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Abstract—The high-order phase function (HPF) is a useful tool to esti-
mate the instantaneous frequency rate (IFR) of a signal with a polynomial
phase. In this paper, the asymptotic bias and variance of the IFR estimate
using the HPF are derived in closed-forms for the polynomial phase signal
with an arbitrary order. The Cramér-Rao bounds (CRBs) for IFR estima-
tion, in both exact and asymptotic forms, are obtained and compared with
the asymptotic mean-square error (MSE) of the HPF-based IFR estimator.
Simulations are provided to verify our theoretical results.

Index Terms—Cramér-Rao bound (CRB), high-order phase func-
tion (HPF), polynomial-phase signals.

I. INTRODUCTION

Polynomial phase structure has been widely used to model non-
stationary signals appearing in radar, sonar, communications, and
passive acoustic applications [1], [2]. A pth-order polynomial phase
signal (PPS) is given by

s(t) = Aexp {jo(t)} = Aexp {J Zaitl} €))

1=0

where A is the constant amplitude, ¢ () is the instantaneous phase (IP),
and {a;}_, are unknown phase parameters, respectively. While the
instantaneous frequency (IF) is the first derivative of the IP, the instan-
taneous frequency rate (IFR) is defined as the second derivative of the
IP [3], i.e.,

P

Q) = ‘l‘;‘igt) =3 (i = Dait' 2)
1=2

where Q(t) denotes the IFR of the signal in (1). When p = 2, i.e., a
linear FM signal, the IFR reduces to the well known chirp-rate, i.e.,
Q(t) = 2as [4]. In practice, the IFR could reveal the rate-of-change of
the velocity, i.e., acceleration, of a moving target.

IFR estimation is a frequently encountered task in radar applications.
In synthetic aperture radar (SAR), echoes are often modeled by in-
corporating time-varying acceleration [5], [6]. Target acceleration was
shown to affect the SAR ground moving-target indication in [7] and [8],
where compensation techniques were also examined. IFR can be esti-
mated by using a polynomial Fourier transform [9]. The resulting esti-
mator, however, requires a computationally intensive multidimensional
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search [9]. This motivated later efforts to search for more efficient so-
lutions. A notable example is the cubic phase function (CPF) based
estimator [3], which requires only a one-dimensional search. The CPF
was originally introduced to estimate the IFR of a quadratic FM signal.
Extension of the CPF led to the high-order phase function (HPF) [10],
which can be used to estimate the IFR of a high-order PPS. The asymp-
totic performance of the CPF-based IFR estimate for the quadratic FM
signal was derived in [10]. However, similar analysis for the HPF-based
IFR estimator of a general PPS is unavailable.

In this paper, a unified analysis of the HPF-based IFR estimator for a
PPS with an arbitrary order is presented. The asymptotic bias and vari-
ance of the HPF-based IFR estimate are derived in closed-form at high
signal-to-noise ratio (SNR) by using a first-order perturbation analysis.
It is shown that the HPF-based IFR estimator is asymptotically unbi-
ased and its asymptotic variance is a function of the SNR, time and
the HPF coefficients (see Section III for an explanation). Our results
are consistent with that derived in [3] and [10] for the case of p = 3.
Furthermore, since multiple forms of the HPF exist for the analysis
of a given PPS, our results can be used to predict their performance
and provide guideline on how to choose a proper HPF for the problem
at hand. On the other hand, to establish a performance benchmark for
all (asymptotically) unbiased IFR estimators, the Cramér—Rao bounds
(CRBs) for IFR estimation, in both exact and asymptotic forms, are
presented in closed-form. The CRB shows a dependence on the PPS
order, the number of samples, time and SNR. Performance comparison
between the HPF-based estimators and the high-order ambiguity func-
tion (HAF)-based method [11] is also presented.

The rest of this paper is organized as follows. The HPF is first re-
viewed in Section II. Section III outlines the derived expressions for the
asymptotic bias and mean-squared error (MSE). The CRB for IFR esti-
mation is also derived. Section IV provides simulation results to verify
our theoretical analysis. Finally, conclusions are provided in Section V.

II. HIGH-ORDER PHASE FUNCTION

For a pth-order PPS defined in (1), the HPF, specified by H,(t, w),
was defined by using a high-order nonlinear kernel K, (¢, ) as [10]

q/2
Ky (t,7) = H [s(t + diT)s(t — di7)] ™)
=1
+oo o
H,(t,w) = / K (t,m)e 7" dr 3)
where d 2 {dl, da,... ,dq/g} denotes a set of lag-coefficients, r Y
{7*1 JT2, e, 'rq/Q} is used to impose complex conjugation if r; = —1,

and w denotes the index in the IFR domain. From (3), it is seen that the
HPF has a gth-order nonlinearity due to the ¢/2 consecutive bilinear
transformations. If ¢ = 2,dy = 1 and 7y = 1, the H-(#, w) reduces to
the CPF in [3].

In the noisy-free case, assume the kernel is selected such that

K, (t,7) = Aled™ 90+ )

where ¢ is a term independent of 7, the squared magnitude of the HPF
is centered on the IFR due to the match filtering in (3). To meet (4), the
HPF coefficients should satisty [12]

q/2

Z rd; =1

=1

q/2

an}n =0, for even values of m:4 <m < p. )
=1
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Therefore, for any given time, e.g., ¢ = ¢, the [FR (¢,) can be esti-
mated by searching for the maximum of | H,,(#5,w)|* over w.

For a given PPS, there may exist more than one real solution to the
set of equations in (5). For example of a quadratic FM signal (p = 3),
we have at least two choices satisfying (5)

+oo L,

Hy(t,w) = / s(t+7)s(t—1)e 7T dr, (6)
+o0 , , -,

Hi(t,w) = / 52 <t+ gT) s <t - gT) e 7T dr.  (7)

One immediate question arising from the earlier discussion is the
choice of the solution for the problem at hand. A natural choice to
select a proper form of HPF is the performance of the estimator
including the bias, the MSE, and the SNR threshold, which will be
discussed later.

III. PERFORMANCE OF THE HPF-BASED IFR ESTIMATOR

Consider a noise-corrupted PPS

2(n) = A’ 2= L o), n=0,1,....N—1 (8)
where z(n) denotes the nth sample of the noisy observations, v(n) is
an additive complex white Gaussian noise with zero mean and variance
0%, and N is the number of samples. It should be noted that, while
condition (5) ensures the unbiased IFR estimate in the absence of noise,
the unbiased property does not automatically carry over the case with
observation noise.
The discrete HPF [cf. (3)] for the noisy PPS can be decoupled to

M

Z [Ks(n,m)+ K,(n,m)] o iwm? ©)

m=—M

H,(n,w) =

where I (n, m) and K, (n, m) represent the signal and noise compo-
nents, respectively, 23 + 1 is the length of a two-sided window. For
simplicity, we use w in both continuous and discrete cases.

Appendix I shows that, at high SNR, the signal component
K,(n,m) and the noise component I, (n, m) can be approximated
by ignoring the high-order noise terms [13]

L
K, (n,m) = H [s(n + dim)s(n — dym)] "%
i=1
L

(rs) )

. i v n+d;m

IXU (n, TIL) ~ IXS ('IL,'I"L) ( E ki {W
=1 ¢

oD (0 — dym)

+ s(rid(n — d;m) :|> ’
where L is the number of distinct HPF coefficient pairs (d;, 7, ), k; is
the multiplicity of the ith HPF coefficient pair (d;, 7; ), and ZZL: ki =
¢/2. From (10), it is seen that I{'s (n, m) contains only signal-related
terms and therefore is deterministic, whereas K, (n,m) includes in-
teracting signal-and-noise terms which are random. More specifically,
K, (n,m) acts like a random perturbation which moves the maximum
of the HPF, denoted as wo = €2(n), by a random amount §w, which
results in a deviated IFR estimate & = wg + 6w. The performance anal-
ysis is to quantify the first- and second-order statistics, i.e., the bias and
variance, of the random error éw. A first-order perturbation analysis
[14], which is repeated in Appendix II, is utilized. A detailed analysis

of the random estimate error éw using the first-order perturbation is
presented in Appendix III, and the results are summarized as follows.

10)
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A. Asymptotic Bias and Variance of the HPF-Based Estimator

Proposition 1: For a pth-order noisy PPS, the asymptotic bias and
variance of the HPF-based IFR estimator at high SNR are given by

E{6w} =0
L
903 k2

SN2 =1
B0} = sxmar (M + 1) (2M + 3) (4M2 — 1)

an

where the SNR is defined as 4%/o”.

From Proposition 1, the HPF-based IFR estimator is asymptotically
unbiased, and the variance of the estimation error, which is also the
MSE in this case, is independent of the phase parameter {a;}?_,. On
one hand, the MSE is proportional to the sum of the squared multl—
plicity of the HPF coefficients. On the other hand, the asymptotic MSE
is inversely proportional to the SNR and M°®. The larger the window
length, the lower the MSE. As such, for a given SNR and time n, the
minimum MSE is achieved by using the maximum window length,
which leads to the following proposition.

Proposition 2: For a fixed SNR and N, the minimum MSE of the
HPF-based IFR estimator at time n is given by

45 Z 2
(bw)”} = 12
E{( ) p 4SN RAI;MX (n,N,d) (12)
where the maximum window length at time n is given by
/ - 4 |min{n, N —1-mn}
Max(n, N, d) = { o {d] J (13)

with |- | denotes the floor function, since 0 < n + max {d} Mmax <
N — 1. From Proposition 2, the minimum MSE of the IFR estimator at
time n is determined by the SNR, the number of samples, time instant,
and the HPF coefficients d. Note that the MSE is also a function of the
HPF order ¢ through L and k; since ij k; = ¢/2, and is further
dependent on the PPS order p due to (5).

B. CRB for IFR Estimation

The achievable accuracy of any (asymptotically) unbiased IFR esti-
mator can be identified by means of the CRB. To this end, we derive
the CRBs for IFR estimation in both exact and asymptotic forms.

1) Exact CRB: The CRB for estimating the phase parameter a =
[ag, a1, .. ,ap]T was carried out in [15]. Of interest to us is the CRB
for IFR estimation, not for the phase parameter a. Note, however, that
the IFR of the PPS is a function of a and time n as Q2(n) = aTt, where
t £ [0,0.2,....p(p—1) npd]T. By applying the transformation
rule for the CRB (see [16, Appendix 3B]) and noting that the above
function is a (p + 1)-dimensional-to-scalar transformation, we have
(14

var () > tHP_Ht

2 —l’
where H,; is defined in [15, (18)]. With results on the inverse of
H, . (see[15, (22)—(33)]), (14) can further be expressed

var (@) > o VtE;ﬁlB +ESLth 15)
where E, 1 and B4 are defined in [15, (24) and (32)]. From (15), it
is not clear how the coefficients (e.g., p, n, N) affect the CRB. In the
following, we show how the CRB depends on these coefficients under
the assumption of large samples.
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TABLE I
VALUES OF C), (k) FOR THE PPS WITH ORDER p < 4

p| k=0 k=1 k=2 k=3 k=4
2 [ 720

3 || 25020 100800 100800

4 || 317520 2822400 9172800 -12700800 6350400

2) Asymptotic CRB for Large N : Forlarge N (i.e., N > p), noting
that

1 (p+1)° _L o,
+r+l 7 AN+ )(r+1) 2N “=0
k<p, N>p

in the expression of B, 1, we derive an asymptotic CRB.
Proposition 3: For a noisy pth-order PPS, the asymptotic variance
of any unbiased IFR estimator is bounded by

2p—4 k
. 1 n
var (&) 2 see ;; Cok) sy (16)
where
Cp(k) = Z eplts k) 17)
2<4u,6<p
1 +r—4=Fk
with

= DE=Dp+e+Hp+s+1)
1+ k+1

()T E)

Remark: The above CRB is for the asymmetric sampling case n =
0,..., N — 1.1It can be extended to the symmetric sampling case n =
—(N —1)/2,...,(N —1)/2. According to [17], it can be shown that
the asymptotic CRB for IFR estimation in the asymmetric sampling
case is

Cp(L, n) = (_1)L+,.; lli(

2p—4

var () > ’)SNR ZO( )

n + &=
N( k+5) ) (18)

Note that the coefficients C), (k) are a function of p only and hence
can be computed in advance for any given PPS order. Table I shows the
values of C) (k) for the PPS with order p < 4. Moreover, the asymp-
totic CRB in (16) is a (2p — 4)th-order polynomial in n with coefficient
Cp(k)/ (2SNRN**?) for the kth item in n. This polynomial phenom-
enon is analogous to the polynomial structure of the IFR in n (see (2))
where the kth term n” is associated with **2 whose CRB is inversely
proportional to the SNR and N2#+5,

The accuracy of approximating (15) with (16) is examined at the
middle point of observations in the cases of p = 4 and p = 6 when
SNR = 10 dB in Fig. 1. It is seen that our large sample approximation
works fine even for small V. For V > 100, the approximation makes
no difference between the two CRBs.

C. Examples

In general, the above results on the variance of the HPF-based IFR
estimate and the CRB for IFR estimation are valid for any PPS with an
order p. Nevertheless, links to two simple cases of p = 2 andp = 3
are useful to illustrate our analytical results.

2417
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Fig. 1. Exact and asymptotic CRBs versus the number of samples V.

Linear FM Signal (p = 2): The IFR reduces to 2(n) = 2a., and
the CRB for IFR estimation is

360

CRB (0} = fexr

(19)
Using the transformation rule of the CRB [16, Section 3.6], this result
is effectively the same as the CRB for a2 of the linear FM signal (see
[14, (33)]) by a factor of 4 since 2(n) = 2a..

When Hs in (6) is used, the MSE of the IFR estimate in (11) at the
middle point from (12) is

360

E{(bw N 20
{627} * meng (20)
which is consistent with the MSE of the H>-based a- estimate at the
middle point by a factor of 4 [12, Appendix-Al].

Quadratic FM Signal (p = 3): From (16), the CRB for IFR estima-

tion is a function of n, SNR, and N

12960 50400 "
N35SNR  NSSNR

50400 2
N7SNR~ °

CRB{Q} = 1)
As discussed earlier, the CRB is a second-order polynomial in 7.
As shownin [10], H> can be used to estimate the IFR of the quadratic
FM signal. In this case, the MSE in (11) reduces to
N2 45
E{0"}~ sy @2
To connect our results to [10], we notice that the maximum window
length of H» at time n is Mumax = N/2 — |n| for the case —(N —
1)/2 < nzxm < (N —1)/2, as considered in [10]. Therefore, the
minimum MSE of the H»-based IFR estimate at n is

. 45
E{(fw)} e ————= (23)
O T e
which coincides with [10, (40)] at high SNR.

IV. SIMULATION RESULTS

In the following, we consider two numerical examples to verify our
analytical results. All simulated results are based on 300 Monte Carlo
simulations. For the HPF-based methods, interpolation is used when-
ever the lag-coefficient is not an integer.
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QFM: N=129, n=64

20 T T
é & g % '>'<- % % + + O Simulated MSE (H 2)
30 L o o+ 4+ SimulatedMSEH ) N
O + X Simulated MSE (HAF)
w0 L o x  |-- Theoretical MSE (H 4)
o —— CRB &Theoretical (H )
o
T
w
v
2
)
o
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100 L : l
5 ) 5 10 15
SNR (dB)

Fig. 2. MSEs of the H,, H, and the HAF versus SNR for a quadratic FM
signal.

A. Quadratic FM Signal

For a quadratic FM signal, both H» and H4 can be applied to es-
timate the IFR. According to Proposition 1, the asymptotic MSEs for
both estimates are

oy 45
E{6« b, s

2 45

E {(éw) }”4 ~ JFSNR-

To verify our analytical results, a quadratic FM signal with parameters
A=1,(ao,a1,a2,03) = (1,7/8,5x 107°,107°),and N = 129 is
generated. Fig. 2 shows the simulated MSE at n = 64 (i.e., the middle
point of observations) by using H>, H4 and the HAF when the SNR
varies from —5 dB to 15 dB. The length of window is M = 64. From
this figure, we have the following observations:

1) At high SNR, the simulated MSEs for both H, and H, agree
with their own theoretical results. Note that the theoretical and
simulated MSEs of the H> attain the CRB when the SNR is above
1 dB. The MSEs of the H,-based estimate are about four times
higher than the H-based and HAF-based MSEs when the SNR
is greater than 6 dB.

2) The H, and the HAF show a higher SNR threshold than the H»
because the former two involve a fourth-order nonlinearity while
the H»-based method has only a second-order nonlinearity. In this
example, the SNR threshold for the H4 and the HAF is about 6
dB, whereas the H- exhibits a threshold at around 2 dB. Note that
nonlinear estimators usually exhibit a threshold effect (see [16,
Ch. 7).

The variation of the MSE as a function of » is shown in Fig. 3 when
N = 129and SNR = 10 dB. Ateach time point n, we use the window
length M = min {n, N — 1 — n}. Both the MSE and CRB are seen
to be symmetric with respect to the middle point n = 64. The nu-
merical results are seen to agree with the theoretical results. Again, the
H>-based estimator shows lower MSEs than those of the H4-based es-
timator. In general, for a quadratic FM signal, the H»-based estimator
provides the best performance in terms of MSEs and the SNR threshold
among various HPFs.

B. Cubic FM Signal

For a cubic FM signal (p = 4), the minimum HPF order is
g = 6 due to (5). By minimizing the theoretical MSE in Propo-
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QFM: N=129, SNR=10 dB

50 T T I T
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55 — \ + Simulated (H 4) /o
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60 el . 70O
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\ ——CRB o

0 20 40 60 80 100 120

Fig. 3. MSEs of various HPFs versus time n for a quadratic FM signal.

CFM, N=129, n=64

10 T T L

£ O Simulated (H )

0% Q $ $ g * x * * + Simulated (H /)
+ 8 . * x  Simulated (H )

30 - X % Simulated (HAF) H
4 * | Theoretical (H P

o= e Theoretical (H ) ||
- — —Theoretical (H 8)

50 - ——CRB =

CRB/MSE (dB)

SNR (dB)

Fig. 4. MSEs of various HPFs and the HAF versus SNR for a cubic FM signal.

sition 2 with subject to (5), we can numerically determine the
sixth-order HPF with the minimum MSE as Hg withr = (1,1, —1)
and d = (1.2646,1.3544,1.5600). For comparison purposes, we
also consider two other HPFs: (1) Hg with r = (1,1,—1) and
d = (1.0875,1.9333,1.9800), and (2) Hs withr = (1,1,—-1,-1)
and d = (1.4759,2.9432,2.9800,0.9800). Their theoretical MSEs
can easily be obtained from Proposition 2 and will be compared in the
following simulations.

To verify our analytical results, a cubic FM signal with pa-
rameters A = 1, (ao,a1,a2,a3,as) = (1,7r/8,3 x 1074,
2.5x1077,107'%), and N = 129 is generated. Fig. 4 shows the
theoretical and simulated MSEs for the three HPFs and the HAF as
a function of the SNR when the IFR is estimated at n = 64. The
results verify again that our theoretical MSEs agree well with the
simulations for the Hs, H{ and Hs-based methods at high SNR. We
note that the Hes-based estimator provides the minimum MSE among
the three. Moreover, the two sixth-order HPF Hg and H{; show a lower
SNR threshold than that of the eighth-order HPF Hg. Comparison
with the HAF-based estimator shows that the HAF-based estimator
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CFM, N=129, SNR=15 dB
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Fig. 5. MSE:s of various HPFs versus time n for a cubic FM signal.

can generate good performance at SNRs above 11 dB, but its SNR
threshold is higher than the HPF-based methods.

Fig. 5 plots the MSEs of the three HPF-based estimators with the
maximum window length Mmax in (13) versus time » when SNR =
15 dB. It is observed that, even at the middle point, the MSE of the
three IFR estimators cannot reach the CRB. Once again, the simulated
MSEs match the theoretical results. From Figs. 4 and 5, it is seen that
the best HPF for the cubic FM signal is Hg in terms of either the MSEs
or the SNR threshold.

V. CONCLUSION

This paper has presented a generalized performance analysis of the
HPF-based IFR estimators in terms of their asymptotic bias and MSE
for the estimation of polynomial phase signals with an arbitrary order.
The results show that the MSE of the IFR estimate is proportional to
the sum of squared multiplicity of the HPF coefficients, and inversely
proportional to the SNR and the window length. Both exact and asymp-
totic CRBs for the IFR estimation have been established. Two examples
have been provided to show that our results are consistent with the ex-
isting results for the cases of p = 2 and p = 3. Numerical examples
have been given to verify the analytical results.

APPENDIX I
APPROXIMATION OF K (n,m) AT HIGH SNR

By applying the HPF to the above noisy PPS signal, the nonlinear
kernel of the HPF in discrete form can be expressed as

L
K. (n,m)= H [s(n+dim) 4+ v(n+ dim)](“)k’
i=1

X [s(n —d;m) +v(n — d,-m)](r’)k’ 24)
where L is the number of different coefficients d; and r;, k; is the
multiplicity of the coefficients d; and r;, and Z{“:l ki =q/2.

Using the binomial expansion

[s(n+dim)+v(n+ dim)](")ki
S (ks
= < /) (”)p(n—i—d m)s (”)U"_/(n—l—r]m) (25)

£=0
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and a similar expansion for [s(n — d;m) + v(n — d;m)]"?*¢ we can
rewrite (24) as follows:

L
)= H s(ridki (n+ dim)s(”)ki (n —d;m)

=1

Z Z <k1) < Z> V(4 dim)

K, (n,m

£1=0 £3=0
(re)
x 02 (n —dim)s™ " (n+ dim)s™ 2 (n — d;m)
L \ \
~ H STk (n+ dim)s(r’)k’ (n—d;m)
X [1+k'1'(77—(lm "(n—d;m)
+ kiv(n + d,;m)s_ (n+ d,;m)](”) (26)

where the approximation is due to the high SNR assumption which
allows us to ignore the high-order noise terms. Decomposing (26) into
signal-only terms and noise-related terms, we have

L )
(e (e, m) {H[ (t"‘d,-r)ski(f—dir):l( i }

1

{l—l—Zkl [o(n — dim)s~ Yn—dim)

+u(n 4+ dim)s™ " (n+ d,'m)](“)

=K, (n m) + K, (n,m)

XZI. n—l—dm)e (n+d;m)

+I’<n — (lﬂn)s_l(n _ (lﬂn)](ri)

which is (10).

APPENDIX II
FIRST-ORDER PERTURBATION METHOD

The basic principle of the first-order permutation method is shown
as follows. Assume that gn (w) is a complex function depending on a
real variable w and on an integer V. The squared-magnitude of g (w)
has a global maximum at w = wp. Suppose a random function g (w)
moves the global maximum of ¢gx (w) from the nominal wg by éw, the
first-order approximation for dw is dw &~ —3/a [14], where

o =2R {yv(w)a 95\ (;10) n aggu(:uo) Oggiwo)} 27

and

&Mw(w)

(28)

g =2R {yN(wo) 5

agN(wo) P w(»’o)}

where R(-) represents the real part of (-). The mean-square value of
bw is given by
B{p*}

a?

B{(8)*} ~

(29)

where E'{-} denotes the expectation.
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APPENDIX III
ASYMPTOTIC ANALYSIS OF THE HPF-BASED ESTIMATOR

The HPF of a noise-free PPS s(n) is
M

H,(n,w) = Z Ks(n,'m,)efjwm?

m=—M

(30)

By choosing the HPF coefficients according to Proposition 1, the HPF
attains the maximum at wo = (n).

To derive its asymptotic MSE of the HPF-based IFR estimate, we
first determine the complex function g (w) and its random perturba-
tion g~ (w) for a specific n. According to the results in Appendix I,
gn (w) and 6gn (w) can be expressed as

M
gn (w) = Z K, ('71,,'771)67jwn22,
m=—M
M )
Sgn (w) = Z K, (n,m)e ?“™ @31)
m=—M

where K, (n, m) is given in (10). For simplicity, we drop the index n
in the above functions. Since

K. (n,m)= Aqej(“’om%ﬂ) (32)

the functions gn(w),8gn (w), and their derivatives, evaluated at the
global maximum wo = Q(n), are given by

gn (wo) =A%’ (2M +1)

Ogn (wo) A%els :
= M(M+1)(2M +1),
B 173 (M+1)(2M+1),
2., A4 T
Ogniwo) A M (M41)(2M +1)

Ow?
x (3M* +3M —1),
Sgi (wo) = A%e™7° Z Zys(n,m),

m

Abgn (w . s
M =jA%e™* Z7n2:m (n,m)

aw m

where
L

Zys(n,m) = Z ki ['U(n + d;771,).5'71('n + d;m)
i=1

+u(n —dim)s " (n — dim)](_”)

(33)
and (-)"") means the conjugate of (-)("?).

By inserting the above intermediate results into (27) and (28), we
obtain

A2q .
o=— 2‘/4 M (M +1)(2M — 1) (2M +1)* (2M +3),
8 =24"T(2M + 1)1 (34)
where 3[-] represents the imaginary part of [-] and
r= Z <'n72 - W) Zyps (n,m). (35)

m

Therefore, the first-order approximation of the perturbation on the
maximum point dw is
S — 453 [T]
CTMM+LD)CM-1)2M+1)(2M +3)

(36)
Taking the expectation of (36) with respect to v(n ), we can verify, from
(33) and (36), that E {z,s (n,m)} = 0, and, hence

E{6w}=0. 37)

In other words, the estimator is asymptotically unbiased.
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According to (29), we need to compute F {ﬁz} in order to find the
asymptotic variance. From (34)

E{3*} =24 (2M + 1)’ R[E{IT"} — E{IT}] (38)

where we use the fact that
E{3[«]S[y]} = 0.5R[E {a:y*} — E{ay}].

From (35), we have

PIT =YY <m§ _ W) <m3 MOty 1))

my Mo

X E{zys (nym1) 255 (n,mo)} (39)

) ; M(M+1 ; M(M+1
EA{IT} = ZZ <mf — %) <mé - %)

my1 mo

X E {zys (n,m1) 2ys (n,m2)}. (40)

Using (41) to evaluate E{z,s(n,mi)z}, (n,m2)} and

E{zs (n,m1) zps (n, m2)} results in
E{z, (n,my)z,, (n,mz2)}

L
~202A72 Z (k,)2 6 (my £ ma)
=1

E{zvs (n,m1) zos (n,m2)} = 0

where we used the fact that d; # d; and r; # r; if i # j. Inserting
these intermediate results into (38)—(40) yields

8A1=252 TN (1)
=1

21
E{3’} = o

M (M +1)
X (2M —1)(2M +1)> (2M 4+ 3). (41)

Combining (29), (34) and (41), the variance of dw is

L 5
90 (ki)?
i=1

E{(6w)} = sxmar (M+1)2M—1)2M +1)(2M +3)°
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Range-Doppler Imaging via Forward-Backward Sparse
Bayesian Learning

Xing Tan and Jian Li

Abstract—We consider range-Doppler imaging via transmitting a train
of probing pulses as in radar and active sonar. We show that range-Doppler
imaging can be formulated as a sparse signal recovery problem and that
we can use an expectation maximization based sparse Bayesian learning
(EM-SBL) algorithm to achieve high resolution imaging. We also reduce
the complexity of EM-SBL significantly by using an efficient forward-back-
ward algorithm in the E step of the EM algorithm.

Index Terms—Forward-backward algorithm, radar imaging, Range-
Doppler imaging, sparse Bayesian learning, super resolution.

I. INTRODUCTION

In radar and active sonar applications, range-Doppler images of a
scene can be obtained via transmitting a long probing pulse consisting
of a train of modulated subpulses towards the scene of interest. This
technique is often called pulse compression (see, e.g., [1]-[4]). Pulse
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TABLE I
NOTATIONS USED IN THE TEXT

()T transpose of a vector or a matrix
(HH conjugate transpose of a vector or a matrix
o T T T
Sm:n a column vector of the form (s%,,s7 ..., sT)
nwin the nth element of the vector p
3(m,n) the (m, n)th entry of the matrix 3
u(m :n) a vector defined by (u(m), u(m +1),...,u(n )T
E(k,m) (k)
3(k:l,m:n) amatrix defined by :
3(l,m) 3(l,n)
diag{v} a diagonal matrix whose diagonal entries are the

elements of the vector v

compression radar and sonar have high range resolution and low instan-
taneous power because of its large time-bandwidth product, meaning
that they can have both long pulse duration and large bandwidth at the
same time. In [2], a data-independent instrumental variable (IV) filter
was proposed for range-Doppler imaging. However, due to the use of
only one probing pulse, the Doppler resolution of the range-Doppler
image obtained by the IV filter in [2] is poor. To achieve higher Doppler
resolution, the authors in [5] utilized multiple probing pulses, each
consisting of a sequence of modulated subpulses, for range-Doppler
imaging. Both the data-independent IV filter and the data-adaptive iter-
ative adaptive approach (IAA) were considered in [5]. [AA was shown
to have higher Doppler resolution than the IV filter at the cost of higher
computational complexity. However, IAA does not provide the a pos-
teriori probability density function (pdf) of the target’s parameters,
which is useful for target detection.

We consider herein a Bayesian method for range-Doppler imaging.
The proposed method not only gives estimates for the target’s param-
eters but also provides the a posteriori pdf of the target’s parameters.
The proposed Bayesian method is based on a two-stage Bayesian model
(see, e.g., [6]). In [6], the hyper-parameters in the Bayesian model
were estimated by a type-II maximum-likelihood (ML) method. The
type-II ML method was solved by an expectation maximization (EM)
based sparse Bayesian learning (SBL) approach, to which we refer as
EM-SBL. We adopt EM-SBL for range-Doppler imaging herein. The
main contribution of this correspondence is to reduce the complexity
of EM-SBL by first transforming the Bayesian model into a hidden
Markov model and then making use of an efficient forward-backward
algorithm. We prove that the forward and backward densities in the for-
ward-backward algorithm are Gaussian pdfs and hence, we only need to
update their means and variances during the iterations. We refer to the
so-obtained method as the forward-backward sparse Bayesian learning
(FB-SBL) approach. Compared to EM-SBL, FB-SBL performs simi-
larly but is much faster.

We denote vectors by boldface lowercase letters and matrices by
boldface uppercase letters. The notations that we use throughout this
paper are given in Table 1.

II. PROBLEM FORMULATION

We assume that a train of P probing pulses (with pulse repetition
frequency f ) is transmitted towards the scene of interest. Each probing
pulse is a sequence of complex-valued subpulses (co, 1, ..., car—1).
Let the range of interest be divided into N range bins and the
Doppler frequency shift interval of interest be divided into () Doppler
bins (denoted as fi, f2,..., fg). Define the Doppler phase shift
Wq 2on fq/ B, where B is the bandwidth of the subpulses. The target
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