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Knowledge-Aided Parametric Tests for Multichannel
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Abstract—In this paper, the problem of detecting a multi-
channel signal in the presence of spatially and temporally col-
ored disturbance is considered. By modeling the disturbance
as a multi-channel auto-regressive (AR) process with a random
cross-channel (spatial) covariance matrix, two knowledge-aided
parametric adaptive detectors are developed within a Bayesian
framework. The first knowledge-aided parametric detector is
developed using an ad hoc two-step procedure for the estimation of
the signal and disturbance parameters, which leads to a successive
spatio-temporal whitening process. The second knowledge-aided
parametric detector takes a joint approach for the estimation
of the signal and disturbance parameters, which leads to a joint
spatio-temporal whitening process. Both knowledge-aided para-
metric detectors are able to utilize prior knowledge about the
spatial correlation through colored-loading that combines the
sample covariance matrix with a prior covariance matrix. Com-
puter simulation using various data sets, including the KASPPER
dataset, show that the knowledge-aided parametric adaptive
detectors yield improved detection performance over existing
parametric solutions, especially in the case of limited data.

Index Terms—Bayesian inference, generalized likelihood ratio
test, knowledge-aided process, multi-channel auto-regressive
model, space-time adaptive processing.

I. INTRODUCTION

S PACE-TIME adaptive processing (STAP) has been suc-
cessfully utilized to mitigate the effect of clutter and other

interfering signals in radar, remote sensing, and communication
systems [1], [2]. Traditional STAP detectors, such as the Reed,
Mallett, and Brennan (RMB) detector [3], Kelly’s generalized
likelihood ratio test (GLRT) [4], the adaptive matched filter
(AMF) [5], [6], the adaptive coherence estimator (ACE) [7]
(also known as the normalized AMF [8]), the Rao test [9],
etc., involve estimating and inverting the full-dimensional
space-time covariance matrix, denoted by , of the disturbance
signal. At a minimum, training signals are needed to
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ensure a full-rank estimate of the space-time covari-
ance matrix , where denotes the number of spatial channels
and the number of temporal observations. Meanwhile, the
available training data is often limited in practice because of
nonhomogeneous clutter background. Thus, it is necessary to
reduce the training data requirements and computational com-
plexity associated with traditional STAP detectors for practical
applications.

In addition to the partially adaptive STAP techniques [1,
ch. 4], reduced-rank STAP [10]–[13] and reduced-dimensional
STAP [14], a class of parametric STAP detectors have recently
been introduced and are shown to offer effective means of
mitigating the requirement of excessive training signals and
considerably reduce the associated computational complexity
([15]–[25] and reference therein). The parametric STAP detec-
tors assume a multi-channel auto-regressive (AR) model for
the disturbances in both test and training signals. Multi-channel
AR modeling has extensively been studied, in particular for
airborne radar signal detection, and its effectiveness has been
shown using both simulated and measured datasets [15], [16],
[18]–[20], [26]. Examples of the parametric STAP detectors
are the parametric AMF (PAMF) [15], the parametric Rao
(P-Rao) test [19], the parametric GLRT (P-GLRT) [20], and
the simplified P-GLRT [25]. Meanwhile, extensions of the
multi-channel AR modeling to nonstationary cases for STAP
detection are investigated in [21]–[24].

Recently, knowledge-aided STAP (KA-STAP) has received
much attention as it has been found that STAP detection can
significantly be improved by exploiting prior knowledge of
the disturbance signal [27]–[32]. A natural way to incorpo-
rate prior knowledge in solving the detection problem is a
Bayesian approach that models the disturbance covariance
matrix as a random matrix with some prior [33]–[38]. Some of
these detectors are modified versions of the standard AMF or
GLRT through diagonal or colored-loading [34]–[36], while
others take more sophisticated forms such as the minimum
mean-square estimate (MMSE) via the Gibbs sampling [36],
[38]. These Bayesian STAP detectors, when compared with tra-
ditional STAP detectors, offer enhanced detection performance
in the case of limited training data (due to contribution from
prior knowledge) and are shown to be more robust in some non-
homogeneous background cases. However, the computational
complexity of these detectors is still high, especially when the
joint space-time dimension is large.

In this paper, we move a step further by considering a knowl-
edge-aided parametric approach for the STAP detection. Specif-
ically, we introduce a multi-channel AR process with a random
cross-channel or spatial covariance matrix for the spatially and
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temporally colored disturbance. Following a Bayesian frame-
work, two knowledge-aided parametric adaptive detectors are
developed, which are shown to be capable of utilizing prior
knowledge as well as both the test and training signals for detec-
tion. The first knowledge-aided parametric detector, which is re-
ferred to as the knowledge-aided parametric AMF (KA-PAMF),
is derived in a two-step manner. First, we develop a partially
adaptive detector by assuming the AR coefficient matrices to
be known. Second, the partially adaptive detector is modified to
arrive at a fully adaptive detector by replacing the AR coeffi-
cient matrices with their estimates obtained from training sig-
nals. The closed-form test statistic reveals that the KA-PAMF
employs a successively spatial whitening followed by temporal
whitening, similar to the conventional PAMF detector [15] and
the P-Rao test [19]. However, the spatial whitening matrix of
the KA-PAMF is different and employs the prior knowledge.
The second knowledge-aided parametric detector, referred to
as the knowledge-aided parametric GLRT (KA-PGLRT), is ob-
tained via a one-step joint estimation/optimization approach for
both the signal and disturbance parameters. Since the exact max-
imum likelihood (ML) estimate of the target amplitude is in-
tractable, we use the Schur complements and find an asymp-
totic but closed-form ML estimate of the amplitude. In turn, it
enables us to find a simple and closed-form detection variable
for the KA-PGLRT. The results show that the KA-PGLRT ap-
plies a joint spatio-and-subtemporal whitening with the ability
to utilize the prior knowledge.

The remainder of this paper is organized as follows. Section II
describes the proposed data model. Existing parametric STAP
solutions are briefly reviewed in Section III. Section IV con-
tains the derivation of the KA-PAMF detector obtained in a
two-step procedure, while Section V contains the derivation of
the KA-PGLRT detector involving joint estimation. Numerical
results and conclusions are provided in Sections VI and VII,
respectively.

II. SIGNAL MODEL

Consider the problem of detecting a known multi-channel
signal with unknown amplitude in the presence of spatially and
temporally correlated disturbance: (e.g., [1]):

(1)

where all vectors are vectors, denotes the number of
spatial channels, and is the number of temporal observations.
In the sequel, is referred to as the test signal, the
steering vector that is known to the detector, the unknown,
deterministic and complex-valued signal amplitude, and
the disturbance signal that is correlated in space and time. For a
uniform equi-spaced linear array, the steering vector is given as

(2)

where and denote the normalized target Doppler and spa-
tial frequencies, respectively. It is also noted that the parametric
detectors including the proposed detectors are able to handle
other array configurations.

Besides the test signal , there may be a set of training
signals , to assist in the signal detection:

(3)

Denote the space-time vectors of the steering vector,
disturbance signals and received signals as

(4)

The hypothesis testing problem in (1) can be rewritten as

(5)

We follow the standard assumptions [3]–[5], [7], [9] that the
disturbance signals , are independent and
identically distributed (i.i.d.) with the complex Gaussian distri-
bution , where is the unknown space-time
covariance matrix.

In this paper, a parametric approach is adopted, which uses
the following assumption for the disturbance signal [15], [16],
[19], [20], [25].

• AS1—Multi-channel AR Model: The disturbance signals
, in the test and training signals are

modeled as a -channel process with model order
:

(6)

where denote the unknown AR coeffi-
cient matrices, denote the spatial noise vectors
that are temporally white but spatially colored Gaussian
noise: , and denotes the un-
known spatial covariance matrix.

In addition to the above assumption, the spatial covariance
matrix is assumed to be a random matrix with mean that
is known a priori:

• AS2—Random Spatial Covariance Matrix: The random
spatial covariance matrix follows an inverse complex
Wishart distribution with degrees of freedom and mean

, i.e., , (cf. [35], [36]):

(7)

where

(8)

with denoting the Gamma function, and denotes
the matrix trace operator. The matrix quantifies the prior
knowledge about the disturbance from the probing envi-
ronment. The parameter reflects the reliability of the
prior knowledge . The larger is, the more reliable
is.
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Some comments on the above model are in order. Multi-
channel AR processes have been extensively studied, using var-
ious experimentally collected radar data sets, and shown to pro-
vide effective modeling and characterization of radar clutter
[15], [16], [18], [19]. In this paper, we introduce a stochastic AR
modeling approach, whereby the AR coefficient matrices
are deterministic, as in standard AR processes, but the spatial co-
variance matrix is random. Our approach is motivated by the
following considerations. First, in several STAP scenarios, e.g.,
the coherent processing interval (CPI) is very short, the tem-
poral clutter correlation, induced by the radar platform mobility,
is often (approximately) stationary over the CPI, while the spa-
tial clutter fluctuation could vary dramatically due to the hetero-
geneity of the ground terrain [2, Sec. 2.4.1], e.g., the boundary
of distinct terrain, urban area, etc. Therefore, the random spa-
tial parameters are needed to describe discrepancies between the
“prior knowledge” and the received test/training data. Second,
the model of a random spatial covariance matrix allows us to
incorporate some a priori knowledge at the algorithmic design
stage and develop knowledge-aided versions of the parametric
STAP detector. In a multitude of recent studies, knowledge-
aided processing has been proved as an efficient way to improve
the detection performance over conventional STAP approaches
[27]–[31]. Third, the prior knowledge on the overall space-time
covariance matrix can be usually obtained from previously
acquired database, e.g., digital terrain maps, synthetic aperture
radar (SAR) images, as well as from real-time information in-
cluding the transmit/receive array configurations, beampatterns,
etc.; refer to [29], [31], [35], and [36] for more details. More
specifically, in this paper, we may obtain the prior knowledge
in the following ways: 1) one can generate directly from prior
spatial information such as platform height, antenna look angle,
transmit and receive beampatterns and past measurements of
ground clutter [35]; 2) obtaining by first performing a block
Lower-triangle-Diagonal-Upper-triangle (LDU) matrix decom-
position of the prior overall spatial-temporal covariance matrix

and then averaging the last block-diagonal matrices [39];
and 3) learning by solving a multi-channel Levinson algo-
rithm by using as the covariance matrix for the observation.

III. EXISTING PARAMETRIC DETECTORS

In this section, we provide a brief review of existing para-
metric detectors for easy reference and to facilitate latter
discussions and comparisons. If the AR coefficient matrices

and the spatial covariance matrix
are both known exactly, the clairvoyant parametric matched

filter (PMF) takes the following test statistic [15]

(9)

where denotes the PMF threshold subject to a selected
probability of false alarm, and and denote, respec-
tively, the temporally whitened steering vector and the tempo-

rally whitened test signal using the true AR coefficient matrices
; see [19, eqs. (9) and (10)].
The PAMF detector replaces and in the above statistic

by their maximum likelihood (ML) estimates and obtained
only from training signals . The PAMF
takes the following test statistic [15]:

(10)

where the temporally whitened steering vector and test
signal are obtained adaptively by using the ML estimates

and adaptively from training signals only (see [15, Sec.
V]). Meanwhile, the P-Rao test was developed from the general
Rao test principle in [19] and coincides with the PAMF (10) ex-
cept that it uses both the test and training signals for the ML
estimates of and ; see [19, eqs. (23)–(25)]. From (10), we
conclude that the PAMF and the P-Rao test perform successively
temporal whitening (i.e., and ) followed by a spatial
whitening (i.e., ).

The P-GLRT was developed in [20] as an improved detector
with respect to the P-Rao test. However, the P-GLRT involves
a highly nonlinear cost function with respect to the target
amplitude . Newton-like iterative nonlinear two-dimensional
searches were employed to find the ML amplitude estimate,
which is computationally intensive and also suffers from
local convergence. To overcome this difficulty, the simplified
P-GLRT was proposed in [25], and its closed-form test statistic
sheds more insights on how it suppresses the disturbance. The
observation in [25] concludes that the P-GLRT performs a
spatio-and-subtemporal whitening across the dimen-
sions by using a whitening matrix.

A Bayesian PAMF (B-PAMF) detector has recently been
introduced in [39] to handle nonhomogeneous environments,
where the covariance matrices of the training and test signals
are assumed to be different from each other. The B-PAMF takes
the following test statistic:

(11)

where the temporally whitened steering vector and test
signal are obtained in the same way as in the PAMF, and
the spatial whitening matrix is obtained by finding the
maximum a posteriori (MAP) estimate of [39, eq. (24)]. As
a result, the B-PAMF also performs the successively temporal
and spatial whitening process against the disturbance, like the
PAMF and P-Rao test, but it enables a knowledge-aided solu-
tion through the MAP estimate of for the spatial whitening.

In summary, the existing parametric detectors except the
B-PAMF are unable to utilize any prior knowledge of the
spatial covariance matrix. In the following, we present two
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knowledge-aided parametric detectors, which are based on
the stochastic AR model introduced in the previous section
and derived from a Bayesian framework. By integrating out
the uncertainty of the spatial covariance matrix, both knowl-
edge-aided parametric detectors take simple closed-form
expressions which admit clear and intuitive interpretation on
how the prior knowledge is incorporated.

IV. KNOWLEDGE-AIDED PAMF

The first knowledge-aided parametric detector, referred to as
the KA-PAMF detector, employs a two-step procedure, similar
to the AMF detector [5, Sec. II]. Specifically, we first derive a
partially adaptive P-GLRT by assuming is known; and then
replace in the resulting test variable by its ML estimate from
training signals only.

A. Partially Adaptive P-GLRT With Known

With a known , the partially adaptive P-GLRT is obtained
by integrating out the random spatial covariance matrix in the
likelihood ratio:

(12)

where the matrix integral is performed with respect to the set of
positive definite Hermitian matrices, and

(13)

with

(14)

and

(15)

(16)

Note that if (i.e., ) and if .
It can be shown that the integration in (12) is given by [33]

(17)

where and

(18)

The correlation matrices in (18) are

(19)

(20)

(21)

where the vectors and are defined as

From (12) and (17), the partially adaptive P-GLRT takes the
following intermediate test statistic

(22)

Next, we need to compute the determinant of . Let

(23)

(24)

(25)

(26)

Then, from (18), can be obtained as

(27)

where

(28)

denotes the projection matrix operator which projects the
signal to the orthogonal complement of the range of :

(29)
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and denotes the Moore–Penrose pseudo-inverse of the ar-
gument. Given (27), the ML estimate of which minimizes (27)
is given by [40, Lemma 4]

(30)

With the ML estimate of , as shown in the Appendix, the par-
tially adaptive P-GLRT takes the following test statistic in a
compact form:

(31)

where the temporally whitened vectors and are ob-
tained by (23) and (24), and the spatially whitening matrix is
obtained by (28).

B. KA-PAMF: Fully Adaptive P-GLRT With the ML Estimate
of Obtained From Training Signals

The above partially adaptive P-GLRT assumes knowledge of
. To arrive at a fully adaptive P-GLRT, an ML estimate of

is obtained by using the training signals. Since the spatial co-
variance matrix is random, the likelihood function conditioned
on is obtained by integrating the likelihood function over the
distribution of (see AS2) as

(32)

where

(33)

Therefore, the ML estimate of is equivalent to minimizing
the determinant in (32). Rewrite the matrix as

(34)

where and are defined as the second term
(training signals only), respectively, in (19), (20), and (21).
Since is nonnegative definite and the remaining term

does not depend on , it
follows that

(35)

where

(36)

which coincides with the ML estimate of used in the con-
ventional PAMF. When the above matrix is minimized, the ML
estimate of also minimizes any nondecreasing function in-
cluding the determinant.

Replacing in (31) with the ML estimate , the fully
adaptive KA-PAMF takes the following test statistic:

(37)

where is a threshold subject to the probability of
false alarm, the temporally whitened vectors and
are similarly obtained as in (23) and (24) with replaced by
the ML estimate , and the spatially whitening matrix is
obtained adaptively:

(38)

which is similarly defined as (28).
A comparison of (37) and (10) indicates that the KA-PAMF

is similar to the PAMF using a successive spatio-temporal
whitening process. However, different from the PAMF where
the spatial whitening matrix is formed from only training
signals, in the KA-PAMF includes also contributions from
the target-canceled test signal (the first term in (38)) and the
prior knowledge . The inclusion of the latter allows
the KA-PAMF to better handle cases with limited training data.
The proposed KA-PAMF is also different from the B-PAMF of
(11). In particular, the B-PAMF involves a more complicated
loading process with two loading factors [39, eq. (24)]. In
contrast, the KA-PAMF uses a more intuitive loading formula
with only one loading factor. Furthermore, the inclusion of the
target-free test signal component in the KA-PAMF is a new
feature, as compared with the B-PAMF.

We now discuss the complexity of the KA-PAMF. On one
hand, the proposed detector is in general significantly simpler
than the covariance-matrix based STAP detectors [4], [5],
[7], which performs a fully spatial and temporal whitening,
with a complexity in order of , especially when the
dimension is large; see [15], [41] for a comparison of
the complexities of covariance matrix based and parametric
STAP detectors. On the other hand, the complexity of the
KA-PAMF is comparable to that of the conventional PAMF
and P-Rao test. As discussed above, the difference lies on the
spatial whitening process. Specifically, the complexity of the
spatial whitening of the PAMF and the P-Rao test is about

, while the complexity of computing (38) is
about . The additional complexity of

for the KA-PAMF mostly comes from the calculation
of the spatial whitening matrix and its inherent Moore–Pen-
rose pseudo-inverse in (29).
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V. KNOWLEDGE-AIDED PARAMETRIC GLRT

In this section, different from the two-step procedure of the
KA-PAMF detector, the KA-PGLRT detector is fully developed
within a Bayesian framework. This approach enables the ML es-
timate of to utilize the test signal, in addition to the training
signals, and enhances the final detection performance, although
at some higher complexity. Specifically, the KA-PGLRT de-
tector takes the following test statistic:

(39)
The integration over the prior distribution of can be simi-

larly performed as (17). As a result, (39) can be rewritten as

(40)

where , is defined in (18).
Following (40), since is unknown, we need first to maxi-

mize the determinant of with respect to , and then find the
ML estimate of under . The maximization of with re-
spect to yields [20]

(41)

where and are defined in (20) and (21), respec-
tively. By substituting the ML estimate of back into (40), the
KA-PGLRT test statistics is equivalent to

(42)

The next step is to find the ML estimate of , which is the solu-
tion to the following minimization problem:

(43)

The cost function in the above equation is highly nonlinear with
respect to and the exact ML estimate of turns to be in-
tractable. Since a computationally exhaustive search over the
two-dimensional parameter space (i.e., the real and imaginary
parts of ) is generally impractical, we resort to an asymptotic
ML estimate which leads to a simple closed-form solution of .

The asymptotic ML estimate of relies on the recognition
that [25]

(44)

in (43) is the Schur complement of which is a part of a
block matrix defined as

(45)

A similar technique was used in [25, eq. (13)] for the case
without the prior knowledge . According to the
property of the Schur complement, the cost function in (43) is
equivalent to

(46)

To explicitly express the above function as a function of , we
decompose and into an -independent compo-
nent and an -dependent one as follows:

(47)

(48)

where

and

(49)

with the following definitions:

(50)

(51)

Define the following orthogonal projection matrices:
, and

. The determinants of and can be computed
as follows:

(52)

and, similarly,

(53)
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where

(54)

(55)

It is noted that of (54) is a colored-loading version of
the original in the simplified P-GLRT, i.e., [25, eq. (24)],
whereas of (55) is the same as the one of the simplified
P-GLRT, i.e., [25, eq. (25)]. Following a similar procedure as
in [25, App. I and II], the ML estimate of can be obtained
asymptotically as

(56)

Taking the above ML estimate of back into the likelihood
ratio of (42) followed by simplifications (similar to Appendix
III of [25]), the KA-PGLRT takes the final test statistic as

(57)

where is a threshold subject to a probability of false
alarm.

It is seen from (57) that the KA-PGLRT detector extends the
simplified P-GLRT of [25, eq. (28)] through a knowledge-aided
colored-loading step via of (54) to incorporate the prior

. It can further be shown, similarly as in [25, App. IV], that
the KA-PGLRT shares the same interpretation of the simplified
P-GLRT as a spatio-and-subtemporal whitening across
dimensions. The essential difference is that the KA-PGLRT is
able to use the prior knowledge through a linear combination
of the conventional estimate and the prior knowledge. This is
helpful for the KA-PGLRT to improve the detection perfor-
mance when the number of pulses is comparable to the number
of elements, as verified in Section VI. The performance im-
provement of the KA-PGLRT is achieved with slightly addi-
tional complexity, due to the construction of in (49) and the
addition of in (54). Overall, the computational complexity of
the KA-PGLRT is similar to that of the conventional P-GLRT.

The spatio-and-subtemporal whitening of the KA-PGLRT
is in between a fully adaptive STAP detector such as the AMF
detector [5] that employs a joint spatio-temporal whitening
across all dimensions and the conventional PAMF [15]
or the P-Rao test [19] that utilizes successively temporal
whitening followed by spatial whitening. In terms of the
complexity of the whitening process, the KA-PGLRT is about

, which is more than

of the KA-PAMF, mainly due to the
larger dimension of in (54) compared
with the dimension of in (25).

VI. NUMERICAL RESULTS

Simulation results are provided to verify the proposed knowl-
edge-aided parametric detectors. We compare the proposed de-
tectors with the following for several different scenarios:

• the PMF of (9) that uses as a nonadaptive estimate of
;

• the standard PAMF of (10) that employs a spatial covari-
ance matrix estimate obtained from training signals
[15];

• the Bayesian PAMF (B-PAMF) of (11) [39];
• the simplified P-GLRT [25].

Two types of testing data are employed. In the first, the distur-
bance signal is generated as a multi-channel AR(2) process
with AR coefficients and a spatial covariance matrix . In the
second, we consider the widely used KASSPER dataset, where
the disturbance signal takes into account many real-world ef-
fects of the clutter and, in general, is not an AR signal (ad-
ditional details about the KASSPER dataset can be found in
Section VI-D) [42]. In both cases, the signal vector corre-
sponds to a uniform linear array with randomly selected normal-
ized spatial and Doppler frequencies. The SINR in this section
is defined as

(58)

where is the spatial-temporal covariance matrix corre-
sponding to and the a priori matrix . The above SINR is
interpreted as the average output SINR and provides a reference
to the power level of the signal relative to the disturbance. Once

is selected, the spatial covariance matrix is generated in
each Monte Carlo run from an inverse Wishart distribution with
mean .

A. Limited-Training Scenarios

The training-deficient cases are particularly challenging in
practice. As shown in [15], [19], [20], and [25], the parametric
approach provides an effective way to improve the detection per-
formance when the amount of training signals is limited. Specif-
ically, when only training signals are available, three sce-
narios are considered: 1) , a preferable case for the con-
ventional parametric detectors (i.e., the PAMF and P-GLRT),
which benefit from having much more pulses (temporal obser-
vations) than spatial channels; 2) , an intermediate case;
and 3) the case of , an unfavorable case for the con-
ventional parametric detectors.

In the first scenario, the number of pulses is and
the number of channels is . It has been shown that,
if , the conventional parametric detectors such as the
P-Rao test and P-GLRT can cope with very limited or even no
range training signals [20]. Therefore, it is extremely competi-
tive to compare the knowledge-aided parametric detectors such
as the KA-PAMF and the KA-PGLRT with such parametric
detectors in this case. Fig. 1 shows the probability of detec-
tion versus SINR when and . It is seen
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Fig. 1. Training-limited case with adequate temporal observations �� � ��:
Probability of detection versus SINR when � � �� � � ��� � � �� � � ��
� � �� and � � ����.

that, except the nonadaptive PMF, all adaptive parametric detec-
tors achieve a close detection performance, which indicates that

range training signals and pulses are adequate
in the current case for the estimation of the unknown parame-
ters and . It is also noted that the proposed KA-PGLRT ex-
hibits the best performance among all parametric detectors. The
two-step KA-PAMF, which performs successive temporal and
spatial whitenings, is slightly worse than the simplified P-GLRT,
but outperforms the PAMF and the B-PAMF.

In the second scenario, we reduce the number of pulses to
, a less favorable case for the conventional parametric de-

tectors. With the same amount of range training signals
as in the first scenario, the conventional parametric detectors
are expected to experience some degradation as the number of
pulses is reduced. The results of the simulation are shown in
Fig. 2. It is evident from this figure that, in this more challenging
case, the proposed KA-PAMF and KA-PGLRT detectors pro-
vide the best results among all considered parametric detectors.
Moreover, the KA-PGLRT achieves a performance that is better
than that of the two-step KA-PAMF. With only training
signals and pulses, the standard PAMF is unable to re-
liably estimate and from the training signals and, hence,
gives much worse results. In contrast, the PMF provides a better
performance by using as a spatially (nonadaptive) whitening
matrix. The B-PAMF, using both prior knowledge and training
signals, attains a slight performance gain over the PMF. Inter-
estingly, the simplified P-GLRT which estimates the unknown
parameters from both test and training signals achieves a perfor-
mance similar to that of the KA-PAMF; however with a 0.8-dB
performance loss.

The third scenario is the most challenging case with
training signals, channels and temporal observa-
tions, which is considered as an unfavorable case since
(see [15, Sec. VII-B.2]). Fig. 3 shows the simulation result. It is
seen from this figure that the two knowledge-aided KA-PAMF
and KA-PGLRT detectors which combine knowledge learned

Fig. 2. Training-limited case with moderate temporal observation �� � ���:
Probability of detection versus SINR when � � �� � � 	� � � �� � � ��
� � �� and � � ����.

Fig. 3. Training-limited case with limited temporal observation �� � ��:
Probability of detection versus SINR when � � 	� � � ��� � � �� � � ��
� � �� and � � ����.

from the test signal, training signals and prior information are
able to significantly outperform the other parametric detectors.
In particular, the performance gains of the KA-PAMF and the
KA-PGLRT over the simplified P-GLRT are, respectively, 6 and
6.6 dB. The performance gain is even larger by comparing the
knowledge-aided parametric detectors with the other parametric
detectors.

Finally, we consider the performance of detection as a func-
tion of the number of pulses , when

and 10 dB. The number of pulses increases
from to , which corresponds to a transition from
a low value of to a high . The purpose of this sim-
ulation is to evaluate the convergence performance of the sim-
ulated parametric detectors. As shown in Fig. 4, it is observed
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Fig. 4. Performance convergence: Probability of detection versus the number
of pulses � when � � �� � � �� � � �� � � ��� ���� � 10 dB and
� � 	�	�.

that the KA-PGLRT provides the best detection performance
among all considered detectors, and the KA-PAMF outperforms
the competitive P-GLRT when the number of pulses is small
(i.e., ) but becomes slightly inferior when is larger
than 10. It is also observed that the KA-PAMF is better than its
counterparts, e.g., the B-PAMF and the PAMF, for almost all

. When or larger, all adaptive parametric detectors
converge and yield similar detection probability, while the non-
adaptive PMF becomes the worst since it does not explore the
useful information from the training signals.

B. Sufficient-Training Scenario

In this section, an asymptotic scenario with a large number
of training signals is considered to show the convergence of the
parametric adaptive detectors. Specifically, the simulation pa-
rameters are and

. The result is shown in Fig. 5. It is seen that, all para-
metric adaptive detectors have the same performance, while the
nonadaptive PMF has a performance loss of about 3 dB. The re-
sults reveal that, with sufficient training signals, the parametric
adaptive detectors can fully learn the knowledge about the un-
known disturbance covariance matrix from the training signals.
For the two proposed knowledge-aided parametric detectors,
they put less weight on the prior knowledge, and rely more
on training signals. In contrast, the nonadaptive PMF uses only
the prior knowledge to perform spatial whitening and suffers
from ignoring the useful information from the large number of
training signals.

We now examine the constant false alarm rate (CFAR) prop-
erty of the proposed detectors. Recall that the disturbance co-
variance matrix and its spectral property are characterized by the
AR coefficient matrices and the spatial covariance matrix .
In the following, we vary these two parameters and , and
then evaluate the detection performance subject to a constant
probability of false alarm. Note that a similar procedure was
used in [15, Table I] for the same purpose. Specifically, three

Fig. 5. Asymptotic case: Probability of detection versus SINR when � � ��
� � 
�� � � �� � � ��� � � �� and � � 	�	�.

cases are considered: 1) Case I: is fixed while varies; 2)
Case II: varies while is fixed; and 3) Case III: Both and

vary. In each case, we compute the detection probability via
the Monte Carlo simulation for five different sets of disturbance
parameters, and then calculate the average detection probability
and its standard deviation.

The results are shown in Table I where the system parameters
are chosen as ,
and dB. It is noted that this corresponds to a rel-
atively large-sample (i.e., asymptotic) case. From Table I, it is
seen that the standard deviation on the detection probability is
relatively small compared to the detection probability, and the
detection probability is similar across the three considered cases
for each detector. Overall, the results confirm that the proposed
parametric detectors are insensitive to the disturbance spectral
variation, which implies that they approach the CFAR prop-
erty in the asymptotic region. Nevertheless, it is noted that the
CFAR property of the parametric detectors may vanish in the
case of and when the disturbance does not follow the
AR process, similarly to the PAMF as noted in [15].

C. Accuracy of the Prior Knowledge

The impact of the accuracy of the prior knowledge on the de-
tection performance is examined in this section. We consider
scenarios similar to that of Fig. 2 but with different values of

, a parameter that controls the accuracy of the prior knowl-
edge. Specifically, we choose , a case of less reliable
prior knowledge, and , a case of more accurate prior
knowledge. The results of the simulation are shown in Figs. 6
and 7, respectively. In both cases, it is seen that the proposed
KA-PAMF and KA-PGLRT are able to provide better detection
performance than the other detectors, while the standard PAMF
gives the worst performance due to lack of training. A compar-
ison between Figs. 6 and 7 shows that 1) the KA-PAMF and
the KA-PGLRT offer a larger performance gain over the com-
petitive simplified P-GLRT when the prior knowledge is more
reliable; 2) the nonadaptive PMF performs better in the case of
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TABLE I
PROBABILITY OF DETECTION (AND ITS STANDARD DEVIATION SHOWN IN THE PARENTHESIS) IN DIFFERENT SIMULATION

SCENARIOS WHEN � � �� � � ��� � � �� � � ��, AND ��	
 � 7.5 dB

Fig. 6. Less reliable prior knowledge: Probability of detection versus SINR
when � � �� � � �� � � �� � � �� � � � and � � 
�
�.

than in the case of and yields almost the same
performance as the B-PAMF when since they both rely
heavily on the prior knowledge; and 3) the performance loss be-
tween the PAMF and other knowledge-aided detectors increases
from the case of to the case of . We also noted
that both the simplified P-GLRT and the PAMF, which use no
prior knowledge, give different detection performance in cases
of and . This effect is related to the defini-
tion of SINR in (58). By using the deterministic instead of
the stochastic in the SINR definition, different values of
lead to different realizations of and, therefore, the simplified
P-GLRT and the PAMF give different detection performance
even with the same SINR.

D. Model Mismatch

In the above examples, the disturbance is generated from a
multi-channel AR process. In this section, the detection perfor-
mance of the proposed knowledge-aided parametric detectors
is examined when the disturbance is not exactly an AR process.
For this purpose, we use the KASSPER dataset, which contains
many challenging real-world effects, including a heterogeneous
terrain, array errors, and dense ground targets. The KASSPER
dataset uses a uniform linear array with half-wavelength
inter-element spacing and temporal pulses in each co-
herent processing interval (see [42] for a detailed description of
the KASSPER dataset). Specifically, the disturbance covariance
matrix at range bin is used as the prior knowledge
and, at each trial, the disturbance covariance matrix is generated
as with . In this case,

Fig. 7. More accurate prior knowledge: Probability of detection versus SINR
when � � �� � � �� � � �� � � �� � � �� and � � 
�
�.

the overall space-time covariance matrix is random, instead of
only the spatial covariance matrix is random as assumed in AS2.
For a feasible Monte Carlo simulation, we downsample the orig-
inal 352 352 covariance matrix into two cases: 1)
and with ; and 2) and with

.
The simulation results for both KASSPER cases are shown

in Figs. 8 and 9, respectively, where the parametric detectors
model the disturbance using a multi-channel AR(2) process, i.e.,

. For the proposed KA-PAMF and KA-PGLRT detec-
tors and the B-PAMF, we need the prior spatial covariance ma-
trix extracted from the available prior space-time covariance
matrix . As mentioned in Section II, the prior knowledge
can be obtained in multiple ways. In this simulation, we choose
the last approach. For both cases, we use for the
KA-PAMF and the KA-PGLRT. As seen from Figs. 8 and 9,
the proposed KA-PAMF and KA-PGLRT are still the best de-
tectors even with model mismatch. It is also noted that, with the
KASSPER dataset, the two-step KA-PAMF performs slightly
better than the one-step KA-PGLRT, which is not unexpected
since, due to the presence of model mismatch, the KA-PGLRT
is not necessarily better than the KA-PAMF.

VII. CONCLUSION

This paper introduces a new multichannel AR model with a
random spatial covariance matrix for STAP application. Based
on this model, we present two knowledge-aided parametric de-
tectors, referred to as the KA-PAMF and the KA-PGLRT, re-
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Fig. 8. KASSPER dataset: Probability of detection versus SINR when � � ��
� � �� � � �� � � �� � � �� and � � ����.

Fig. 9. KASSPER dataset: Probability of detection versus SINR when � � ��
� � ��� � � �� � � �� � � �� and � � ����.

spectively, by integrating out the random spatial covariance ma-
trix and maximizing the likelihood function over the AR co-
efficient matrices. The KA-PAMF utilizes a similar whitening
process as the conventional PAMF, but with a distinctively dif-
ferent spatial whitening matrix that is formed from the training
data, target-canceled test signal, and prior knowledge. Mean-
while, the KA-PGLRT takes a colored-loading form of the con-
ventional parametric GLRT and enables the utilization of the
prior knowledge. The significance (or accuracy) of the prior
knowledge is directly reflected in the test statistics of both de-
tectors. Our simulation results show that the proposed knowl-
edge-aided detectors provide enhanced performance when the
training signals are limited and when the number of pulse is
comparable to the number of antennas. In the asymptotic case
with sufficient training signals, the proposed detectors perform

similarly as the conventional parametric detectors, which is ex-
pected as the significance of the prior knowledge diminishes.
Performance examination with the KASSPER dataset also con-
firms that the knowledge-aided parametric detectors yield better
detection performance than the conventional ones.

APPENDIX I
DERIVATION OF (31)

With the ML estimate of in (30), the test variable of the
partially adaptive P-GLRT in (22) is equivalent to

(59)

According to [40, Lemma 4], the eigenvalues of the matrix
, denoted as , satisfy

. Then, we have

(60)

where the approximation holds asymptotically in
a first-order sense as the number of samples is
large enough and occurs by using the fact that

and then invoking
the approximation , for . As a result, the
test variable in (59) is simplified as

(61)

Substituting the ML estimate of (30) back into the above equa-
tion yields

(62)

which is the matrix form of (31).
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