneity,
by which the training signals share the covariance matrix
with the test signal up to an unknown scaling factor [2]. This
model is a special case of the generalized eigenrelation (GER)
approach [3]. Another one is the compound Gaussian model,
which models the training signals as a product of a texture
(scalar) and a Gaussian vector. The texture is used to simulate
power differences among the signals from different range bins
[4]. More recently, a new class of Bayesian nonhomogeneous
models for adaptive signal detection are introduced. The idea
is to treat the covariance matrices of the test signal and training
signals as random matrices that are related to one another
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through some probabilistic model but, in general, different in
probability one [5]–[8].

Specifically, by employing a Bayesian nonhomogeneous
model, a Bayesian adaptive matched filter (B-AMF) is pro-
posed in [6]. The B-AMF detector replaces the standard sample
covariance matrix with a maximum a posteriori (MAP) estimate
[6]. It is shown that, by taking into account the heterogeneity,
the B-AMF detector outperforms the standard AMF in the non-
homogeneous environment. For STAP application, the B-AMF
detector still requires a significant amount of training signals.
Consider, for example, the KASSPER [9], a widely used non-
homogeneous dataset. With spatial channels,
coherent pulses and an instantaneous RF bandwidth of 500
KHz as in the KASSPER dataset, the B-AMF detector requires
a minimum training signals corresponding to
a training range over 200 km, which might not be practical [9].

In this paper, while also adopting a Bayesian nonhomoge-
neous model, we further explore the inherent block-Toeplitz
structure of the spatial–temporal covariance matrix which
allows the disturbance (i.e., clutter and noise) to be modeled as
a multichannel auto-regressive (AR) process [10], [11]. The re-
sulting Bayesian parametric adaptive matched filter (B-PAMF)
replaces the joint spatial-temporal whitening employed by the
nonparametric B-AMF with successive spatial and temporal
whitening. As such, it requires significantly less training and
computation power, thus facilitating applications in nonhomo-
geneous environments.

II. SIGNAL MODEL

Consider a radar system that employs spatial channels,
temporal pulses, and training range cells. The problem of
interest is to detect a multichannel signal

, with unknown amplitude in the presence of
spatially and temporally correlated disturbance [11]:

(1)

where is the test signal. Besides , there exist a set of
target-free training signals
to assist the detection. In this paper, the signal model uses the
following assumptions.

• AS1 (Multichannel AR Process): The disturbances in
both the test and training signals are modeled as a multi-
channel AR process [10], [11]:

(2)

where denotes the
unknown multichannel AR coefficient matrix, and
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denote the temporally white but spatially colored
noise vectors.

• AS2 (Random Spatial Covariance Matrix of Training
Signals):The noise vector , conditioned on

, is a zero-mean complex Gaussian variable, i.e.,
. The random spatial covariance ma-

trix follows an inverse complex Wishart distribution
with degrees of freedom and mean (c.f [6]):

(3)

where

(4)

with denoting the Gamma function [12].
• AS3 (Random Spatial Covariance Matrix of

Test Signal):The noise vector in the test signal
, and , conditioned on , has

a complex Wishart distribution with degrees of freedom
and mean (c.f [6]):

(5)

The multichannel AR process for the disturbances in both the
test and training signals consists of two types of unknown pa-
rameters: one is the deterministic AR coefficient matrix , and
the other is the random spatial covariance matrices and .
We exploit for detection a prior spatial covariance matrix ,
which is taken as the mean of . This prior spatial covariance
matrix can be obtained by a block LDU decomposition [10]
of a prior joint spatial-temporal covariance matrix derived
from sources such as land-use maps, past measurements, etc.
[9]. The importance of the a priori knowledge is controlled
by parameter , while the heterogeneity, i.e., the statistical dif-
ference between the test and training signals, is determined by
parameter . Most importantly, with probability one,
which ensures that the environment is nonhomogeneous [6].

III. BAYESIAN PARAMETRIC ADAPTIVE MATCHED FILTER

If parameters and are known, the solution to the
problem of interest is the classical parametric matched filter
(PMF) [10]:

(6)

where denotes the PMF threshold subject to a selected
probability of false alarm. The whitened steering vector and test
signal are obtained by using the true AR coefficient matrix

(7)

(8)

For practical scenarios with unknown and , the parametric
AMF (PAMF) replaces the exact and in the PMF statistic

by their estimates, e.g., the maximum likelihood estimate
(MLE) obtained from training signals. For the nonhomoge-
neous environment considered here, we take into account the
uncertainty of the spatial covariance matrix and adapt a hybrid
PAMF approach. The resulting detector is referred to as the
Bayesian PAMF (B-PAMF). It is obtained by first finding the
MLE of the deterministic AR coefficient matrix from
the training data and then the maximum a posteriori (MAP)
estimate of the stochastic spatial covariance matrix
conditioned on the ML estimate . Finally, we use them to
replace and in the PMF statistic.

A. MLE of

Denote .
According to the signal model, the joint conditional probability
density function (pdf) of the training signals can be written as
[11]

where

(9)

From AS2 , we can remove the dependence of the above pdf on
by integrating it over :

(10)

where

(11)

and

(12)

Therefore, finding the MLE of is equivalent to minimizing
the determinant of . Rewrite the matrix as

(13)

where

(14)

(15)
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(16)

with . Since
is nonnegative definite and the remaining terms

do not depend on , it follows from
(13) that

(17)

where the MLE of is

(18)

When is minimized, the MLE also minimizes any non-
decreasing function including the determinant of . It is noted
that the MLE involves training signals only. With the MLE
of , the MAP estimate of is obtained in the following sec-
tion.

B. MAP Estimate of

The MAP estimate of requires the computation of the
posterior distribution :

(19)
where

(20)

As a result, (19) can be calculated as

(21)

Taking the derivative of the logarithm of the above equation
with respect to and setting it to zero, we have (22), shown at
the bottom of the page, which suggests that, for a given , the
estimate of is

(23)

Replacing with of (18) in the above estimate (viz, ),
the MAP estimate of is

(24)

Therefore, the MAP estimate of is a linear combination of a
standard estimate of of [11] and the a priori knowledge .
It is interesting to note that this linear combination is similar to
those obtained for nonparametric approaches [6], [13].

C. Bayesian PAMF

With the ML estimate of and the MAP estimate of , the
B-PAMF test is given by (c.f (6))

(25)
where denotes the B-PAMF test threshold, is
given by (24), and the whitened steering vector and the whitened
test signal are obtained by using (7) and (8) with replaced by

in (18).
From (25), it is seen that the B-PAMF performs succes-

sive whitening, i.e., temporal whitening followed by spatial
whitening, as opposed to joint spatio-temporal whitening across
all dimensions of the B-AMF [6]. On the other hand, com-
pared with the standard PAMF [10], the B-PAMF detector
incorporates the a priori knowledge, i.e., ; in addition, the
heterogeneity parameter and the importance parameter
are employed to control how the a priori knowledge affects
an updated MAP estimate of the spatial covariance matrix .
Hence, the B-PAMF detector achieves better computational ef-
ficiency and reduces the training requirement over the B-AMF.
Meanwhile, by exploiting the a priori knowledge and a nonho-
mogeneous model, it yields improved detection performance
over the PAMF detector, as shown next.

IV. NUMERICAL EXAMPLES

In this section, simulation results are provided to illustrate the
performance of the B-PAMF detector. The disturbance signal

is generated as a multichannel AR (2) process with AR co-
efficient and a spatial covariance matrix . The signal vector

corresponds to a uniform linear array with randomly selected
normalized spatial and Doppler frequencies. The signal-to-in-
terference-plus-noise ratio (SINR) is defined as

(26)

where is the spatial-temporal covariance matrix of the AR
process with AR coefficient matrix and spatial covariance
matrix . For each Monte-Carlo trial, the spatial covariance
matrix for the training signal is generated from an inverse
Wishart distribution with mean , and then, for each given ,
the spatial covariance matrix for the test signal is generated
from a Wishart distribution with mean . Note that a similar
process is used in [6] to generate the random covariance ma-
trices.

(22)
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Fig. 1. Probability of detection versus SINR when � � �, � � ��, � � �, � � �, and � � ���� for cases of (a) � � �; (b) � � �.

In the above nonhomogeneous environment, we compare the
B-PAMF with two PAMF detectors: 1) PAMF1: the original
PAMF [10]; 2) PAMF2: the modified PAMF by using the data-
independent prior knowledge as an estimate of . Fig. 1
shows the probability of detection versus the SINR for the three
detectors in cases of different values of and , when ,

, , , and . It is seen that, in
all cases, the B-PAMF outperforms the two PAMF detectors.
In Fig. 1(a) of a fixed value of , we consider two values of

and . A larger value of means a smaller
difference between the test and training signals and hence a
more homogeneous environment. The simulations results show
that, when , the B-PAMF and PAMF detectors perform
slightly better than the case of . Specifically, for a prob-
ability of detection equal to 0.8, there is about 4 dB loss from
the B-PAMF to the PAMF1 and 1 dB loss from the B-PAMF to
the PAMF2. On the other hand, the effect of is examined in
Fig. 1(b). As seen from AS2 , increasing means that the spa-
tial covariance matrix of the training signals are closer to the
prior and hence the more important the prior knowledge .
In this case, the B-PAMF adapts to the environment change by
putting more weight on the in the MAP estimate of (24), while
the original PAMF1 employs the same estimate of . It turns
out the performance gap between the B-PAMF and PAMF1 is
enlarged from about 3.8 dB when to about 4.5 dB when

, as seen from Fig. 1(b). On the other hand, the PAMF2
benefits from using , which is a reliable prior estimate of
and hence its performance is slightly improved as increases
from 9 to 14.

V. CONCLUSION

A Bayesian parametric adaptive matched filter has been pro-
posed by modeling the disturbances in the test and training sig-
nals as a multichannel AR process and characterizing the hetero-
geneity between the training and test signals via a random ma-
trix model. The B-PAMF admits successive temporal and spatial
whitening, which reduces the computational complexity of the

joint spatial-temporal whitening based adaptive detectors. The
training requirement is also reduced. Simulation results show
that the B-PAMF detector is effective in nonhomogeneous en-
vironment.
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