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Abstract—In this paper, a knowledge-aided parametric adap-
tive matched filter (KA-PAMF) is proposed that utilizing both
observations (including the test and training signals) and a priori
knowledge of the spatial covariance matrix. Unlike existing
KA-PAMF methods, the proposed KA-PAMF is able to automat-
ically adjust the combining weight of a priori covariance matrix,
thus gaining enhanced robustness against uncertainty in the prior
knowledge. Meanwhile, the proposed KA-PAMF is significantly
more efficient than its KA nonparametric counterparts when the
amount of training signals is limited. One distinct feature of the
proposed KA-PAMEF is the inclusion of both the test and training
signals for automatic determination of the combining weights for
the prior spatial covariance matrix and observations. Numerical
results are presented to demonstrate the effectiveness of the
proposed KA-PAMF, especially in the limited training scenarios.

Index Terms—Knowledge-aided processing, multi-channel auto-
regressive process, parametric adaptive matched filter, space-time
adaptive processing (STAP).

I. INTRODUCTION

RADITIONAL space-time adaptive processing (STAP)

methods such as the Kelly’s generalized likelihood ratio
test (GLRT) [1] and the adaptive matched filter (AMF) [2] usu-
ally require excessive homogeneous training (secondary) data
to obtain an accurate estimate of the disturbance covariance ma-
trix for adaptive detection of targets. For example, it is known
that for these methods at least X' > JN homogeneous training
signals are required for a full-rank covariance matrix estimator,
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where J is the number of channels and V is the number of tem-
poral observations.

Knowledge-aided detectors have been introduced to reduce
the demanding need of training signals by fusing some prior
knowledge in the estimation of the disturbance covariance ma-
trix [3]. One approach toward this goal is based on the Bayesian
framework, which embeds the a priori knowledge via a prior
distribution of the disturbance covariance matrix [4]-[12]. An-
other approach was based on the regularized method [13]-[16],
which usually linearly shrinks the eigenvalues of the sample co-
variance matrix towards a targeted covariance matrix, e.g., the
identity matrix up to a scaling factor [13], a diagonal matrix con-
sisting of the diagonal entries of the sample covariance matrix
[14], or the a priori covariance matrix [16]. Interestingly, both
approaches result in a colored loading form between the a priori
matrix and the sample covariance matrix. While the weights
in the Bayesian approach are determined by the hyper-param-
eters of the statistical model, the regularized method uses the
(training) signals to determine the amount of regularization.

The regularized method has been considered for STAP
detection, which employs the loaded covariance matrix for
signal whitening and test statistic calculation. Specifically, [16]
introduces the knowledge-aided AMF (KA-AMF) which first
linearly combines the sample covariance matrix and the a priori
covariance matrix [13], which is then used in the conventional
AMF for adaptive detection. The linear combining weights are
determined from the training signals. Results obtained with the
high-fidelity site-specific radar simulation (KASSPER) data
[17] show that with J = 11 channels and N = 32 pulses,
the proposed KA-AMF offers good detection performance by
using K' = 50 training signals. Still, it may be difficult to obtain
K = 50 homogeneous training signals in a non-homogeneous
environment, where a more efficient solution with less training
data is desirable. Moreover, the computational complexity of
the KA-AMF is still high, since it needs to compute the inverse
of the JIV x JN covariance matrix.

In this paper, we aim to address both issues of limited homo-
geneous training signals and the complexity by extending the
parametric adaptive matched filter (PAMF) [18], [19] and in-
tegrate knowledge-aided processing. As shown with numerous
simulated and measured STAP datasets [19], [20], the para-
metric framework using a multichannel auto-regressive (AR)
process can effectively and efficiently capture the correlation
structure of the disturbance in STAP. Furthermore, we develop
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a regularized method which automatically determines the com-
bining weights jointly from the test signal and training signals.
Our scheme is different from other regularized methods, such as
the KA-AMF [16], which uses only the training signals to deter-
mine the combining weights. It appears that the inclusion of the
test signal for weight calculation is critical to achieving a robust
performance in scenarios where the number of training data is
limited. Our proposed knowledge-aided PAMF with automatic
combining (referred to as the KA-AC-PAMF hereafter) is de-
rived in a three-step approach. First, conditioned on the given
AR temporal correlation matrices, a partially adaptive detector
is derived according to the GLRT principle which yields an es-
timate of the spatial covariance matrix. Then, the estimate of
the spatial covariance matrix is linearly combined with the prior
knowledge in an adaptive way from the test and training sig-
nals. Finally, the fully adaptive KA-AC-PAMF is obtained by
replacing the AR temporal correlation matrices in the partially
adaptive detector by its maximum likelihood (ML) estimate.

There are previous efforts proposed to extend the parametric
detectors with knowledge-aided processing. In [21], [22], the
knowledge-aided PAMF was derived within the Bayesian
framework. The resulting Bayesian PAMF (B-PAMF) relies
on the hyper-parameters which may not be known in advance.
Hence, the B-PAMF may be vulnerable to uncertainties in the
prior knowledge. In Section IV, the sensitivity of the B-PAMF
to the prior uncertainty is numerically demonstrated, while the
proposed KA-AC-PAMEF exhibits enhanced robustness to such
prior uncertainty.

The remainder of this paper is organized as follows. Section 11
describes the multichannel AR model of the parametric frame-
work. The proposed KA-AC-PAMF is derived in Section III, in-
cluding details on using both the test and training signals to de-
termine the linear combining weights. Section I'V provides sim-
ulation results with the synthetic AR and KASSPER datasets.
Finally, conclusions are drawn in Section V.

II. SIGNAL MODEL

Consider the problem of detecting a known multi-channel
signal with unknown amplitude in the presence of spatially and
temporally correlated disturbance (e.g., [23]):

Xo(ﬂ) :do(n),
xo(n) = as(n) + do(n),
n=0,1...,N -1, (1

HOZ
Hli

where all vectors are of dimension Jx 1 obtained from .J spatial
channels/receivers, and N is the number of temporal observa-
tions/snapshots. The subindex of x((n) is referred to the range
bin of interest, and {xq(n)}~_; forms the test signal from .J re-
ceivers and N pulses. The steering vector {s(n)}_; takes into
account of the array geometry with spatial frequency w; and the
Doppler frequency wy. For a uniformly equi-spaced linear array,
the (normalized) steering vector is given as

1 et [, eiw =0T (3

VN

In addition, «« denotes the unknown, deterministic and complex-
valued signal amplitude, and d(») is the disturbance signal that

s(n) =
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is correlated in space and time. Besides the test signal xo(n),
there may be a set of target-fiee training signals x;(n):

xp(n)=dg(n), k=1,... K. 3)

Denote the JN x 1 space-time vectors of the steering vector,
disturbance signals, and received signals as

s 2 [s7(0),s7(1),...,s"(N - )],
di & [a7(0),d7(1),....df(N - 1)]T,
i & [xF(0),xL(1),...,xE(N - 1)]" . (4)

The hypothesis testing problem in (1) can be rewritten as

Hy: X =do,
xp=dg, k=1,....K
Hy: x¢=oas+dg,
X =dg, k=1,...,K. )

It is assumed that the disturbance signals d, £ = 0,1,..., K,
are independent and identically distributed (i.i.d.) with the com-
plex Gaussian distribution dj, ~ CA(0,R), where R is the un-
known space-time covariance matrix [1]. The parametric frame-
work further assumes that the disturbance signals {d;}}_ in
the test and training signals follow the assumption below [19]:
¢ AS — Multi-Channel AR Model: The disturbance sig-
nals dg(n), k = 0,..., K, in the test and training signals
are modeled as .J-channel AR(P) processes with model
order P:

di(n) = — Z AT ()dp(n — i) +er(n), (6)

=1

where { A (i)}, denote the unknown J x .J AR coefficient
matrices, A¥ denotes the conjugate transpose of A, &4,(n)
denote the ./ x 1 spatial noise vectors that are temporally
white but spatially colored Gaussian noise: {ek(n)}fzo ~
CN(0,Q), and Q denotes the unknown J x .J spatial co-
variance matrix.
In other words, the disturbance covariance matrix R is param-
etrized in AS with P AR coefficient matrices A(p) and the
spatial covariance matrix Q. In many cases, it is possible to
have some a priori knowledge on R which can be utilized for
improved detection performance. Such knowledge can be ob-
tained from previously acquired database, e.g., digital terrain
maps, synthetic aperture radar (SAR) images, as well as from
real-time information including the transmit/receive array con-
figurations, beampatterns, etc. [3]. In this paper, we only assume
a priori knowledge of the spatial covariance matrix, denoted
as Q, which can be obtained from several different ways [22]:
one can generate Q directly from prior spatial information such
as platform height, or performing a block Lower-triangle-Di-
agonal-Upper-triangle (LDU) matrix decomposition of spatial-
temporal covariance R, or learn Q by solving a multi-channel
levinson algorithm by using R. as the covariance matrix for the
observation.
With Q and AS, the problem of interest is to develop a knowl-
edge-aided parametric detector for the binary hypothesis testing
problem (5).
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III. PROPOSED APPROACH

In this section, we consider a three-step approach to develop
the KA-AC-PAMF detector. First, assuming that the AR coeffi-
cient matrix

A2 [AT(1),AT(2),..., AT(P)", )

is known, a partially adaptive PAMF is derived by finding the
ML estimates of unknown parameters (3 and « that maximize
the joint likelihood function of the test signal xg and the training
signals x4. Then, the ML estimate of Q is regularized with the
prior Q according to the minimum mean squared error (MMSE)
criterion. Third, the AR coefficient matrix A in the partially
adaptive PAMF is replaced by its ML estimate of A leading to
the fully adaptive KA-AC-PAMF.

A. Partially Adaptive PAMF

Assuming AS with a known A, the partially adaptive PAMF
takes the form of a likelihood ratio test

max fi(a, Q)

T=—"T—
méxx fo(Q) ®)

where f;(@,Q), i = 0,1 (Q €7*7) is the joint asymptotic
(N > P) likelihood function of x¢ and x; under H;, ¢ = 0,1,

1 {(O-
§ e~ tl(Q l1"(o¢))
Q|

with o = 0 when? = 0,

)

} (K+1)(N—D)

file, Q) = [

T(0) = (Xo - o8) (%o - as)H + img, (10)
k=1

and
S=[(P),...,s(N - 1] e/*0=P) (11)
Xy = [% (P),.... % (N = 1)] €*N =P (12)
Xy (n) =% (n) + Ay, (n), (13)
5(n) =s(n)+ At (n), (14)
yie(n)=[xi (n—1),....x{ (n—P)]", (15)
t(n)= [ST (n—1) ,ST(Ipr)]T, (16)

fork = 0,1,..., K. Note that (13) and (14) perform the tem-
poral whitening for xx(n) and s(n). The ML estimate of the
unknown parameter Q can be obtained by taking the derivative
of (9) and equating it to zero

Qv (@) =T (a), Qomr=T(0). (17

Taking it back to (9), the partially adaptive PAMF is equivalent
to

IT(0)]

max ')

IL(0)|

T = - .
INGY B

(18)
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The (asymptotic) ML estimate of « under /7 can be obtained
asymptotically under a first-order approximation as [22]

tr (Squlxo)

GAML = — <" (19)
tr (SH\II’ls)
where
N N K .
XoPLXE + 5 X, XN
U= =L (20)

L

withL = K(N-P)+N-P —-landP+ =1-P =
I — SH(SH)t denoting the projection matrix projecting to the
orthogonal complement of the range of S,

Finally, taking & anr, back to (18), we have

N-1 ) 2
> 7 (n) ¥ %o ()
n=1»>

N-1

Zp SH (p) W 's(n)

n—

. {80 1%, )| )
tr {sH\IFlS}

.21

It is clear that the partially adaptive PAMF first performs the
temporal whitening process to obtain the test and training sig-
nals {X;(n)}_ and the steering vector §(n) via (13) and (14),
and then performs the spatial whitening process in (21) with
¥ of (20). More importantly, the spatial whitening matrix ¥
of (20) includes contribution from the temporally whitened test
signal Xo(n) (after projecting onto the orthogonal complement
of the range space of ST and the temporally whitened training
signals x;(n).

B. Unbiasedness of U

Before proceeding to address the linear combination of ¥ and
the prior Q, we show in the following that ¥ of (20) is an un-
biased estimator of Q under the two hypotheses. This property
will be utilized in the next section to determine the optimal com-
bining weights according to the minimum mean-squared error
(MMSE) criterion.

Proposition: Given the signal model of {x;(n)}&_, and
s(n) and assuming the multichannel AR model in AS, the
estimate ¥ of (20) is an unbiased estimate of QQ under the two
hypotheses

E{®} =Q, under Hyand H;. (22)

Proof: From AS the temporally whitened test signal Xo(n)

is statistically equivalent to the spatial noise vector €y(n) plus

as(n), while the training signals X;(n) are statistically equiva-
lent to €x(n):

Xo(n) = a;8(n) + €y(n) ~ CN(a8(n), Q),

1=0,1,
xx(n) =€,(n) ~ CN(0,Q),
=1,...,K, (23)
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where oog = 0 under Hy and a1 = « under H;. Therefore, we
have
Xo=xS+Ey, X,=E; (24)
where
E; = [ex(P),..., e(N-1), k=0,1,....K (29

with columns €, (n) distributed as i.i.d. complex Gaussian vec-
tors with zero mean and covariance matrix Q. Thus we have
E{ex(i)er (D)} =0 €%/ foralli # [. Due to the orthogonal
projection, it is straightforward to show that

PLX() = ai(s - PS) + PLE() == PLE[), (26)
which holds under the two hypotheses Hy and H;. As result,
we have

LY = E,P'El + E,EY, 27)

under Hy and ;. Denoting Pil as the element of 4-th row and
I-th column in matrix P, then the proof is completed by taking

the expectation on W:

K
E{L¥} = E{E,P'EI} + E {Z EkE{I}

k=1
N-PN-P
=Y Y PLE{e(i—1+ Ple(i — 1+ P)7}

=1 I=1

N-PN-P
+Z > Z E{en(Dep (T}

=1 =1 =
N-P

= Y PHE{e(l— 1+ P)ef/(i—1+ P)}
=1
N-1

£ Y et

k=1n=P
=[tr{P1} + K(N — P)]Q
=[(N-P-1)+ K(N - P)]Q,

€k (n)}

(28)

where the second equality is due to the i.i.d. columns of
E., k = 0,1,..., K. Note that since S is a rank-1 matrix.
The rank of its projection matrix P+ = I — S#(S¥ )Jr which
projects to the orthogonal space of range of SisN—-P—1.
Therefore the last equality holds since the orthogonal projection
matrix has N — P — 1 unit eigenvalues and one eigenvalue to
be zero. |

C. Automatic Weighting Between ¥ and Q

We consider a linear combination scheme between the unbi-
ased ¥ and the prior Q according to the MMSE criterion [13],
[16]. Consistent with the fact that the estimate ¥ consists of
both the test and training signals, we propose to use the test and
training signals for automatic determination of the linear com-
bining weights, thus extending the regularized method in [13]
and [16] which uses only the training signals. As shown in later
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numerical examples, the inclusion of the test signal leads to im-
proved performance when the number of training signals is lim-
ited.

Specifically, we consider a convex combination between Q
and the estimate W!

Q=0Q+(1-)V, (29)

where 3 € [0, 1] is the combining weight to be determined. This
scheme is to balance the contribution from the prior knowledge
and the observed signals. One can replace Q by an identify ma-
trix in the case that Q is unavailable or has a large amount of
uncertainty.

The optimal Q is determined by minimizing the MSE defined
as

MSE = B{[|Q - Q[I*}
=E{|I(¥ - Q) - 6(¥ - Q)I*}
=E{||¥ - Q|I*} + #E{||¥ - Q|I*}
— 28R{er{E{(¥ - Q)(¥ - Q)" }}}.

with || - ||? defining the Frobenius norm of a matrix, under
the linear equality constraint of (29). Since E{¥} = Q and
E{®7} = QF, the last term in the above equation can be
simplified as

R{tr{E{(¥ - Q)(¥ - Q)"}}}
=R{tr{QQ" - E{¥}Q"

+ E{0¥"} - QE{¥7}}}
=R{tr{E{LET} - QQ"}}
=R{tr{—E{U1QY + QE{T"}

E{wT"} - QQ"}}
=R{te{E{(¥ - Q)(¥ - Q)"}}}
= E{|¥ - Q|*}.

which leads to

(30)

(€2))

MSE = (1 - 20)E{|¥ - Q|I"} + °E{|¥ - Q|*}. (32)

Taking the derivative of the MSE and equating it to zero, the
optimal combining weight [ is given by

_B{¥ Q") _
E{[ - Q)

B{|¥ - Q|*} .
E{T-QIP}+1Q-Q?

(33)

Define p = E{||¥ — Q||?} and v £ ||Q — Q]|?. Since p and »
depend on the true but unobservable Q, the optimal combining
weight 3 has to be estimated from the observations. In our case,
we use both the test and training signals to achieve this purpose.

First, regarding the estimate of p, we show in the following
that ¥ can be considered as equivalently the sample covariance
matrix from a set of L i.i.d. Gaussian vectors, among which
N — P — 1 vectors are obtained from the test signal and the

1Other linear combination such as the generalized linear combination (GLC)
can be derived similarly, which has a similar performance.
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remaining K (N — P) vectors are from the training signals. From

(24) and (26), ¥ consists of two components:
K

L¥ =X, P X + Z X XH
k=1

K
=EP'E{ + > E,Ef. (34)

k=1

Then the (N — P) x (N —
can be decomposed to

Pt =UpU{,

P) orthogonal projection matrix P+

(35)

where Up isan (N — P) x (N — P —1) matrix with N — P —1
orthonormal columns. Together with the N — P i.i.d. Gaussian
columns in Ej and the (N — P — 1) orthonormal columns of
Up, the resulting N — P — 1 columns of

Zo =XoUp = E,Up

= [Zo(l)7 Z0(2), A
are 1.1.d. Gaussian vectors with zero mean and covariance matrix

Q,ie., zo(n) ~ CN(0,Q) and follow the same steps in (28).
As a result,

(N-P-1)] (36

XoPiXH =EPLEY = Z,ZF
N—P-1
= Z zo(n)zil (n) 37
n=1

For the training signal component, we define z;(n) = %

and
K N-1

ZXkXH —Zsz (n zk )

k=1n=P

(3%)

where, again, z(n) are i.i.d. Gaussian vectors with zero mean
and covariance matrix Q. Stacking all z(n), we have a set of
L 1i.i.d. Gaussian vectors

zo{l), n=1,2,....N—P—1,
l=n+P-1
z(n) ={ zl), n=N-P. .. L (39)
k _ \"n—(]\’—P)
T N—F |’
l=n—(k+1)(N-P)+P.
Therefore,
L Z
— H
¥ = z;zm)z (n) (40)

can be considered as the sample covariance matrix from L i.i.d.
Gaussian vectors z(n) with zero mean and covariance matrix
Q.

With the above results, the estimate of p reduces to the es-
timation of # from L i.i.d. random vectors with zero mean and
covariance matrix Q. As shown in the Appendix, the coefficient
p can be adaptively estimated as

EII (n)

For the second quantity v, we simply replace the true Q by
the unbiased estimate ¥

— |’ (41)

v=Q- ¥ (42)
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which leads to the knowledge-aided spatial covariance matrix
estimate

~ p

43
Q 3 I (43)
D. Fully Adaptive KA-PAMF

Finally, an adaptive estimate of A is needed to enable a fully
adaptive KA-AC-PAMF. In the following, the ML estimate of
A from the training signals, derived in [24], is used. Specifi-
cally, the ML estimate of A can be computed as follows

A = R xRy, e (44)

where
K N-1

yuk—zzyk rL yk IL

k=1n=P
K N-1

UTK —Zzyk rL Xk IL
k=1n=P
with yi (n) is defined in (15).
Using the ML estimate of A in (21), the proposed KA-AC-
PAMF detector takes the form of

(45)

(46)

N-1 g

s (n)Q xo(n)
Tka-pPAMF = nifil " - ) 47
> s (n)Q s(n)
n=pP
where the fully adaptively temporally whitened vectors
P
xi (n) =%k (n) + Y Affp (p)xk (0 —p).  (48)
p—l
5(n) (n)+ ZAML (n — p), (49)
and, correspondingly,
Xp = [}(P),%u(P+ 1), 56N = D], (50)
S = [g(P),é(P+1)....,§(N-1)]. (51)

Then, the vectors z(n) is formed from the columns of the fol-
lowing matrices

Zo=XUp, Zn=Xi k=12...K (5

A ~ +H
where Uy, given as Up = = null(P) with P = S (S )]L
Finally, the spatial covariance matrix is estimated as

G=-"q+- 2.0 (53)
pt+v P+
where

.1 &
v= ; #(n)z" (n) (54)
R 1 L .
ﬁ—w_ULZ;mwﬂﬂm vr (59
v=Q- ¥ (56)
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AR (3) Data, J=4, N=16, P=0.01, UV=1

1 T T
MF (analytic)

0.9+ KA-AMF (K=8)
=W - PAMF (K=2)
0.8 = 0= B-PAMF (K=2)

0.6

Probability of detection P d
o
()]

0.2r

01-- _ :’X oo _; F...... vl

10 15 20 25

SINR (dB)

Fig. 1. Probability of detection with a reliable prior (UY = 1) when K’ = 2, J =4, N = 16, and Py = 0.01.

IV. NUMERICAL RESULTS

In this section, numerical results are provided to compare
the proposed KA-AC-PAMF with other conventional and
knowledge-aided parametric detectors in terms of the detection
performance versus the signal-to-interference-plus-noise ratio
(SINR) for a probability of false alarm Py = 0.01. Specifically,
we consider 1) the conventional PAMF [19], 2) the Bayesian
KA-PAMF [22] with a random guess of the hyper-prior param-
eter, and 3) the KA-AMF [16]. The optimal matched filter is
also shown to provide the benchmark.

In the first set of simulations, the disturbance signals d;, are
generated from the AR(3) process with a given A and Q. To
account for the uncertainty of prior knowledge about Q, a per-
turbed version of Q is used as Q [16]

Q=Qot.thH (57)
where t, isa Jx 1 vector of i.i.d. Gaussian random vectors with
mean 1 and variance o2, and ® denotes the Hadamard matrix
product. Specifically, we refer to the o2 as the uncertainty vari-
ance (UV). As the UV increases, the prior knowledge Q is on
average away from the true Q. For the KA-AMF method which
relies on a prior knowledge R. of the space-time covariance ma-
trix R, R is computed from the given Q and the AR coefficient
matrix A by using the multichannel Levinson algorithm. This
ensures the methods are subject to the same level of uncertainty
in their prior knowledge. The SINR is defined by R as

SINR = |o?|s¥ R !s, (58)
For the synthesized AR dataset, the number of channel is .J = 4
and the number of temporal observations is N = 16.

We first consider the case of UV = 1, e.g., a case with a

relatively reliable prior (Q for the parametric detectors and R,

for the KA-AMF) and the number of training signals K = 2.
Without using the prior knowledge, the conventional PAMF
fully relies on K = 2 training signals and, as shown in Fig. 1,
its performance is the worst among the parameter detectors.
Although utilizing the prior knowledge, the KA-AMF shows
worse performance than the parametric detectors since the lim-
ited K = 8 training signals, compared with the total dimen-
sion JNN = 64, are unable to obtain a good covariance matrix
estimate without exploiting the structural information of R. In
contrast, by using the prior Q and exploiting the multi-channel
AR structure, the knowledge-aided parametric detectors, i.e.,
the B-PAMF and the proposed KA-AC-PAMF, give improved
performance than the conventional PAMF and the KA-AMF. In
addition, the proposed KA-AC-PAMF has an SINR improve-
ment of about 1 dB over the B-PAMF.

In the second example, we increase the prior uncertainty to
UV = 5. Since the conventional PAMF uses no prior knowl-
edge, its performance is independent of the UV as shown in
Fig. 2. Comparison between Figs. 1 and 2 reveals that for a
larger UV, a noticeable performance degradation happens for
the B-PAMF which uses a non-adaptive weight on Q, regard-
less of the prior uncertainty. On the other hand, the proposed
KA-AC-PAMF is less sensitive. It should be noted that as the
UV further increases so that the prior knowledge Q becomes
less and less accurate, the combining coefficient for Q in (53)
will decrease to zero, and the proposed method will degrade to
its non-knowledge-aided counterpart.

Next, we test the detectors by using the KASSPER dataset
(see [17] for a detailed description of the KASSPER dataset)
when the disturbance is not exactly a multi-channel AR
process. Specifically, the ground clutter covariance matrix R at
the range bin 100 is used to generate disturbances in the test and
training signals. For the knowledge-aided detectors, we first
learn the corresponding Q from the covariance matrix R for the
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Fig. 2. Probability of detection with a less reliable prior (UV = 3)when A = 2, J =4, N = 16, and I’ = 0.01.
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Fig. 3. Probability of detection for the KASSPER dataset when &’ = 1,J =11, N =32, P, = 0.01,and UV = 0.1.

observation by the multi-channel Levinson algorithm, and then
a perturbed prior Q is generated according to (57). In addition
to the methods considered above, we include another detector
denoted as TVAR-AMEF, which employs the time-varying auto
regressive (TVAR) covariance matrix estimation method [25] in
the AMF. Although the TVAR estimator is not knowledge-aided
(in the sense that it does not require a prior covariance matrix
estimate), it does exploit the Toeplitz-block-Toeplitz structure
of the space-time covariance matrix for covariance estimation.
The performance of the TVAR estimator was examined by using
KASSPER data in [26], which shows the estimator is a strong

competitor for applications in training-limited scenarios. For
the TVAR-AMF detector, we use m = 5,n = 8 as the model
orders in the spatial and temporal domain, respectively (same
as in [26]). The KASSPER data has .J = 11 spatial channels
and N = 32 pulses. We consider an extremely limited training
case of K = 1 for the parametric detectors while X' = 14 for
TVAR-AMF and K = 44 for KA-AMF. For the parametric de-
tectors, we use a range of possible AR model order P = {1, 2,3}
and choose the one that yields the best detection performance
(P = 1 in our simulation). As shown in Fig. 3, when the
UV = 0.1, the proposed KA-AC-PAMF attains the best per-
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Fig. 4. Impact of using a prior knowledge A of the AR coefficient A on the detection probability.

formance among all considered detectors. It provides about
2-dB SINR gain than the B-PAMF which also benefits from the
accurate prior knowledge, and 3-dB SINR gain than the TVAR
method. Among the parametric detectors, the conventional
PAMF shows worse performance than the knowledge-aided
parametric detectors. For the KA-AMF, K = 14 training sig-
nals are not sufficient to support the estimate of the 352 x 352
covariance matrix R and hence a big performance degradation
is observed when it is compared to the parametric detectors. It is
notable that the non-knowledge-aided TVAR-AMF outperforms
the knowledge-aided KA-AMF.

So far, we have only examined the benefit of using a prior
knowledge of the spatial covariance matrix Q in proposed de-
tector. One would naturally ask if this can be extended to the AR
coefficient matrix A. Here, we examine via computer simula-
tion the impact of using a prior knowledge, denoted by A, of A..
Similar to what is applied to spatial covariance matrix, we con-
sider a convex combination of the prior knowledge A and the
adaptive estimate A given by (44), namely A= A+ (1 [.L)A,
where 0 <y < 1. To simulate the fact that A is inaccurate, we
follow the similar step as in (57):

A=A0ot,tH (59)

where t, is a Jx 1 vector of i.i.d. Gaussian random variables
with mean 1 and variance UV 4. Fig. 4 depicts the detection
performance of the proposed detector by using a convex com-
bination of A and A with o varying between 0 and 1, where
we set uncertainty parameters UV = 1 for Q and UV 4 = 1.2
for A. It is noted that with ;1 = 1, only the prior knowledge A
i§ used for the detector, whereas with ;2 = 0, only the estimate

A is used. Fig. 4 shows that for the 5 different combining co-
efficient considered, the best detection probability is attached at

(= 0.25, which indicates that it is beneficial to employ both
the prior knowledge A and the adaptive estimate A for detec-
tion. However, how to optimumly combining A and A remains
a future work.

V. CONCLUSION

In this paper, a new knowledge-aided PAMF is proposed
which automatically determines the linear combining weights
between the prior covariance matrix and the conventional
covariance estimate using both the test and training signals.
On one hand, the proposed detector is more robust against
uncertainty in the prior knowledge than the existing knowl-
edge-aided PAMF. On the other hand, it also outperforms the
knowledge-aided non-parametric detector in scenarios with
limited training signals. Simulation results confirm the effec-
tiveness of the proposed detector.

APPENDIX

From (40), ¥ can be estimated from L i.i.d. signals z(n)
stacked from both the test and training signals. As a result,
an adaptive estimate of p can be derived in a similar way to
[13], [16].

The quantity p can be rewritten as

J
p=E{¥-QP} =) Ella; —ql’}.  (©60)

=1

where q; and q; are the j-th columns of ¥ and Q, respectively

—
k:
A
—~
=
—

L
L1 N
@ =7 "Z:jlzm)z:,(n) I (61)

q,; = E{z(n)z;(n)}, (62)
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with z;(n) denoting the j-th element of z(n). Since z(n) are
i.i.d. vectors, we have w(n) are i.i.d. vector across n with mean
q;. This leads to

2

) 1<
E{lq; — q;II’} =E HZZWJ(")—QJ
n=1
1 <& ’

=k HEZ(WJ‘(”)—%)

n=1
1
= E{lw;m-al’}.  ©

where the last equality is due to, again, i.i.d. w;(n). Then the
variance Q; 2 ||w;(n) — q;|° can be estimated from the
sample variance estimate from L i.i.d. z(n), i.e.,

L o112
i ,71||Wj(7l) — 45l
Q= -1
= 512
llz(m)=5 () =
== 64
71 (64)
where ¢ is the sample mean estimate
1 &
q;, = I Z z(n)z; (n). (65)
n=1

Taking the sample variance estimate back to (63), we have

5 fla(n)z} (n) — ]2

Ella: — a. 2 — n=1
{lla; - al1*} ToOL (66)
Finally, taking the above quantity back to (60), we have
J
p="_ E{lla; - a;l*}
j=1
J L -
> 2 llz(n)zf(n) — 4]
_ j=1ln=1
N (L—-1)L
L
1z(n)z* (n) — ¥
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