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Abstract—This paper considers moving target detection (MTD)
with distributed multi-input multi-output (MIMO) radars in
non-homogeneous environments, where the received disturbance
signal (clutter and noise) exhibits non-homogeneity in not only
power but also covariance structure from one transmit-receive
(TX–RX) antenna pair to another as well as across different test
cells. To address this problem, we introduce a parametric approach
by employing a set of distinctive auto-regressive (AR) models, one
for each TX–RX pair, to model the non-homogeneous disturbance
signals. We develop a parametric generalized likelihood ratio
test (PGLRT), referred to as the MIMO-PGLRT detector, for
MTD in distributed MIMO radars. The MIMO-PGLRT detector,
which consists of local adaptive subspace detection, non-coherent
combining using local decision variables, and a global threshold
comparison, is shown to asymptotically achieve constant false
alarm rate (CFAR). We also investigate the target velocity estima-
tion problem, an integral part of MTD, and develop its maximum
likelihood estimator. The Cramér–Rao bound, in both the exact
and asymptotic forms, respectively, is examined to shed additional
light to the problem. Numerical results are presented to demon-
strate the effectiveness of the proposed methods.

Index Terms—Auto-regressive process, distributed mul-
tiple-input multiple-output (MIMO) radar, moving target detec-
tion, non-homogeneous clutter, velocity estimation.

I. INTRODUCTION

A distributed multi-input multi-output (MIMO) radar em-
ploys widely separated antennas within the transmit and,

respectively, receive aperture. The transmit antennas probe a
radar scene using multiple orthogonal waveforms which are
separated at each receive antenna by matched filter processing
[1]–[4]. A distributedMIMO radar allows one to exploit the spa-
tial or geometric diversity to enhance target detection [3]–[15].
In particular, radar targets often exhibit significant azimuth-se-
lective backscattering with tens of dB of fluctuation in their
radar cross section (RCS) [16]. As a result, it would be diffi-
cult for a traditional monostatic or bistatic radar to detect such
targets, if the sensors are unfavorably located.
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The spatial diversity of distributed MIMO radar was first dis-
cussed in [3] for stationary target detection and later extended in
[4] for moving target detection (MTD). The focus of [3] was to
establish the detection diversity gain, and clutter was ignored. In
a latter work [4], [7], the effect of clutter was included for MTD.
It was shown that distributed MIMO radar systems can pro-
vide significant performance gain over traditional phased array
radar systems. However, the clutter was assumed to be spa-
tially homogeneous, i.e., the clutter covariance matrix is iden-
tical for all transmit-receive (TX-RX) pairs and for all resolu-
tion cells. For adaptive detection, it was suggested to estimate
the clutter covariance matrix using training data from adjacent
resolution cells, provided that the clutter is homogeneous across
these cells. Recently, target detection/localization with the dis-
tributed MIMO radar under a phase synchronization mismatch
and, respectively, with imperfect signal separation was studied
in [9], [12]–[14].
Unlike most previous efforts which deal with MTD in a

homogeneous environment, we consider here the problem with
non-homogeneous clutter, which arises from the multi-static
transmitter-receiver configuration inherent in distributed
MIMO radars. There are two types of non-homogeneity in
such systems. First, for the same resolution cell, the clutter
observed by different TX-RX antenna pairs may exhibit
non-homogeneous covariance structure (speckle) as well as
non-homogeneous power level (texture) due to azimuth-selec-
tive backscattering of the clutter scatterers. Second, the clutter
covariance structure and power level may also vary significantly
across resolution cells in a neighborhood, thus compromising
the availability of homogeneous training data from adjacent
resolution cells. We introduce a parametric auto-regressive
(AR) model based approach aimed to address the first type of
non-homogeneity. In particular, we employ a set of different
AR processes for clutter observed by different TX-RX pairs,
and these independent AR processes are capable of modeling
variations in both clutter structure and power level across dif-
ferent probing-observing angles in a distributed MIMO radar.
Since the AR processes can be efficiently estimated from the
test signal itself (details of estimation in Section IV), there is
no need to draw training data from adjacent resolution cells,
thus circumventing the second type of non-homogeneity.
Our parametric approach is notably different from [15],

where a subspace approach was introduced for MTD with
distributed MIMO radars in clutter with non-homogeneous
power. Specifically, [15] argues that in MIMO systems where
the Doppler spectrum of the clutter is band-limited with a
relative small bandwidth around the zero frequency, the clut-
ters seen by different TX-RX pairs can be expanded by the
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Fourier bases and share a common Fourier subspace. Since
the Fourier coefficients are not identical from one TX-RX pair
to another, the subspace approach can handle clutter power
(texture) variations across the antenna pairs; however, it cannot
deal with clutter with non-homogeneous covariance structure
(speckle) due to the common subspace imposed to all clutters.
In contrast, the current work is to address MTD in clutter with
not only non-homogeneous power but also non-homogeneous
covariance structure.
Following the proposed modeling approach, we develop a

parametric generalized likelihood ratio test, referred to as the
MIMO-PGLRT detector, for the MIMO radar MTD problem.
Our development is carried out in a two-step approach. First,
we assume that the target velocity is known and derive the test
statistic of the proposed detector. Then, we examine explicitly
the target velocity estimation problem. This approach keeps our
discussions clear and organized. The assumption is also justified
by the standard practice in radar detection, whereby the uncer-
tainty region of the target velocity or Doppler frequency is di-
vided into small cells and target detection is performed on each
cell one by one. Conditioned on a known target velocity, the
proposed detector performs local adaptive subspace detection,
non-coherent combining using local decision variables, and fi-
nally a global threshold comparison. Statistical analysis shows
that the MIMO-PGLRT detector is an asymptotically constant
false alarm rate (CFAR) detector. For the estimation problem,
our main results include the development of the maximum like-
lihood (ML) velocity estimator and Cramér-Rao bound (CRB)
analysis. The CRB is derived in both the exact form and an
asymptotic form. The latter sheds additional light to the target
velocity estimation problem in distributed MIMO radars. It is
also computationally more efficient to compute than the exact
CRB.
The rest of the paper is organized as follows. The signal

model is introduced in Section II. The MIMO-PGLRT detector
is developed in Section III. Target velocity estimation and
CRB analysis are given in Section IV. Simulation results are
provided in Section V, followed by conclusions in Section VI.

II. SIGNAL MODEL

Consider a distributed MIMO radar system with transmit
antenna elements and receive antenna elements. The transmit
and receive antennas are assumed to be on stationary platforms.
We use the standard assumption for MIMO radars that the
transmit antennas probe a common area of interest using or-
thogonal waveforms [3], [4]. Pulsed transmission is employed
as in standard Doppler radars [16]. Each transmitter sends a suc-
cession of periodic pulses, i.e., repetitions of an orthog-
onal waveform, over a coherent processing interval (CPI). Each
receiver employs a bank of matched filters corresponding to
the orthogonal waveforms. The matched filter output is sam-
pled at the pulse rate via slow-time sampling. Let
denote the vector formed by the samples of the matched
filter output (within a CPI) at the -th receiver matched to the
-th transmitter. The problem of interest is to detect if a moving

target is present in the cell of interest (test cell) using the obser-
vations .

Fig. 1. Transmit-receive (TX-RX) pair geometry.

Specifically, the problem involves the following hypothesis
testing [4], [7], [8], [10]:

(1)

where denotes the clutter, the noise, the
signal vector caused by the target Doppler frequency , and

the unknown signal amplitude. Henceforth, we also refer
to as the “steering vector” following an analogy from
array signal processing.
The unknown Doppler frequency is due to target motion. The

moving target has a velocity denoted by its - and -component
, assuming a 2-dimensional (2-D) motion. This

motion is observed as different Doppler frequencies at different
TX-RX antenna pairs. Using the geometry depicted in Fig. 1, the
normalized Doppler frequency is given by [1], [4], [17]

(2)
where denotes the wavelength and the pulse repetition
interval (PRI). The signal steering vector, which is formed over
the reception of coherent pulses, is given by

(3)

The unknown signal amplitude is related to the target radar
cross section (RCS). In general, it varies significantly with the
aspect angle, due to the azimuth-selective backscattering [3],
[4], [16]. As such, in our data model, is assumed to be
different for different TX-RX antenna pairs.
The sum is referred to as the distur-

bance signal. The clutter components contain reflections
from stationary (e.g., ground, buildings) and slow moving ob-
jects (e.g., grass, forest) within the considered test cell, while
the noise components are receiver thermal noise. We as-
sume is Gaussian distributed with zero mean and covari-
ance matrix , i.e., , and

, where and denote the covari-
ance matrices of the clutter and noise components, respectively.
Due to the non-homogeneity across different TX-RX pairs, we
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have , if and/or [15]. More-
over, for a given TX-RX pair, the disturbances are also non-ho-
mogeneous for different resolution cells [15].
To account for the non-homogeneity across TX-RX pairs for

one resolution cell, we use a set of AR processes to model the
disturbance signal seen by different TX-RX pairs. There is a rich
literature of using AR processes to model disturbances in radar
and sonar systems [18]–[23]. It has been found from numerous
experimentally measured data that AR processes can be used to
accurately and efficiently approximate radar disturbances with
a model order between 2 and 5 [18], [22]. Modeling of non-sta-
tionary X-band sea-clutter using the AR model was considered
in [23], which shows that an model order of 3 is enough to cap-
ture the relationship between the long-wave evolution and the
variation of the speckle spectrum shape parameters, such as tex-
ture, Doppler centroid and bandwidth. Herein, we use a set of

different AR processes to model the disturbances at the
TX-RX pairs:

(4)

where denotes the -th slow-time sample of the distur-
bance for the -th TX-RX pair,
the zero-mean driving noise with variance , the -th
AR coefficient, and the AR model order.

III. PARAMETRIC GLRT FOR MIMO-MTD

In this section, we first assume that the target velocity is
known. It is standard in radar signal detection to divide the un-
certainty region of the target velocity or Doppler frequency into
small cells and each is tested for the presence of target [16].
Therefore, we will drop the dependence of on herein. We
also briefly discuss the issue of unknown in detection, but the
estimation of is fully addressed in Section IV.
The MIMO-PGLRT detector is developed based upon the

GLRT principle, which requires the maximum likelihood esti-
mates (MLEs) of the unknown parameters including the target
amplitudes , the driving noise variances , and the AR
coefficients under both
hypotheses. Due to statistical independence across multiple
TX-RX pairs, the MIMO-PGLRT detector takes the form of

(5)
The maximization of the exact likelihood function with respect
to the unknowns is cumbersome. Herein, we use the asymptotic
form of the likelihood function [19]1:

1For notational simplicity, the arguments of the likelihood functions are some-
times suppressed.

where specifies and , respectively, and
is related to the observation through (4) and (1). To express
the likelihood functions explicitly in terms of the observations

, let us define2

Then, the likelihood function for the -th TX-RX pair can
be written as

(6)

It is noted that

(7)

(8)

represent the temporally whitened test signal and, respectively,
the temporally whitened steering vector by using the AR coef-
ficient .

A. Maximum Likelihood Estimation Under

Here, we derive the MLEs of the unknown parameters under
. The ML estimation under is a special case of that under
by setting . The MLEs discussed in the sequel as-

sume knowledge of AR model order . In practice, the ML
estimator can be used along with standard model order selection
criteria, such as the minimum description length (MDL) crite-
rion or Akaike information criterion (AIC) [19].
From the above likelihood function, the MLE of the variance

of the AR driving noise is given by

(9)
Hence, the MLE of is obtained by minimizing

(10)

which yields

(11)

The likelihood function reduces to (up to a scaling constant)

(12)

2For simplicity but some notational abuse, and here are formed
from the last elements of their counterparts in (1).
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where

(13)

and the second equality is due to (8). From (13), it appears that
the projection matrix is a function of the AR coefficient

. In fact, is independent of [20]. To see this, we
note that the -st element of , i.e., , is a scaled
version of [see (8)]

(14)

where in the third equality, we used the fact that (see (3))

Therefore, we have

(15)

where is a Fourier vector. By substituting
into (13), becomes

(16)

which is independent of .
Using (16) in (12) and maximizing the resulting likelihood

function yield the MLE of

(17)

The likelihood function under reduces to

(18)
where

(19)

The estimates under are summarized as follows. First, use
(17) to compute the MLE . Second, using in (11)
gives the MLE . Finally, using and in (9)
gives the MLE .

B. Maximum Likelihood Estimation Under

By setting , the MLEs of and under
are given by

(20)

(21)

and the likelihood function under reduces to

(22)

where

C. The MIMO-PGLRT Detector

Using (18) and (22) in (5), we obtain the MIMO-PGLRT de-
tector as follows

(23)
where is the threshold subject to a preset probability of false
alarm. It is seen that the MIMO-PGLRT detector performs local
adaptive subspace detection, non-coherent combining using
local decision variables, and a global threshold comparison. In
particular, the local detector first adaptively projects the test
signal into two distinct subspaces: 1) the orthogonal comple-
ment of a regression data matrix formed using the returned
signal within a CPI (through ); and 2) the orthogonal
complement of a target-free regression data matrix (through

). Then, it computes the energy of both projected test

signals, the ratio of which gives the local test variable.

D. Asymptotic Analysis

The exact distributions of the MIMO-PGLRT test variable
under both hypotheses are rather involved to

obtain. We consider instead the asymptotic distribution of
to offer some insight on its performance. Using

the asymptotic result for GLRT (e.g., [24]), we can show that
the asymptotic distributions of are given by

under
under

(24)

That is, is asymptotically a central Chi-square
random variable with degrees of freedom under and,
under , a non-central Chi-square random variable with
degrees of freedom and non-centrality parameter:

(25)
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where denotes the whitened steering
vector. The derivation of the above non-centrality parameter is
shown in Appendix A.
From (24), the probability of false alarm can be written as

(26)

where is the complementary cumulative distribution
function (CDF) of the central Chi-square . As a result, the
threshold can be computed as . The above
analysis reveals that asymptotically, the MIMO-PGLR detector
under is statistically independent of the AR-related param-
eters for disturbance signals, i.e., and . Therefore, it
asymptotically achieves the CFAR property. Meanwhile, the
probability of detection can be asymptotically computed as

(27)

where is the complementary CDF of the non-cen-
tral Chi-square with given by (25).

E. Unknown Target Velocity

The above discussions are based on the assumption of a given
target velocity. In practice, this may correspond to the case when
multiple detections are performed on a set of possible values
of the target velocity or, equivalently, the Doppler frequen-
cies, i.e., , where is
the pulse repetition frequency. Alternatively, we can treat the
target velocity as an unknown parameter which needs to be
estimated before detection. In this case, the test variable of the
MIMO-GLRT detector can be expressed as

(28)

where is defined in (19). The above maximization

depends on via , which is a function of the -th Doppler
frequency (see (15)) and hence a function of (see (2)).
The estimation is examined in details in Section IV. The impact
of an unknown on the detection performance is studied nu-
merically in Section V.

F. Existing Detectors

A recently introduced detector for MTD with distributed
MIMO radar is the sample covariance matrix (SCM)-based
detector [4], [7]:

(29)

where is the threshold and the sample covariance
matrix of the disturbance computed from homogeneous
training signals , , for the

-th TX-RX pair:

(30)

To ensure that the sample covariance matrix is full rank,
range training signals are required for each TX-RX pair. In

general, training signals are needed for an acceptable
performance. As such, the SCM detector (29) requires about

training signals in total, whichmay be difficult to fulfill
in a non-homogeneous environment.
Another detector for MTD with distributed MIMO radar is

the robust MIMO detector [10], [25]

(31)

where is a fixed point estimate (FPE) of the covariance
matrix obtained by solving [26]–[28]

(32)

The above robust MIMO detector is based on the com-
pound-Gaussian model for the test signals across TX-RX
pairs. It requires training signals which follow the same com-
pound-Gaussian model. The FPE (32) can be obtained using an
iterative approach [26]–[28].
Compared with the SCM detector and the robust MIMO de-

tector, the proposed MIMO-PGLRT requires no range training
signals. The proposed detector is also computationally simpler
since the other two detectors require the estimation and inver-
sion of the covariance matrix for each TX-RX pair. Specifically,
suppose where is the maximum AR order and
the target velocity is known (the computational cost for target
velocity estimation by these methods is similar). The proposed
detector has a complexity of , while the SCM
detector has a complexity of and the ro-
bust MIMO detector has a complexity of

. The complexity of the SCM detector and
[27] of the robust MIMO detector are due to

the covariance matrix estimation in (30) and (32), respectively,
where denotes the number of iterations in (32), and the com-
plexity is due to the inversion of the esti-
mated covariance matrix for each TX-RX pair.

IV. TARGET VELOCITY ESTIMATION AND CRB

In the previous section, the MIMO-PGLRT detector is per-
formed at a set of discrete Doppler frequencies (e.g., uniform
samples of the range of unambiguous Doppler frequency) to de-
cide if a moving target is present. The target velocity can be
coarsely estimated by inverting (2) from the Doppler frequen-
cies where a target is declared by the detector. In this section,
we consider direct and more accurate estimation of the target
velocity. For this purpose, we first derive the MLE of the target
velocity and then derive the CRB to serve as a benchmark of the
estimation performance.



WANG et al.: A PARAMETRIC MOVING TARGET DETECTOR FOR DISTRIBUTED MIMO RADAR 2287

A. ML Estimation of Target Velocity

Following the likelihood function of (18) under , it is
readily shown that the MLE of the target velocity is given by

(33)

where is defined in (19). The cost function in (33)

depends on via in (15), which is a function of the -th
Doppler frequency (see (15)). The MLE of the target
velocity requires a two-dimensional non-linear optimization,
which can be solved using numerical approaches. In Section V,
we employ a two-step approach to obtain the MLE: a coarse
grid search to provide an initial estimate, followed by a refined
local search around the initial estimate by using the simplex
method. In comparison, the sample-covariance-matrix-based
velocity estimator of [4], [7] requires a similar two-dimensional
search:

(34)

where is defined in (30).
It is known that the mean-squared error (MSE) of the MLE

asymptotically achieves the CRB [24]. To provide a benchmark,
we derive the corresponding CRB for the target velocity estima-
tion problem.

B. Exact and Asymptotic CRBs

To facilitate the derivation, we employ the transformation
rule of the Fisher information matrix (FIM) [8]. Specifically, we
first stack all unknown parameters in an vector

(35)

where is the total
number of parameters associated with the sets
of AR processes, and the -th parameter set

including the real and imaginary parts of the complex amplitude
, the real and imaginary parts of AR coefficients , and

the driving noise variance . Alternatively, the problem can
be parameterized by replacing the velocity parameters with the
Doppler parameters:

(36)

where is the Doppler frequency observed at the -th
TX-RX pair. According to (2), these two sets of parameters are
linearly related:

(37)

where is the identity matrix and the matrix
is given by

...
...

(38)

with its elements given by

(39)

(40)

Using the transformation on the FIM [24], we can write the FIM
of as follows

(41)

where and denote the FIM associated with parameters
and , respectively. Then, the CRBs of the velocity parameters
are the first and second diagonal elements of the inverse of the
FIM of :

(42)

(43)

By exploiting the structure of and , the above CRB ex-
pressions can be simplified as (see Appendix B)

(44)

(45)

where the geometry-related terms and are defined in
(39) and (40), respectively, and

(46)

Here, the scalar denotes the Fisher informa-
tion of the -th Doppler frequency ,

denotes the off-diagonal
elements of the FIM between the Doppler frequency and the
target amplitude, and is a 2 2
sub-matrix of the FIM corresponding to the target ampli-
tude. Additional details of these definitions can be found in
Appendix B. From (44) and (45), it is seen that the CRBs of
the target velocity estimates mainly depend on two factors.
One is the geometry terms and which are explicit
functions of the transit-receive antenna configuration, i.e.,
and . The other is the term , which is related to the FIM
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of the signal parameters, e.g., the Doppler frequency and target
amplitude, and hence tied to the SINR.
Given the CRB expressions of (44) and (45), the remaining

task is to derive the FIM of . In the following, the FIM is given
in both the exact and an asymptotic form which, in turn, yield
the exact and an asymptotic CRB, respectively, for the velocity
parameters.
Exact CRB: In Appendix C, we derive the exact FIM of ,

which can be used to find in (44) and (45):

(47)

where is given by (7), and are, respectively,
the first derivatives of and with respect to
which are given by

,
,

, and denotes the element-wise vector
product. Substituting of (47) back to (44) and (45) yields
the exact CRB for the target velocity. It is seen from (47) that

is a function of the target amplitude , the steering
vector , the AR coefficient , and the driving noise vari-
ance . Nevertheless, this expression of offers limited
intuition; for example, it is unclear how the CRB is related to
SINR. In an effort to shed additional light on the problem, we
consider next an asymptotic CRB on estimation of .
Asymptotic CRB: In Appendix D, we derive an asymptotic

form of the FIM on , which results in

(48)

where denotes the spectrum density of the -th
AR process:

(49)

It is noted that the AR spectrum density is computed at the fre-
quency of in (48), i.e., , in accordance with
the arrangement of the steering vector in (3). Replacing of
(48) in (44) and (45) yields an asymptotic CRB for the target
velocity. It is seen that the asymptotic expression of is di-
rectly proportional to the SINR, denoted by ,
at the Doppler frequency as seen at the -th TX-RX pair,
and inversely proportional to , where is the number of
samples at each TX-RX pair. The asymptotic CRB is also no-
tably simpler to compute than the exact counterpart. Numerical
results in Section V show that the asymptotic CRB is fairly ac-
curate for moderately small value of and is a convenient tool.

V. NUMERICAL EVALUATION

In this section, numerical results are presented to verify the
asymptotic analysis and to demonstrate the performance of the
proposed MIMO-PGLRT detector in non-homogeneous clutter

Fig. 2. Distributed MIMO radar configuration used in simulation.

environments. The distributed MIMO configuration is shown in
Fig. 2, which consists of two transmitters at 0 and 65 relative
to the target and two receivers at and 40 . It is noted that
the configuration is the same as the one used in [4] and [7].
The pulse repetition frequency is 500 Hz, the carrier frequency
is 1 GHz, the target velocity is 108 km/h, and the number of
pulses within a CPI is . The above parameters lead to a
normalized target Doppler frequency of in (2).
We consider average detection performance averaged over

the target moving direction. We examine two different target
characteristic cases. In Case A, the moving direction is ran-
domly chosen according to a uniform distribution over the
range for each simulation trial, while the target
amplitude is kept constant for all TX-RX pairs, i.e., non-fluc-
tuating target amplitudes. Case B considers not only a random
target moving direction as in Case A but random (fluctuating)
target amplitude as well. Specifically, the target amplitudes

are generated as complex Gaussian random variables
with zero mean and variance .
A remark on training signals is in order. It is noted that our

proposed detector does not use any training signals. However,
training signals are required by the detectors discussed in
Section III-F. To simulate a non-homogeneous environment,
we employ the compound-Gaussian model where the tex-
ture component is used to capture the power variation across
range resolution cells. Specifically, we use the typical com-
pound-Gaussian model: a -distributed clutter with a scaling
factor of 5 and a shape factor of 0.2. Other than the difference
in texture, for each TX-RX pair, the training signals share the
same speckle component as the disturbance in the test signal.

A. AR Disturbance

In the first example, we examine the MIMO-PGLRT
and the SCM detectors when the disturbances for all
TX-RX pairs are generated using independent AR pro-
cesses. We use the following parameters for the AR models
which are randomly picked: (1) , ,

; (2)
, , ;
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Fig. 3. Receiver-operating-characteristic (ROC) for the MIMO-PGLRT and
the SCM detectors with a random target moving direction and non-fluctuating
target amplitudes.

(3) , , ; (4) ,
, . For the

SCM detector, the training signals for each TX-RX
pair are generated by using the compound-Gaussian model
discussed above. The signal-to-interference-plus-noise ratio
(SINR) is defined as
in Case A (non-fluctuating target amplitudes) and

in Case B (fluctuating target
amplitudes).
We evaluate the detection performance in both cases of

known and unknown target velocity . When the
target velocity is unknown, the MLE of the target velocity (33)
is found by using a two-dimensional nonlinear minimization
around an initial estimate, which is chosen to be the true
target velocity. A later examination of the impact of the initial
velocity estimate on the estimation performance will be consid-
ered in Fig. 5. Fig. 3 shows the receiver operating characteristic
(ROC) for both the MIMO-PGLRT and the SCM detector in
Case A with a random moving direction and non-fluctuating
target amplitudes. Also included in the figure is the asymptotic
performance derived in Section III-D. The results show that
the MIMO-PGLRT, without any range training signals, outper-
forms the SCM detector which suffers from power variation of
the training signals. It is also noted that, with only tem-
poral (Doppler) samples, the asymptotic result provides a good
estimate of the detection performance of the MIMO-PGLRT
detector.
Fig. 4 shows the ROC curves for both theMIMO-PGLRT and

the SCMdetector in Case Bwith a randommoving direction and
fluctuating target amplitudes. It is noted that again the MIMO-
PGLRT performs better than the SCM detector. By comparing
Fig. 4 and Fig. 3, we see a performance loss for both detectors
caused by the fluctuating amplitudes.
Next, we evaluate the estimation performance. In this case,

the MLE of the target velocity is found in a two-step proce-
dure. First, we perform a two-dimensional grid search to find an
initial estimate. Then, a refined minimization of the cost func-
tion in (33) is performed around the initial estimate obtained in
the first step. Fig. 5 shows the MSE of the MLE (33) and the

Fig. 4. ROC for the MIMO-PGLRT and the SCM detectors with a random
target moving direction and fluctuating target amplitudes.

Fig. 5. MSEs of the ML estimator and the SCM estimator, compared with the
exact and asymptotic CRBs for the target velocity when .

SCM estimate (34) for and . Both the exact CRBs (47)
and asymptotic CRBs (48) are included for comparison. The re-
sults show that the MSE of theML estimator reaches the CRB at
high SINR, i.e., above 20 dB in this case. It is also seen that the
ML estimator outperforms the SCM estimator (34) which is af-
fected by the non-homogeneous (compound-Gaussian) training
signals. Moreover, the asymptotic CRBs provide tight predic-
tion of the exact CRBs: they are both slightly lower than the
exact CRBs. As shown in Fig. 6, as the number of samples in-
creases, the asymptotic CRBs approach to the exact CRBs and
the deviation between them vanishes.
It should be noted that our CRB is based on the AR Gaussian

model as described in Section II, whereby the clutter power
of the test signal of each TX-RX antenna pair is a determin-
istic quantity dictated by the AR coefficients and
noise variance . Our deterministic CRB is suitable for the
proposed detector, since it uses only the test signal with fixed
clutter power for parameter estimation. In some cases, it might
be useful to consider a CRB based on a random clutter power
model for the test signal, e.g., -distributed clutter power, if
one is interested in the average performance when estimation
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Fig. 6. Comparison of the exact CRBs (47) and asymptotic CRBs (48).

is performed repeatedly across multiple test cells with different
(random) clutter power. However, such a stochastic CRB for
non-Gaussian clutter cannot be derived in closed form, as shown
in [29], [30], where a hybrid/modified CRB was suggested.

B. General Clutter Model

The above results are obtained when the disturbance signals
(clutter and noise) are AR processes. In the following, we con-
sider a practical clutter model, which has widely been used
to model the clutter Doppler characteristics and is not an AR
process [7], [16], to evaluate the performance of the MIMO-
PGLRT with model mismatch. Specifically, the clutter temporal
correlation function is [7], [16]

(50)

where is the clutter power, is the delay, and is the root
mean-square (RMS) of the clutter scatterer velocity. The general
clutter covariance matrix as a function of and is obtained
by sampling the above temporal correlation function at

[7], [16]:

...
...

...
. . .

(51)

where . For the -th TX-RX pair,
the clutter covariance matrix is generated as

according to (51), where and denote,
respectively, the clutter power and the RMS of scatterer ve-
locity for the -th TX-RX pair. In addition to the clutter, a
thermal noise component is also present and assumed to be spa-
tially and temporally white Gaussian with zero mean and vari-
ance . Overall, the disturbance including the clutter and noise
components has a covariance matrix .
The clutter-to-noise ratio (CNR) is defined as

(52)

The target is simulated according to Case Bwith a random target
moving direction and fluctuating target amplitudes. In this case,
the SINR is defined as

(53)

where is the variance of the fluctuating target am-
plitude for the -th TX-RX pair. In the simulation,
the clutter power and the RMS values of the scatterer ve-
locity are, respectively, selected as and

m/s for the four TX-RX pairs. The
CNR is 30 dB and the SINR is 20 dB.
Similar to the AR dataset, the simulation results are shown in

Fig. 7 for both cases of known and unknown target velocity.Also
included are the clairvoyant matched filter (MF) which assumes
perfect knowledge of the disturbance covariance matrix, the
SCM detector (29), and the robust MIMO detector (31). TheMF
sets a benchmark for the detection performance of all adaptive
detectors. For the proposed MIMO-PGLRT detector, we use
AR processes with an identical model order to model
the disturbance seen by different TX-RX pairs. It should be
noted that the ARmodel coefficients estimated for different
TX-RX pairs are still different as the disturbance is non-homo-
geneous across TX-RX pairs. It is seen from Fig. 7(a), when the
training signals are limited, that the MIMO-PGLRT detector
without any training signals is still able to suppress the distur-
bance and provides better detection performance than the SCM
detector and the robust MIMO detector using training
signals. Specifically, in the limited training case, the robust
MIMO detector shows moderate performance loss compared to
the proposed MIMO-PGLRT detector, while the SCM detector
fails to detect the target. Thenwe increase the number of training
signal from to for each TX-RX pair to
simulate a adequate training scenario. As shown in Fig. 7(b),
the robust MIMO detector with sufficient training signals shows
better detection performance than the proposed MIMO-PGLRT
detector whose performance is not affected by the number of
training signals. The performance of the SCM detector is also
improved but is worse than that of the MIMO-PGLRT detector.
It is also noted from the results that the performance gap between
the optimalMF and theMIMO-PGLRT detector indicates the ef-
fect of model mismatch. Further improvements may be possible
by adaptively selecting proper model orders for AR processes,
which is a topic of future study.

VI. CONCLUSION

We have introduced a parametric framework for moving
target detection (MTD) in distributed MIMO radar. Within the
parametric framework we have developed a MIMO-PGLRT
detector and an ML estimator for target velocity estimation.
We have explored asymptotic tools to analyze the performance
of the MIMO-PGLRT detector, and developed both the exact
and an asymptotic CRB, respectively, to lower bound the esti-
mation performance and shed light to the estimation problem.
Numerical results show that the proposed detector outperforms
the SCM detector in non-homogeneous environments.
The main purpose of this work is to address non-homoge-

neous clutter which is inherent in distributedMIMO radar due to
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Fig. 7. ROC of the MIMO-PGLRT, the SCM detector and the robust MIMO detector in the general clutter model: (a) (limited training); (b)
(adequate training).

multi-static TX-RX antenna configurations and azimuth- or di-
rection-selective backscattering of the radar signal in such envi-
ronments. The proposed parametric approach is not affected by
the non-homogeneous clutter variations from cell to cell since
it does not rely on range training as the SCM detector. It ad-
dresses the non-homogeneity in clutter observed from different
TX-RX antennas by using a set of distinctive AR processes for
clutter modeling, estimation and cancellation. While numerical
results demonstrate that the proposed parametric approach is
promising, there are issues to be investigated in the future, such
as how to adaptively selecting the AR model order for para-
metric MTD in distributed MIMO radar.

APPENDIX A
PROOF OF (25)

According to [24], the non-centrality parameter is given by

(54)

where
and
are the nuisance parameter vector and, respec-

tively, the signal parameter vector, denotes the FIM associated
with corresponding parameters, is the signal
parameter vector under , and is the signal param-
eter vector under . Similar to (56) and (57) in Appendix B,
we can show that

which simplifies (54) as

(55)

Using the intermediate results (64), (65) and (66) in Appendix
C, we have

Using the above equation along with , ,
the non-centrality parameter in (55) reduces to (25).

APPENDIX B
PROOF OF (44) AND (45)

Recall the definition in (36)

Rearrange in the order of TX-RX pair

where includes all unknown parameters
corresponding to the -th TX-RX pair. Invoking the sta-
tistical independence across TX-RX pairs, we have

...
...

. . .
...

In addition, for a given TX-RX pair, the parameter set
is separated into two subsets: the signal component

and the nuisance component
:

Using the general formula for the FIM in Gaussian distribution
[24], we have

(56)

where is the covariance matrix for the AR process pa-
rameterized by . It is clear from the above equation that the
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-th diagonal block of the FIM is also block di-
agonal:

(57)

Since we are only concerned with the estimation of the Doppler
frequencies , i.e., the first element of (or, equivalently,

), we can move the first element of the diagonal matrices in
to construct an matrix block at the top-left

corner of the FIM, which effectively becomes

(58)

where is the FIM of the Doppler frequencies,
with denoting the off-diagonal el-

ements of the FIM between the Doppler frequencies and
the -th parameters including the target amplitude
component and the nuisance component

, and

...
. . .

...

with

(59)

It is noted that the matrix has a sparse structure:

...
...

...
...

...
...

...
...

(60)

where contains the off-
diagonal elements of the FIM between the Doppler frequencies
and the real and imaginary parts of the amplitude. This is due
to the statistical independence among different TX-RX pairs as
well as the diagonal structure of the -th FIM sub-matrix.
Substituting (58) into (41) yields

Taking the inverse of the above block matrix, we have

(61)
where and are matrices for the remaining en-
tries of the CRB which are not of interest here. Therefore, the
CRB for the velocity estimation is the first block matrix in (61):

(62)

The term can be further simplified by using
the sparse structure of and the block matrix . Note that

Using (59) and (60), we have

-

As a result,

In addition to the diagonal matrix , we have

(63)

where is defined in (46). With (63) and the expression of
, we can explicitly express the CRB (62) as (44) and (45).

APPENDIX C
PROOF OF (47)

To compute the exact CRB, we need to determine the fol-
lowing entries in the FIM of for in (44) and (45):

With the following intermediate results,

(64)

(65)

(66)
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we can show that

due to . With the above result, it is
straightforward to show that is given by (47).

APPENDIX D
PROOF OF (48)

Here we utilize the asymptotic analysis of the estimation of
multiple sinusoids in an AR noise [33] to find the asymptotic
FIM for our problem. In [33], the estimation problem is param-
eterized in terms of the angular frequency ,
the magnitude and the initial phase . To utilize the
result there, we define ,
and the new amplitude-parameter set
(versus our previous definition of ), while
the nuisance-component set remains the same. Accord-
ingly, contains off-
diagonal entries of the FIM between the Doppler frequencies
and the magnitude and, respectively, between the Doppler fre-
quencies and the initial phase. According to [33], the asymptotic
FIM for the Doppler frequency, magnitude and initial phase in
the AR noise is

where and denotes the
spectral density of the -th AR process defined in (49),
which results in

As a result, the term is
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