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This paper considers the problem of detecting a multichannel

signal in partially homogeneous environments, where the

disturbances in both test signal and training signals share the

same covariance matrix up to an unknown power scaling factor.

Two different parametric Rao tests, referred to as the normalized

parametric Rao (NPRao) test and the scale-invariant parametric

Rao (SI-PRao) test, respectively, are developed by modeling the

disturbance as a multichannel autoregressive (AR) process. The

NPRao and SI-PRao tests entail reduced training requirements

and computational efficiency, compared with conventional fully

adaptive, covariance matrix based solutions. The SI-PRao test

attains asymptotically a constant false alarm rate (CFAR) that is

independent of the covariance matrix and power scaling factor of

the disturbance. Comparisons with the covariance matrix based,

scale-invariant generalized likelihood ratio test (GLRT), also

known as the adaptive coherence estimator (ACE), are included.

Numerical results show that the parametric Rao detectors, in

particular the SI-PRao test, attain considerably better detection

performance and use significantly less training than the ACE

detector.
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I. INTRODUCTION

Multichannel adaptive detection is encountered

in numerous applications including radar [1, 2],

wireless communications [3], hyperspectral imaging

[4, 5], and others. Space-time adaptive processing

(STAP)-based multichannel adaptive detection has

been successfully utilized to mitigate the effect of

clutter and/or interference in radar, remote sensing,

and communication systems [1—5].

Traditional STAP detectors are developed

usually for homogeneous environments, where the

disturbances in both the test and training signals are

assumed to be independent and identically distributed

(IID). Examples include the Reed, Mallet, and

Brennan detector [6], Kelly’s generalized likelihood

ratio test (GLRT) [7], the adaptive matched filter

(AMF) detector [8, 9], and Rao test [10], among

others. For the above STAP detectors, estimation

of the space-time covariance matrix from training

signals requires a large number of training signals

and excessive computation power, especially when

the joint space-time dimension is large. To alleviate

these problems, parametric STAP detectors have

been developed by modeling the disturbance as a

multichannel autoregressive (AR) process, such as the

parametric AMF (PAMF) [11], parametric Rao test

[12], and parametric GLRT [13].

In this paper, we consider multichannel signal

detection in partially homogeneous environments,

where the test signal shares the same covariance

matrix with the training signals up to an unknown

power scaling factor under the null hypothesis

[14—17]. This scenario is motivated by the following

observation: A number of guard cells used in the

STAP implementation to separate the test signal

and training signals may lead to a power difference

between the test and training signals. Specifically,

the training signals over range cells are assumed to

be IID CN (0,R) which denotes a complex Gaussian
distribution with zero mean and covariance matrix R,

while the disturbance in the test signal is independent

with the training signals with distribution CN (0,¸R),
where ¸ denotes the unknown power scaling factor.

Depending on a priori knowledge about the power

scaling factor ¸, or the covariance matrix R, or both,

nonadaptive and adaptive STAP detectors have been

developed in [15]—[18]. The scale-invariant GLRT,

which is also known as the adaptive coherence

estimator (ACE), is first introduced in [18] for the

compound Gaussian environment and also developed

in [16] for the partially homogeneous environment.

It is shown that the ACE coincides with the Rao and

Wald tests in the partially homogeneous environment

[17], which is also a constant false alarm rate (CFAR)

detector. As a covariance matrix based STAP detector,

the ACE needs to estimate the covariance matrix from

the target-free training signals which entails large
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training requirement, and to invert the covariance

matrix for implementation also leads to a high

computational complexity. At a minimum, K ¸ JN
IID training signals are needed to ensure a full-rank

estimate of the JN £ JN covariance matrix R, where
J denotes the number of spatial channels and N the

number of temporal observations. For example, the

KASSPER dataset consists of J = 11 spatial channels

and N = 32 coherent pulses for a total of JN = 352

spatial-temporal dimension. Such a demanding

training requirement usually cannot be met in practice.

It also makes the homogeneous (i.e., IID) assumption

across such a broad range of training cells impractical.

To address this issue, we take an approach

where the disturbance in the partially homogeneous

environment is modeled by a multichannel AR

process. This modification results in a parametric

STAP detector which requires a relaxed local

homogeneous assumption for the training signals:

that is, the training signals are assumed to be IID

over a small duration, as opposed to the excessive

homogeneous training signals required by the ACE.

The local homogeneous assumption is reasonable

because the effect of clutter variation across a

small area is generally negligible. In the compound

Gaussian model [18—23], it is often assumed that the

texture component is slow varying, which is similar to

the local homogeneous assumption.

In this paper, parametric detection by using

the Rao principle is considered for the partially

homogeneous environment. The first parametric Rao

test, which is referred to the normalized parametric

Rao (NPRao) test, is developed in a heuristic way.

Specifically, it first assumes the knowledge of the

power scaling factor, applies the Rao principle and

obtains a Rao test that depends on the power scaling

factor, and finally replaces the unknown power scaling

factor by some estimate. The second Rao test, referred

to the scale-invariant parametric Rao (SI-PRao)

test, is developed by applying the Rao principle

with the joint maximum likelihood (ML) estimates

of all unknown parameters in the null hypothesis.

The asymptotical distribution of the SI-PRao test is

derived in closed form. It is shown that the SI-PRao

test is asymptotically independent of the unknown

parameters in the null hypothesis, which results in the

property of CFAR. Comparisons between the ACE

detector show that our parametric Rao tests in the

partially homogeneous environment exhibit improved

detection performance when the training signals are

limited, i.e., when K is too small to yield a reliable

estimate of the space-time covariance matrix R that is
required by the ACE detector.

The rest of this paper is organized as follows.

Section II contains the data model and problem

statement. Prior solutions to the problem of interest

are briefly reviewed in Section III. The NPRao and

SI-PRao tests are developed and summarized in

Section IV. Asymptotical performance of the SI-PRao

detector is also included in this section. Numerical

results are presented in Section V. Finally, Section VI

contains the concluding remarks.

II. DATA MODEL AND PROBLEM STATEMENT

A. Data Model

Consider the problem of detecting a known

multichannel signal with unknown amplitude in

the presence of spatially and temporally correlated

disturbance: (e.g., [1]):

H0 : x0(n) = d0(n), n= 0,1, : : : ,N ¡ 1
H1 : x0(n) = ®s(n) +d0(n), n= 0,1, : : : ,N ¡ 1

(1)

where all vectors are J £ 1 vectors, J denotes the
number of spatial channels, and N is the number of

temporal observations. In the sequel, x0(n) is referred

to as the test signal, s(n) is the signal to be detected

with amplitude ®, and d0(n) is the disturbance signal

that may be correlated in space and time. Besides the

test signal x0(n), there may be a set of training signals

xk(n), k = 1,2, : : : ,K, to assist in the signal detection:

xk(n) = dk(n), n= 0,1, : : : ,N ¡ 1: (2)

In radar systems, training signals may be obtained

from range cells adjacent to the test cell. However,

a training signal is generally limited or may even be

unavailable. In the extreme training-free case, we have

K = 0.

Define the following JN £ 1 space-time vectors:
s= [sT(0),sT(1), : : : ,sT(N ¡ 1)]T

dk = [d
T
k (0),d

T
k (1), : : : ,d

T
k (N ¡ 1)]T

xk = [x
T
k (0),x

T
k (1), : : : ,x

T
k (N ¡ 1)]T

where k = 0,1, : : : ,K. It follows that (1) can be

rewritten in a compact form

H0 : x0 = d0

H1 : x0 = ®s+d0:
(3)

The binary composite hypothesis testing problem is to

select between H0 : ®= 0 and H1 : ® 6= 0.
The general assumptions for the STAP in partially

homogeneous environment are [15]—[17], [24], [25]:

AS1: The signal vector s is deterministic and

known to the detector;

AS2: The signal amplitude ® is complex-valued,

deterministic, and unknown;

AS3: The disturbance signals d0 and fdkgKk=1 are
mutually independent with distribution CN (0,¸R) and
CN (0,R), respectively, where ¸ > 0 is an unknown
power scaling factor.

If ¸= 1, the partially homogeneous environment

reduces to the homogeneous case. In this paper, a
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multichannel AR process is employed to model the

disturbance and the AS3 is modified as follows:

AS30: The disturbance signal dk(n), k = 0, : : : ,K,
can be modeled as a J-channel AR(P) process with

model order P:

dk(n) =¡
PX
i=1

AH(i)dk(n¡ i) +"k(n) (4)

where fAH(i)gPi=1 denotes the unknown J £ J
AR coefficient matrices, "k(n) denotes the J £ 1
spatial noise vectors that are temporally white but

spatially colored: "0(n)» CN (0,¸Q) and f"k(n)gKk=1 »
CN (0,Q), respectively, where ¸ is the unknown power
scaling factor, and Q denotes the unknown J £ J
spatial covariance matrix.

Note that the power scaling factor ¸ on the spatial

covariance matrix ensures the same power scaling

factor on the spatial-temporal covariance matrix. The

problem of interest here is to develop a decision rule

for the above composite hypothesis testing problem

based on assumptions AS1, AS2, and AS30.

III. PRIOR SOLUTIONS

Depending on the amount of a prior knowledge

about the unknown parameters, a number of solutions

for the STAP detection in partially homogeneous

environments have been proposed. If the space-time

covariance matrix R and the power scaling factor ¸

are both known exactly, the optimal detector is the

phase-invariant matched filter (PIMF) [20, 25]

TPIMF =
jsHR¡1x0j2
¸sHR¡1s

H1
?
H0

°PIMF (5)

where °PIMF denotes the PIMF threshold subject

to a selected probability of false alarm. In the case

of unknown ¸, the normalized match filter (NMF)

replaces ¸ with an estimate, which is given by

TNMF =
jsHR¡1x0j2

(sHR¡1s)(xH0 R¡1x0)

H1
?
H0

°NMF (6)

where °NMF denotes the NMF threshold. It should

be noted that both the nonadaptive PIMF and NMF

detectors cannot be implemented in practice since R
is unknown, but they can be used as a baseline for

performance comparison.

Adaptive detectors are formulated by estimating

the covariance matrix R from the target-free training

signals

R̂=
1

K

KX
k=1

xkx
H
k : (7)

The normalized adaptive matched filter (NAMF) [18],

also known as the ACE [15], is

TACE =
jsHR̂¡1x0j2

(sHR̂¡1s)(xH0 R̂
¡1x0)

H1
?
H0

°ACE (8)

where °ACE denotes the ACE threshold. It is shown

that the ACE is equivalent to the scale-invariant GLRT

in the partially homogeneous environment [15].

By utilizing a multichannel AR model, the

normalized parametric adaptive matched filter

(NPAMF) is reported [20, 21, 26]:

TNPAMF =

¯̄̄PN¡1
n=P

ˆ̃s
H

P (n)Q̂
¡1
P
ˆ̃x0,P(n)

¯̄̄2
³PN¡1

n=P

ˆ̃s
H

P (n)Q̂
¡1
P
ˆ̃sP(n)

´³PN¡1
n=P

ˆ̃x
H

0,P(n)Q̂
¡1
P
ˆ̃x0,P(n)

´
H1

?
H0

°NPAMF (9)

where °NPAMF denotes the NPAMF threshold, Q̂P
denotes an estimate of the spatial covariance matrix

Q, and ˆ̃x0,P(n) and
ˆ̃sP(n) are the temporally whitened

test and steering vector, respectively. The NPAMF was

originally developed as a solution for detection in the

compound-Gaussian environment [20, 21]; it can also

be used in the partially homogeneous environment.

IV. PARAMETRIC RAO TESTS IN PARTIALLY
HOMOGENEOUS ENVIRONMENT

In this section two parametric Rao detectors based

on assumptions AS1, AS2, and AS30 are developed.
The NPRao test is developed in a manner similar to

the NPAMF, while the SI-PRao test is derived by

finding the ML estimates of all nuisance parameters

under the null hypothesis.

A. Normalized Parametric Rao Test

The NPRao test is a heuristic detector obtained

via a two-step approach. First, by assuming that the

power scaling parameter ¸ is known, a Rao test can

be obtained by finding the ML estimates of the AR

coefficient matrices fAH(p)g and spatial covariance
matrix Q. The derivation is similar to the Rao test

in [12] for a homogeneous environment. Hence, we

skip the details and just present the final result. The

new detector, conditioned on a known ¸, is given

by

TPRao =

2

¯̄̄̄PN¡1
n=P

ˆ̃s
H

(n)Q̂¡1 ˆ̃x0(n)
¯̄̄̄2

¸

μPN¡1
n=P

ˆ̃s
H

(n)Q̂¡1ˆ̃s(n)
¶ (10)

where ˆ̃s and ˆ̃x0 are the temporally whitened steering

vector and test signal, respectively, by using a

set of estimates fÂH(p)g of the AR coefficient
matrices:

ˆ̃s(n) = s(n) +

PX
p=1

ÂH(p)s(n¡p) (11)

ˆ̃x0(n) = x0(n) +

PX
p=1

ÂH(p)x0(n¡p) (12)

1852 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 3 JULY 2011



where ÂH = [ÂH(1),ÂH(2), : : : ,ÂH(P)] is given by [12]

ÂH =¡R̂HyxR̂¡1yy : (13)

The Q̂ in (10) is an estimate of the spatial covariance

matrix Q [12]:

Q̂=
1

L
(R̂xx¡ R̂HyxR̂¡1yy R̂yx) (14)

where L= (K +1)(N ¡P) and

R̂xx =

KX
k=0

N¡1X
n=P

xk(n)x
H
k (n) (15)

R̂yy =

KX
k=0

N¡1X
n=P

yk(n)y
H
k (n) (16)

R̂yx =

KX
k=0

N¡1X
n=P

yk(n)x
H
k (n) (17)

and yk(n) = [x
T
k (n¡ 1), : : : ,xTk (n¡P)]T 2 CJP£1, k =

0, : : : ,K.

Second, we replace the power scaling factor ¸

in (10) by some estimate. One candidate is given by

[20], [21] (also see (9))

ˆ̧ =

N¡1X
n=P

ˆ̃x
H

0 (n)Q̂
¡1 ˆ̃x0(n): (18)

This leads to our NPRao detector given by

TNPRao =
2

¯̄̄PN¡1
n=P

ˆ̃s
H

(n)Q̂¡1 ˆ̃x0(n)
¯̄̄2

³PN¡1
n=P

ˆ̃s
H

(n)Q̂¡1 ˆ̃s(n)
´³PN¡1

n=P

ˆ̃x
H

0 (n)Q̂
¡1 ˆ̃x0(n)

´
H1

?
H0

°NPRao (19)

where °NPRao denotes the NPRao test threshold.

It is noted that the NPAMF detector is equivalent

to the NPRao test with one exception: while the

NPAMF detector uses only training signals for

parameter estimation, the NPRao detector uses both

training and test signals for estimation. The difference

is similar to the one discussed in [12] between the

PAMF detector and the parametric Rao detector.

B. Scale-Invariant Parametric Rao Test

The heuristic NPRao test cannot ensure the

invariance to the power scaling factor, which is

needed for effective clutter mitigation in the partially

homogeneous environment [15, 16]. To this end, a

parametric Rao test by evaluating the ML estimates

of all nuisance parameters including ¸, A, and Q is

developed and the resulting detector, the SI-PRao

test, is shown to be invariant to the power scaling

factor.

Specifically, as shown in the Appendix, the

SI-PRao test is given by

TSI-PRao =

2

¯̄̄̄PN¡1
n=P

ˆ̃s
H

(n; ˆ̧ )Q̂¡1( ˆ̧ ) ˆ̃x0(n;
ˆ̧ )

¯̄̄̄2
ˆ̧PN¡1

n=P
ˆ̃s
H

(n; ˆ̧ )Q̂¡1(
ˆ

¸)ˆ̃s(n; ˆ̧ )

H1
?
H0

°SI-PRao: (20)

The ˆ̧ in (20) is the ML estimate of ¸, which is

obtained by solving the following equation:

J

K +1
¡
J(P+1)X
i=1

1

1+¸¹i
+

JPX
i=1

1

1+¸ºi
= 0 (21)

where f¹igJ(P+1)i=1 and fºigJPi=1 are the eigenvalues of
the matrices R̂

¡1=2
0 R̂KR̂

¡1=2
0 and R̂

¡1=2
0,y R̂K,yR̂

¡1=2
0,y ,

respectively, and

R̂0 =

266664
N¡1X
n=P

y0(n)y
H
0 (n)

N¡1X
n=P

y0(n)x
H
0 (n)

N¡1X
n=P

x0(n)y
H
0 (n)

N¡1X
n=P

x0(n)x
H
0 (n)

377775 (22)

R̂K =

266664
KX
k=1

N¡1X
n=P

yk(n)y
H
k (n)

KX
k=1

N¡1X
n=P

yk(n)x
H
k (n)

KX
k=1

N¡1X
n=P

xk(n)y
H
k (n)

KX
k=1

N¡1X
n=P

xk(n)x
H
k (n)

377775
(23)

R̂0,y =

N¡1X
n=P

y0(n)y
H
0 (n) (24)

R̂K,y =

KX
k=1

N¡1X
n=P

yk(n)y
H
k (n): (25)

REMARK The existence of a nonnegative solution
ˆ̧ to (21) is guaranteed. To see this, note that

R̂
¡1=2
0 R̂KR̂

¡1=2
0 and R̂

¡1=2
0,y R̂K,yR̂

¡1=2
0,y are positive

definite. Therefore, ¹i and ºi are positive. The

function

f(¸) =
J

K +1
¡
J(P+1)X
i=1

1

1+¸¹i
+

JPX
i=1

1

1+¸ºi
(26)

is a continuous function on (0,+1). When K > 0, i.e.,
at least one training signal is available, we have

lim
¸!0

f(¸) =
J

K +1
¡ J < 0 (27)

lim
¸!1

f(¸) =
J

K +1
> 0 (28)

which implies that there is at least one ¸ within in

the interval (0,+1) giving f(¸) = 0. On the other
hand, the uniqueness of the ML estimate of ¸ is more
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difficult to establish due to the nonlinear dependence

on the parameters ¹i and ºi. Numerical examples

suggest that the solution is unique. For illustration

purposes, Fig. 1 shows the numerical evaluation of

f(¸) for several sets of system parameters. It is seen

that the function f(¸) is a monotonically increasing

function over ¸ 2 (0,+1), which, combining with
(27) and (28), suggests that the solution is unique.

However, a more rigorous proof is not available.

Once the ML estimate of ¸, the temporally

whitened steering vector ˆ̃s(n; ˆ̧ ) and test signal ˆ̃x0(n;
ˆ̧ )

in (20) are obtained from (11) and (12) with the

following ML estimate of A

ÂH =¡R̂Hyx( ˆ̧ )R̂¡1yy ( ˆ̧ ): (29)

Finally, Q̂( ˆ̧ ) in (20), the ML estimate of Q, is given

by

Q̂( ˆ̧ ) =
1

L
(R̂xx(

ˆ̧ )¡ R̂Hyx( ˆ̧ )R̂¡1yy ( ˆ̧ )R̂yx( ˆ̧ )) (30)

where

R̂xx(
ˆ̧ ) = ˆ̧¡1

N¡1X
n=P

x0(n)x
H
0 (n) +

KX
k=1

N¡1X
n=P

xk(n)x
H
k (n)

(31)

R̂yy(
ˆ̧ ) = ˆ̧¡1

N¡1X
n=P

y0(n)y
H
0 (n) +

KX
k=1

N¡1X
n=P

yk(n)y
H
k (n)

(32)

R̂yx(
ˆ̧ ) = ˆ̧¡1

N¡1X
n=P

y0(n)x
H
0 (n) +

KX
k=1

N¡1X
n=P

yk(n)x
H
k (n):

(33)

C. Asymptotic Detection Performance

According to [27], the asymptotic distribution of

the Rao test statistics can be obtained as

TSI-PRao
a»
½
Â22, under H0

Â022 (½), under H1
(34)

where Â22 denotes the central chi-squared distribution

with 2 degrees of freedom and Â022 (½) the noncentral
chi-squared distribution with 2 degrees of freedom

and noncentrality parameter ½

½=
2j®j2PN¡1

n=P s̃
H(n)Q¡1s̃(n)
¸

(35)

where s̃ is the temporally whitened steering vector

given by (11) but with Â replaced by the true AR

coefficient matrix A. From (35), it is ready to show

that, for a given threshold, the probability of false

alarm is

Pf = exp
³
¡°SI-PRao

2

´
(36)

which shows that the statistic of the SI-PRao test

under H0 is independent of the power scaling factor

Fig. 1. Numerical evaluation of f(¸) for several sets of system

parameters when J = 4 and ¸= 4.

and the covariance matrix, and further implies the

SI-PRao test is a CFAR detector, while the probability

of detection is

Pd =

Z 1

°SI-PRao

1

2
exp

³
¡x+ ½

2

´
I0
¡p
½x
¢
dx (37)

where I0(x) is the modified Bessel function of the first

kind and zeroth order.

V. NUMERICAL EXAMPLES

We now report simulation results for the proposed

detectors. Throughout this section, the disturbance

signal is generated as a multichannel AR(2) process

with AR coefficient A and a spatial covariance matrix

Q. These parameters are set to ensure that the AR
process is stable and Q is a valid covariance matrix,

but otherwise are randomly selected. The signal vector

s corresponds to a uniform equispaced linear array

with J = 4 antenna elements, N temporal pulses, and

randomly selected normalized spatial frequency !s and

Doppler frequency !d. The steering vector is given by

s= st(!d)− ss(!s) (38)

where st(!d) denotes the N £1 temporal steering
vector

st(!d) =
1p
N
[1,ej!d , : : : ,ej(N¡1)!d ]T (39)

and ss(!s) denotes the J £1 spatial steering vector

ss(!s) =
1p
J
[1,ej!s , : : : ,ej(J¡1)!s]T: (40)

The signal-to-interference-plus-noise ratio (SINR) is

defined as
SINR= j®j2sHR¡1s (41)

where the JN £ JN covariance matrix R can be
uniquely determined once A and Q are selected.
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Numerical simulations are provided for various

values of K, N, and ¸ when J = 4 and P = 2. In

particular, we consider two distinct cases: 1) the

limited-training case, e.g., K = 2 and K = 4; and 2)

the asymptotic case, e.g., K = 64. The simulation

results are shown in terms of the probability of

detection versus SINR when the probability of false

alarm is fixed as Pf = 0:01. In each case, the optimum

but nonadaptive PIMF detector (5), whose Pd and Pf
can be determined analytically [16], is included as

a benchmark (note that the PIMF is a clairvoyant

detector that has full knowledge of all unknown

parameters). The ACE detector, whose performance

can also be determined analytically (see [16], [28]),

is also included to show how the parametric detectors

compare with this popular covariance matrix based

detector in partially nonhomogeneous environments.

Since the ACE detector needs a full-rank space-time

covariance matrix estimate, we assumes it has

sufficiently IID training signals with K = 2JN.

Finally, we include the simulated results for the

proposed NPRao and SI-PRao detectors; for the latter,

we also include its asymptotic performance as shown

in Section IVC.

A. Limited-Training Case

In this case, we first consider two scenarios:

1) K = 2 and N = 32, where the training signals

are limited and the number of temporal samples

is moderate; 2) K = 4 and N = 16, where we have

slightly more training signals but the temporal samples

are limited. For K = 2 and N = 32, Figs. 2 and 3

show the probability of detection versus SINR when

¸= 4 and ¸= 8, respectively. It is seen that, for a

small value of ¸= 4, the NPRao and SI-PRao tests

with K = 2 generally outperform the ACE detector

with K = 256. For a larger value of ¸= 8 as shown

in Fig. 3, the SI-PRao test behaves similarly to the

PIMF, while the NPRao test degrades considerably,

indicating that it is not invariant to the power scaling

factor ¸.

In the second case with K = 4 and N = 16,

the simulation results are plotted in Figs. 4 and 5,

respectively, for ¸= 4 and ¸= 8. It is seen that the

SI-PRao test yields the best performance among the

adaptive detectors. Both the SI-PRao test and ACE

detector are seen to be invariant to the power scaling

factor. However, the NPRao test shows much worse

detection performance than the SI-PRao test and the

ACE detectors for both ¸= 4 and ¸= 8.

We next examine the SINR loss of the proposed

Rao detectors with respect to the PIMF in cases of

different probabilities of false alarm. The results of

the SI-PRao and NPRao detectors are shown in Fig. 6

and Fig. 7, respectively, when several probabilities of

false alarm Pf = f0:1,0:01,0:001g are considered. It
is noticed that, for a given probability of detection,

Fig. 2. Probability of detection versus SINR when Pf = 0:01,

J = 4, N = 32, K = 2, ¸= 4.

Fig. 3. Probability of detection versus SINR when Pf = 0:01,

J = 4, N = 32, K = 2, ¸= 8.

both Rao detectors show a larger SINR loss with

respect to the PIMF when the probability of false

alarm is smaller. However, the performance loss of

the SI-PRao test is generally smaller than the NPRao

test in all three cases.

B. Asymptotic Case

An asymptotic scenario with large K is simulated

to verify the asymptotic performance of the

SI-PRao test derived in Section IVC. The simulation

parameters are J = 4, N = 16, P = 2, and K = JN =

64. The results are shown in Figs. 8 and 9 with ¸= 4

and ¸= 8, respectively. It is seen that the probability

of detection obtained by simulation approaches the

asymptotic performance of the SI-PRao test in both

cases. Also, with plenty of training signals, the NPRao

WANG ET AL.: PARAMETRIC RAO TESTS FOR MULTICHANNEL ADAPTIVE DETECTION 1855



Fig. 4. Probability of detection versus SINR when Pf = 0:01,

J = 4, N = 16, K = 4, ¸= 4.

Fig. 5. Probability of detection versus SINR when Pf = 0:01,

J = 4, N = 16, K = 4, ¸= 8.

test provides detection performance almost identical to

that of the SI-PRao test. The performance of the ACE

detector with K = 128, which is twice that of the Rao

tests, is also included for comparison.

It is also interesting to show the impact of the

sample size, i.e., the number of pulses N, on the

detection performance. The results are shown in

Fig. 10 where the detection probability of the SI-PRao

detector converges as N increases and approaches

the asymptotic performance. The NPRao detector

has a similar behavior, which is not shown for space

limitation.

C. Effect of Model Mismatch

The above simulation examples are based on two

assumptions: 1) the model order is known, and 2) the

disturbance is exactly a multichannel AR process. In

Fig. 6. Comparison of SINR loss of SI-PRao detector with

respect to PIMF in cases of Pf = f0:1,0:01,0:001g when J = 4,
N = 32, K = 2, P = 2, ¸= 4.

Fig. 7. Comparison of SINR loss of NPRao detector with respect

to PIMF in cases of Pf = f0:1,0:01,0:001gwhen J = 4, N = 32,
K = 2, P = 2, ¸= 4.

this section, we evaluate the detection performance of

the proposed Rao detectors when these assumptions

are not met.

We first consider the case when the disturbance

is a AR process, but there is an model estimation

error. In practice, one needs to estimate the model

order P of the multichannel AR before application

of the SI-PRao and NPRao detectors. A model order

estimation procedure may yield a small estimation

error. Fig. 11 depicts the detection performance

of the SI-PRao detector when the model order is

underestimated and overestimated, respectively.

It is seen that the order mismatch causes some

performance degradation. However, in both cases,

the degradation is not significant. It is also seen that

overestimation of the model order has a smaller effect
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Fig. 8. Probability of detection versus SINR when Pf = 0:01,

J = 4, N = 16, K = 64, ¸= 4.

Fig. 9. Probability of detection versus SINR when Pf = 0:01,

J = 4, N = 16, K = 64, ¸= 8.

on the detection performance than underestimation.

This behavior is similar to the case of the standard

parametric Rao test in [12].

Next we consider the case when the disturbance

is not a multichannel AR process. To show the

detection performance in a more realistic environment,

we use the KASSPER dataset, which contains

many challenging real-world effects, including

heterogeneous terrain, array errors, and dense ground

targets (see [29] for a detailed description of the

KASSPER dataset).

Fig. 12 shows the probability of detection versus

SINR for the KASSPER dataset when Pf = 0:01,

J = 11, N = 32, K = 8, P = 1, and ¸= 4. The

covariance matrix of the test signal corresponds to

range cell r200, whereas the covariance matrices of

Fig. 10. Effect of number of pulses on detection performance of

SI-PRao detector when Pf = 0:01, J = 4, K = 2, P = 2, ¸= 4.

Fig. 11. Probability of detection versus SINR when model order

of multichannel AR process used for computing test statistic is

true (P = 2), overestimated (assuming P = 3), and underestimated

(assuming P = 1), when Pf = 0:01, J = 4, N = 32, K = 8, ¸= 4.

two (K = 2) training signals are from range cells r197

and r203, i.e., with two guard cells between the test

cell and training cells. This scenario includes some

nonhomogeneous effects since the covariance matrices

for the test and training cells are different. As shown

in Fig. 12, with two training signals and by modeling

the disturbance as an AR(1) process, the SI-PRao and

NPRao detectors achieve a close performance that is

only 2 to 3 dB away from the PIMF detector.

VI. CONCLUSION

The multichannel adaptive detection in the

partially homogeneous environment by modeling

the disturbance as a multichannel AR process has
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Fig. 12. Probability of detection versus SINR for KASSPER

dataset when Pf = 0:01, J = 11, N = 32, K = 8, P = 1, ¸= 4.

been addressed. Two parametric Rao tests have been

developed to relieve the excessive training requirement

and reduce the computational complexity of the

ACE detector, when the spatial-temporal dimension

is large. The test statistic of the SI-PRao test has

been asymptotically verified to be independent of the

unknown parameters under the null hypothesis, which

asymptotically achieves the CFAR. Numerical results

verify that the SI-PRao test shows better performance

than the NPRao test and the ACE when the training

signals are limited.

APPENDIX

In order to facilitate the derivation of the SI-PRao

test, we define the following notations.

1) μr = [®R,®I]
T = [<f®g,=f®g]T denotes the

signal parameter vector, where < and = denote the
real and imaginary parts, respectively. The joint

probability density function (pdf) under H0 and the

pdf under H1 differ only in the value of μr, where

μr0 = [0,0]
T and μr1 = [®R,®I]

T.

2) μs = [¸,q
T
R,q

T
I ,a

T
R,a

T
I ]
T denotes the nuisance

parameter vector with aTR = vec(<fAHg),aTI =
vec(=fAHg), qTR contains the diagonal elements in Q
and the real part of the elements below the diagonal,

while qTI contains the imaginary part of the elements

below the diagonal.

3) μ = [μTr ,μ
T
s ]
T contains all unknown parameters.

4) μ̃ = [μTr0 , μ̂
T
s0
]T denotes the ML estimate of μ

under H0.

The Rao test is a general solution to a class of

parameter testing problems. It is often simpler than

the GLRT, and is also asymptotically equivalent to

the latter. A detailed discussion on the attributes of

a generic Rao test can be found in [27]. The general

Rao test can be expressed as [27]

@ lnf(μ)

@μr

¯̄̄̄T
μ=μ̃

[I¡1(μ̃)]μr ,μr
@ lnf(μ)

@μr

¯̄̄̄
μ=μ̃

(42)

where

[I¡1(μ)]μr ,μr = (Iμr ,μr (μ)¡ Iμr ,μs(μ)I¡1μs,μs(μ)Iμs,μr (μ))¡1

(43)

which is related to the Fisher information matrix

(FIM) [27]

I(μ) =

·
Iμr ,μr (μ) Iμr ,μs(μ)

Iμs,μr (μ) Iμs,μs(μ):

¸
: (44)

Under both hypothesis, the joint pdf of the test

signal and training signal can be written as

f(μ) =

·
¸¡J=(K+1)

¼J jQj expf¡tr(Q¡1T(¸,A))g
¸(K+1)(N¡P)

(45)
where

T(¸,A) =

1

¸

PN¡1
n=P "0(n)"

H
0 (n) +

PK
k=1

PN¡1
n=P "k(n)"

H
k (n)

(K +1)(N ¡P)
(46)

"0(n) = x̃0(n)¡®s̃(n) (47)

"k(n) = xk(n) +
PX
p=1

AH(p)xk(n¡p) (48)

with

x̃0(n) = x0(n) +

PX
p=1

AH(p)x0(n¡p) (49)

s̃(n) = s(n) +

PX
p=1

AH(p)s(n¡p): (50)

Equation (45) gives the pdf under H0 by setting ®= 0

and the pdf under H1 for ® 6= 0.
From (42), the derivation of the SI-PRao test is

a two-step process. The first one is to obtain the

ML estimates of the nuisance parameters under H0,

and the second one is to evaluate the related terms

in (42).

A. ML Estimation Under H0

From (45), the joint pdf under H0 is f(μ) with
®= 0. By taking the derivative of the log likelihood

lnf(μ) with ®= 0 with respect to (w.r.t.) Q and

equating it to zero results in the ML estimate of Q

as

Q̂ML(¸,A) = T(¸,A) (51)
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where T(¸,A) is given in (46) with ®= 0. Substituting

Q̂ML(¸,A) into lnf(μ) under H0 yields

f(¸,A,Q̂ML) =

·
(e¼)¡J

¸J=(K+1)jT(¸,A)j
¸(K+1)(N¡P)

:

(52)

The ML estimate of A is obtained by minimizing

jT(¸,A)j. Note that (K +1)(N ¡P)T(¸,A) can be
rewritten as

(K +1)(N ¡P)T(¸,A)
= R̂xx(¸) + R̂

H
yx(¸)A+A

HR̂yx(¸) +A
HR̂yy(¸)A:

It can be shown that [12]

T(¸,A)¸ T(¸,A)j
A=Â

(53)

where

ÂH(¸) =¡R̂Hyx(¸)R̂¡1yy (¸) (54)

and R̂xx(¸), R̂yy(¸) and R̂yx(¸) are given by (31), (32),

and (33), respectively.

Substituting ÂH(¸) into the log likelihood lnf(μ)
and ignoring the terms independent of ¸ yields

¡ lnf(¸,Â,Q̂ML)/
J

K +1
ln¸+ ln jT(¸,Â)j (55)

where

jT(¸,Â)j / jR̂xx(¸)¡ R̂Hyx(¸)R̂¡1yy (¸)R̂yx(¸)j (56)

and the symbol / means “proportional to.”
To derive the ML estimate of ¸, we need to

evaluate jT(¸,Â)j. Note that the term at the right hand

side of (56) is the Schur complement of [30]

R̂(¸) =

"
R̂yy(¸) R̂yx(¸)

R̂Hyx(¸) R̂xx(¸)

#
: (57)

Since

jR̂(¸)j
jR̂yy(¸)j

= jR̂xx(¸)¡ R̂Hyx(¸)R̂¡1yy (¸)R̂yx(¸)j (58)

we have

¡ lnf(¸,Â,Q̂ML)/
J ln¸

K +1
+ ln jR̂(¸)j ¡ ln jR̂yy(¸)j:

From (57), (31), (32), and (33), it is shown that R̂(¸)

can be separated into ¸-dependent and ¸-independent

parts as

R̂(¸) = ¸¡1R̂0 + R̂K (59)

where R̂0 and R̂K are given by (22) and (23),

respectively. Note that R̂0 and R̂K are positive definite

with probability 1 if N ¡P ¸ J(P+1).
To differentiate the determinants of R̂(¸) and

R̂yy(¸) w.r.t. ¸, we have to resort to the following

lemma.

LEMMA 1 Let E and F be M £M positive definite

matrices. Then

@

@¸
ln j¸¡1E+Fj=

MX
i=1

¡1
¸(1+¸»i)

(60)

where f»igMi=1 are the eigenvalues of E¡1=2FE¡1=2.
PROOF

@

@¸
ln j¸¡1E+Fj= @

@¸
ln jE1=2(¸¡1I+E¡1=2FE¡1=2)E1=2j

=
@

@¸
ln j¸¡1I+E¡1=2FE¡1=2j

=
@

@¸
ln

"
MY
i=1

(¸¡1 + »i)

#

=

MX
i=1

@

@¸
ln

μ
1+¸»i
¸

¶

=

MX
i=1

¡1
¸(1+¸»i)

(61)

where we have used the fact that f¸¡1 + »igMi=1 are the
eigenvectors of the matrix ¸¡1I+E¡1=2FE¡1=2.

By applying Lemma 1, we get

@

@¸
ln jR̂(¸)j=

J(P+1)X
i=1

¡1
¸(1+¸¹i)

(62)

@

@¸
ln jR̂yy(¸)j=

JPX
i=1

¡1
¸(1+¸Ài)

(63)

where ¹i and Ài are eigenvalues of the matrices

R̂
¡1=2
0 R̂KR̂

¡1=2
0 and R̂

¡1=2
0,y R̂K,yR̂

¡1=2
0,y , respectively, and

R̂0,y and R̂K,y are given by (24) and (25). Following

that, the ML estimate of ¸, denoted as ˆ̧ , is shown to

be the root of (21). As a result, the ML estimates of Q
and A are given by (51) and (54), which are obtained

by replacing ¸ with ˆ̧ .

B. Derivation of the SI-PRao Test

From (45), the elements of the first partial

derivative of the log likelihood lnf with respect to

μr in (42) are

@ lnf(μ)

@μr
=

2664
@ lnf(μ)

@®R

@ lnf(μ)

@®I

3775 (64)

with

@ lnf(μ)

@®R
=
1

¸

N¡1X
n=P

[s̃H(n)Q¡1"0(n) + "
H
0 (n)Q

¡1s̃(n)]

@ lnf(μ)

@®I
=
j

¸

N¡1X
n=P

[s̃H(n)Q¡1"0(n)¡ "H0 (n)Q¡1s̃(n)]:
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Since the term [I¡1(μ)]μr ,μr is related to the FIM,
we first find relevant entries of the FIM:

E

½
@2 lnf(μ)

@®2R

¾
=¡2

¸

N¡1X
n=P

s̃H(n)Q¡1s̃H(n)

E

½
@2 lnf(μ)

@®2I

¾
=¡2

¸

N¡1X
n=P

s̃H(n)Q¡1s̃H(n)

E

½
@2 lnf(μ)

@®R@®I

¾
= 0

E

½
@2 lnf(μ)

@®I@®R

¾
= 0

Iμr ,μs(μ) = 0

Iμs,μr (μ) = 0:

As a result, (43) reduces to

[I¡1(μ)]μr ,μr =
¸

2
PN¡1
n=P s̃

H(n)Q¡1s̃(n)

·
1 0

0 1

¸
:

(65)
Since

@ lnf(μ)

@®R

¯̄̄̄
μ=μ̃

=
1

ˆ̧

N¡1X
n=P

[s̃H(n)Q̂¡1x̃0(n)+ x̃
H
0 (n)Q̂

¡1s̃(n)]

(66)

@ lnf(μ)

@®I

¯̄̄̄
μ=μ̃

=
j

ˆ̧

N¡1X
n=P

[s̃H(n)Q̂¡1x̃0(n)¡ x̃H0 (n)Q̂¡1s̃(n)]

(67)

the general Rao test in (42) reduces to (20).
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