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Abstract—This letter introduces a stochastic partially homoge-
neous model for adaptive signal detection. In this model, the dis-
turbance covariance matrix of training signals, R, is assumed to
be a random matrix with some « priori information, while the dis-
turbance covariance matrix of the test signal, R, is assumed to be
equal to AR, i.e., Ro = AR. On one hand, this model extends the
stochastic homogeneous model by introducing an unknown power
scaling factor \ between the test and training signals. On the other
hand, it can be considered as a generalization of the standard par-
tially homogeneous model to the stochastic Bayesian framework,
which treats the covariance matrix as a random matrix. According
to the stochastic partially homogeneous model, a scale-invariant
generalized likelihood ratio test (GLRT) for the adaptive signal de-
tection is developed, which is a knowledge-aided version of the well-
known adaptive coherence estimator (ACE). The resulting knowl-
edge-aided ACE (KA-ACE) employs a colored loading step uti-
lizing the a priori knowledge and the sample covariance matrix.
Various simulation results and comparison with respect to other
detectors confirm the scale-invariance and the effectiveness of the
KA-ACE.

Index Terms—Bayesian inference, generalized likelihood ratio
test, knowledge-aided, partially homogeneous model.

1. INTRODUCTION

OR the adaptive signal detection problem, a homogeneous
F environment is usually assumed, where the test signal
shares the same covariance matrix with the training signals [1],
[2]. Recently, a Bayesian approach to the detection problem
emerged [3], [4], where the covariance matrix is assumed
to be randomly distributed with some prior distribution. The
resulting detectors are often referred to as knowledge-aided
(KA) detectors for the stochastic homogeneous environment.
Using both measured MCARM clutter data [5] and high-fidelity
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KASSPER data [6], the KA detectors were shown to have im-
proved performance than the conventional detectors when the
homogeneous training signals are limited [4]. For nonhomoge-
neous environments, several models have been proposed. One
of these models is the compound-Gaussian model, in which
a power-varying texture component across range bins is used
to characterize the heavy-tailed clutter distributions often seen
in radar systems, especially for sea clutter. Another model is
the partially homogeneous model, where the training signals
share the same covariance matrix as that of the test signal up
to an unknown scaling factor [7]-[10]. A recent addition to the
nonhomogeneous model is the stochastic heterogeneous model
[11]-[14], in which two layers of random matrices are used to
model the heterogeneity between the test and training signals.
This model includes not only the power variation across range,
but also the structural differences of the covariance matrix.

We consider herein the partially homogeneous model, which
has received much attention over the last decade [7]-[10]. One
motivation to consider the partially homogeneous model is due
to the use of guard cells in radar signal processing. In array
signal processing and space-time adaptive processing (STAP),
a number of guard cells are often used to mitigate the side-
lobe effects and hence separate the test signal and training sig-
nals, which may lead to a power difference between the test and
training signals [15]. A stochastic partially homogeneous model
is proposed in this letter, which is different than the standard
partially homogeneous model. This model allows us to incor-
porate some a priori knowledge of the environment, while also
retaining the heterogeneity between the test and training signals
by using the power scaling factor. Specifically, we consider the
following hypothesis testing problem [7]-[10]:

HQZXO :d07
H1 X0 :OéS—l-do,

k=1,... K,
E=1,...,K (1)

Xy = dg,
Xp = dy,

where xg € CV*1 is the test signal, x;, = d, k = 1,..., K,
are target-free training signals, s is the known array response,
a is an unknown complex-valued amplitude, dy and dj are
independent, zero-mean complex-valued Gaussian distributed
random vectors with covariance matrices given by

E{dyd{} =Ro=AR, E{did/} =R (2

where A is an unknown power scaling factor. Furthermore, we
assume R is random and has a complex inverse Wishart distri-
bution, i.e., R ~ CW~!((u — N)R, p) [3], [4], [11]:

|(u — N)RJ"

p(R) = = T —(n—N)tr(R™'R)
(N, p) R[N

,eqno(3)
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where D(N, i) = aNN=D/2TY_ (1 — N + k) with T'(-)
denoting the Gamma function and R. the known prior covariance
matrix which can be obtained from, e.g., land-cover/land-use
(LCLU) maps, past measurements, etc. [13]. The parameter p
indicates the importance of the prior knowledge R. The larger
w is, the more important R is. Since Ry = AR, it is straight-
forward to show that Ry ~ CW™1((n — N)AR, p). If A = 1,
the stochastic partially homogeneous model reduces to the sto-
chastic homogeneous model [3], [4].

According to the stochastic partially homogeneous model, the
scale-invariant generalized likelihood ratio test (GLRT) is de-
veloped within a Bayesian framework. The likelihood function
is first obtained by averaging the conditional likelihood function
with respect to (w.r.t.) the prior distribution of the covariance
matrix. Then, maximization of the likelihood function is per-
formed w.r.t. the deterministic parameters, namely the scaling
factor A\ and the amplitude «. Finally, the GLRT is derived in
closed-form. The resulting scale-invariant GLRT is a knowl-
edge-aided (KA) version of the adaptive coherence estimator
(ACE) of [7], which is referred to as the KA-ACE. Specifically,
the proposed KA-ACE uses a linear combination of the sample
covariance matrix and the a priori matrix R, where the amount
of loading R is controlled by the parameter 1, which reflects the
accuracy of the prior R.

II. PROPOSED METHOD

A. Likelihood Ratio Test

The KA-ACE is developed from a Bayesian framework
which takes the form

ma}\xffl(x(),xl, s ,XK|O[7 )‘7 R)p(R)dR

T=— 4
HlfJXf fo(x0,%1,...,xk |\, R)p(R)dR @

where
fi(x0,X1,..., XK |, \,R), i=0,1
= f7(x0|oz AR f(x1,. .0, xk|R)
1 -1
— ARFON \N[RFH1 exp{—tr R'Z)} ®
and

T =XAlyiyF+S (6)

withy;, =x¢9— Gias, 81 =1,8y =0,and S = 25;1 xkka.
The likelihood function can be obtained by averaging the con-
ditional likelihood function w.r.t. the prior distribution as

/fi(XO;Xh . ,xK|a, )\,R)p(R)dR

|(/J, N R| | | (L+N) 7tr( lz)dR
(A+1)N)\NI‘
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_ - N)R|'T(N,K + p+1) P

= 7
7r(K+1)NF(N, N))\N Q)

where L = K + 1+ 1, and
=%+ u-NR=X2yy? +S+(u-NR. @8

The likelihood function incorporates the prior knowledge R and
retains the information from the sample covariance matrix S.
With (7), the likelihood ratio test of (4) reduces to

max max A~V |8 |~
e

T= A : 9
m}‘ftx/\*N|EO|*L ©)

B. Maximization Over the Scaling Factor \

From (9), the maximum likelihood (ML) estimate of \ is

_N|2i|_L7

A argm}z\mx)\ 1=0,1,

= argmAin AN |/\_1yiyiH +S+(p— N)R|L (10)

Let 2 =S + (u — N) R. Rewrite the cost function in (10) as
. L
yiy; + I‘

-y AN( + ATy e 1yi)L.
(11)

—L — C——
AW Ay 48| :/\N|.:.|L‘/\ 1g-1

Taking the log-derivative and setting it to zero, we have

N — Lyz:‘ Yi

=0,
A+ yHE Yy,

12)

which gives the ML estimate of A

) L-N
AML, = N yPE 'y,

(13)
The cost function reduces to

. o L =
min AV | = (L_N) ISR

Therefore, the generalized likelihood function becomes

(14)

T — )‘{V\;L,O|20()‘ML,O)|L
= max =

)‘{\/\IL,1|i1(a7 Amr)|E

=—1
X(I]-I._. X0

= . 15)

min(xg — as)H.:fl(xo —as)
[e%

C. Maximization Over the Amplitude o

By minimizing the term (xo — as)# 2 (xo — as), the ML
estimate of « is given by [1, p. 118 (fourth equation)]

H—=—1
N s Xo
ML =~ (16)
sHE g
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and the minimum cost function is

1 1 SH._. Xo‘
min(xo — as)?2 7 (xg — as) = xFE %o — —
a sHE s

Taking the N-th square root of (15) and utilizing the mono-
tonic property of the function f(x) = 1/(1 — z), we obtain
the KA-ACE statistic as

’sH =

Xo H;

>

< TKA-ACE
=1 =1
(sHE™'s) (xéf.:. xo) Hy

‘ 2

TxA-ACE = (18)

where vk a-AcE denotes a threshold set by a chosen probability
of false alarm. It is seen that the KA-ACE for the stochastic
partially homogeneous environment takes the same form as that
of the standard ACE [7], except that the whitening matrix is
given by

K
E=S+(p-NR=Y xxf+(u—NR (19
k=1
which uses a linear combination of the sample covariance matrix
S and the prior knowledge R. The weighting factor of R is
controlled by p.. Specifically, the KA-ACE puts more weight on
R, when the prior matrix is more accurate (i.e., 4 is large). In
comparison, the standard ACE takes the form of (18) but with
the whitening matrix given by the sample covariance matrix 2 =
S. It is interesting to note that the KA-ACE can also be derived
from other heuristic ways.
* The MAP-ACE which exploits the maximum a posteriori
(MAP) estimate of R takes the form

g&aﬁ{fl (X07X17 s 7XK|a7 )‘7 R)p(R)}

TN AP- =
VAR T Cmax fo(xo. 1, - X [N R)p(R))
’ . . (20)
It can be shown that the MAP estimate of R is [4]
R == —1 1 =0,1.
Rwmavp,i N ¢ 0, 21

Substituting the MAP estimate into (20), the MAP-ACE
takes the same form of (9) and, hence, coincides with the
KA-ACE (18) afterwards.

¢ The MMSE-ACE takes the form of (20) with the minimum
mean square error (MMSE) estimate of R replacing the
MAP estimate:

TN\MSE-ACE
Igas\x{fl(x(h X1yeon 7XK|a7 /\7 R)p(R)HR:ﬂMMSE_l

m/{a,x{fo (X0, X1, .-y XK |, R)p(R)}|R:1A1MMSE0

(22)

where the MMSE estimate of R. is obtained as the mean of
the posterior probability [4]

Ryvse,i = /Rfi(R|X0>X17 Xk, A)dR

L-N’

which is proportional to the MAP estimate of (20).

Therefore, the MMSE-ACE results in the form of (9) and

i=0,1 (23)
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Fig. 1. Scale-Invariance: Threshold versus the scaling factor A for various de-
tectors when N = 16, K = 32, ¢ = 17, P; = 0.01, and SNR = 25 dB.

gives the same detection statistic as that of the KA-ACE
in (18).

III. PERFORMANCE EVALUATION

We provide simulation results to demonstrate the perfor-
mance of the KA-ACE detector, also compared to several other
detectors. In all simulations, we have N = 16 channels and
the steering vector is given by s = [1,...,1]T. The average
signal-to-noise ratio (SNR) is defined as

SNR = |a|?sfR s (24)
where R is the mean (and also the prior) of R set as [11]
[R];; = pI"™?!,  with p = 0.9. (25)

The simulated performance is obtained using 10000 Monte
Carlo trials and the probability of false alarm s set to Py = 0.01.
It is noted that these simulation parameters, e.g., the covariance
matrix of (25) and P, are selected mainly for the convenience
of computer simulation. In practice, the covariance matrix
usually possesses a more complex structure, while the prob-
ability of false alarm is usually set to Py = 1075, For each
Monte-Carlo trial, the covariance matrix R is generated from
an inverse Wishart distribution with mean R, and then, the
covariance matrix Rg is generated by multiplying R with a
scaling factor A, i.e., Rg = AR.

A. Scale Invariance

We first examine the invariance of several detectors w.r.t. the
scaling factor ), including Kelly’s GLRT [1], the AMF [2], the
standard ACE [7], the KA-GLRT [4], and the KA-AMF [4].
Via Monte Carlo simulations, we determine the threshold for
each test with a probability of false alarm Py = 0.01, when the
number of training signals is K = 32, SNR = 25 dB, and A
varies from A = 1 to A = 16 in a step size of 2. The result is
shown in Fig. 1. As seen there, the standard ACE and the pro-
posed KA-ACE have a constant threshold independent of A and,
hence, is scale-invariant to the power scaling factor. In contrast,
the thresholds of the AMF and the KA-AMF increase linearly as
A increases, and the GLRT and the KA-GLRT give thresholds
with two distinct phases: a gradually increasing phase when A
is small; and a saturated phase when A is large, e.g., A > 10 in
this example.
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Fig. 2. Probability of detection versus SNR for different ' when N =

B. Performance of Detection

We consider the ACE and the KA-ACE detectors, both in-
variant to A, with three training sizes, K = 16, K = 24, and
K = 32. Note that K = 16 is the minimum training size for the
ACE to ensure the sample covariance matrix is full rank. Two
cases, ;4 = 17 and p = 36, are considered, which correspond to
scenarios with less reliable and more accurate prior knowledge,
respectively.

Fig. 2(a) shows the probability of detection versus SNR when
the prior R is less reliable, i.e., 1 = 17. In this case, the knowl-
edge-aided colored loading in (19) puts less weights on the prior
matrix R. As seen from Fig. 2(a), in all cases, the KA-ACE has
better detection performance than the standard ACE. In partic-
ular, when K = 32 and P; = 0.8, the performance gain of
the KA-ACE over the ACE is about 1.5 dB, while the marginal
gain becomes more evident when the number of training signals
is smaller, i.e., K = 24 and K = 16.

Fig. 2(b) shows the probability of detection versus SNR when
the prior knowledge R is more accurate, i.e., 1 = 36. The re-
sults confirm that the KA-ACE has better performance than the
ACE for the three training sizes considered. When K = 32 and
P; = 0.8, the performance gain of the KA-ACE over the ACE is
about 2.1 dB, larger than that of Fig. 2(a), which is because the
prior knowledge is more accurate when ;¢ = 36. A comparison
between Fig. 2(a) and (b) also reveals that more training sig-
nals are helpful in improving the detection performance when
1 = 17, i.e., the prior knowledge is not so reliable.

IV. CONCLUSION

We introduced a stochastic model for adaptive detection in
partially homogeneous environments. The model can incorpo-
rate some prior knowledge about the environment and handle
clutter power variation between the test and training signals. A
KA-ACE detector was developed, which takes the same form
as the conventional ACE except that the former employs col-
ored loading, i.e., a linear combination of the sample covari-
ance matrix and the prior covariance matrix, for whitening, and
the combining coefficients take into account the accuracy of the
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16, A = 8, and Py = 0.01 for cases of (a) 4 = 17; (b) u = 36.

prior knowledge. Simulation results show that the KA-ACE of-
fers better probability of detection than the ACE in cases of suf-
ficient and, respectively, limited training signals. A future direc-
tion is to examine adaptive selection of the parameter x4, which
indicates the significance of the prior covariance matrix, in the
proposed stochastic model.
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